Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.140
Filtrar
1.
Virol J ; 21(1): 101, 2024 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693578

RESUMEN

The Cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) serves as a key innate immune signaling axis involved in the regulation of various human diseases. It has been found that cGAS-STING pathway can recognize a variety of cytosolic double-stranded DNA (dsDNA), contributing to cause a robust type I interferon response thereby affecting the occurrence and progression of viral infection. Accumulating evidence indicates RNA virus-derived components play an important role in regulating cGAS-STING signaling, either as protective or pathogenic factors in the pathogenesis of diseases. Thus, a comprehensive understanding of the function of RNA virus-derived components in regulating cGAS-STING signaling will provide insights into developing novel therapies. Here, we review the existing literature on cGAS-STING pathway regulated by RNA virus-derived components to propose insights into pharmacologic strategies targeting the cGAS-STING pathway.


Asunto(s)
Inmunidad Innata , Proteínas de la Membrana , Nucleotidiltransferasas , Virus ARN , Transducción de Señal , Nucleotidiltransferasas/metabolismo , Nucleotidiltransferasas/genética , Humanos , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Virus ARN/fisiología , Virus ARN/inmunología , Animales , Interferón Tipo I/metabolismo
2.
Biol Lett ; 20(5): 20230600, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38715462

RESUMEN

Novel transmission routes change pathogen landscapes and may facilitate disease emergence. The varroa mite is a virus vector that switched to western honeybees at the beginning of the last century, leading to hive mortality, particularly in combination with RNA viruses. A recent invasion of varroa on the French island of Ushant introduced vector-mediated transmission to one of the last varroa-naive native honeybee populations and caused rapid changes in the honeybee viral community. These changes were characterized by a drastic increase in deformed wing virus type B prevalence and titre in honeybees, as well as knock-on effects in bumblebees, particularly in the year following the invasion. Slow bee paralysis virus also appeared in honeybees and bumblebees, with a 1 year delay, while black queen cell virus declined in honeybees. This study highlights the rapid and far-reaching effects of vector-borne transmission that can extend beyond the directly affected host species, and that the direction of the effect depends on the pathogen's virulence.


Asunto(s)
Virus ARN , Varroidae , Animales , Abejas/virología , Varroidae/virología , Varroidae/fisiología , Virus ARN/fisiología , Virus ARN/genética , Francia/epidemiología , Especies Introducidas , Dicistroviridae/genética , Dicistroviridae/fisiología , Prevalencia
3.
PLoS Biol ; 22(4): e3002600, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38662792

RESUMEN

The signature feature of all plant viruses is the encoding of movement proteins (MPs) that supports the movement of the viral genome into adjacent cells and through the vascular system. The recent discovery of umbravirus-like viruses (ULVs), some of which only encode replication-associated proteins, suggested that they, as with umbraviruses that lack encoded capsid proteins (CPs) and silencing suppressors, would require association with a helper virus to complete an infection cycle. We examined the infection properties of 2 ULVs: citrus yellow vein associated virus 1 (CY1), which only encodes replication proteins, and closely related CY2 from hemp, which encodes an additional protein (ORF5CY2) that was assumed to be an MP. We report that both CY1 and CY2 can independently infect the model plant Nicotiana benthamiana in a phloem-limited fashion when delivered by agroinfiltration. Unlike encoded MPs, ORF5CY2 was dispensable for infection of CY2, but was associated with faster symptom development. Examination of ORF5CY2 revealed features more similar to luteoviruses/poleroviruses/sobemovirus CPs than to 30K class MPs, which all share a similar single jelly-roll domain. In addition, only CY2-infected plants contained virus-like particles (VLPs) associated with CY2 RNA and ORF5CY2. CY1 RNA and a defective (D)-RNA that arises during infection interacted with host protein phloem protein 2 (PP2) in vitro and in vivo, and formed a high molecular weight complex with sap proteins in vitro that was partially resistant to RNase treatment. When CY1 was used as a virus-induced gene silencing (VIGS) vector to target PP2 transcripts, CY1 accumulation was reduced in systemic leaves, supporting the usage of PP2 for systemic movement. ULVs are therefore the first plant viruses encoding replication and CPs but no MPs, and whose systemic movement relies on a host MP. This explains the lack of discernable helper viruses in many ULV-infected plants and evokes comparisons with the initial viruses transferred into plants that must have similarly required host proteins for movement.


Asunto(s)
Nicotiana , Enfermedades de las Plantas , Proteínas de Movimiento Viral en Plantas , Nicotiana/virología , Nicotiana/genética , Nicotiana/metabolismo , Enfermedades de las Plantas/virología , Proteínas de Movimiento Viral en Plantas/metabolismo , Proteínas de Movimiento Viral en Plantas/genética , Virus ARN/genética , Virus ARN/fisiología , Virus ARN/metabolismo , Virus de Plantas/fisiología , Virus de Plantas/genética , Virus de Plantas/metabolismo , Virus de Plantas/patogenicidad , Proteínas de la Cápside/metabolismo , Proteínas de la Cápside/genética , ARN Viral/genética , ARN Viral/metabolismo , Genoma Viral , Floema/virología , Floema/metabolismo
4.
Science ; 384(6691): eadl0635, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38574145

RESUMEN

The retractile type IV pilus (T4P) is important for virulence of the opportunistic human pathogen Pseudomonas aeruginosa. The single-stranded RNA (ssRNA) phage PP7 binds to T4P and is brought to the cell surface through pilus retraction. Using fluorescence microscopy, we discovered that PP7 detaches T4P, which impairs cell motility and restricts the pathogen's virulence. Using cryo-electron microscopy, mutagenesis, optical trapping, and Langevin dynamics simulation, we resolved the structure of PP7, T4P, and the PP7/T4P complex and showed that T4P detachment is driven by the affinity between the phage maturation protein and its bound pilin, plus the pilus retraction force and speed, and pilus bending. Pilus detachment may be widespread among other ssRNA phages and their retractile pilus systems and offers new prospects for antibacterial prophylaxis and therapeutics.


Asunto(s)
Fimbrias Bacterianas , Fagos Pseudomonas , Pseudomonas aeruginosa , Virus ARN , Internalización del Virus , Humanos , Microscopía por Crioelectrón , Proteínas Fimbrias/genética , Proteínas Fimbrias/metabolismo , Fimbrias Bacterianas/virología , Pseudomonas aeruginosa/patogenicidad , Pseudomonas aeruginosa/virología , Virus ARN/química , Virus ARN/fisiología , Fagos Pseudomonas/química , Fagos Pseudomonas/fisiología , Proteínas Virales/metabolismo
5.
Viruses ; 16(4)2024 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-38675948

RESUMEN

The transmission of pathogens from reservoir to recipient host species, termed pathogen spillover, can profoundly impact plant, animal, and public health. However, why some pathogens lead to disease emergence in a novel species while others fail to establish or do not elicit disease is often poorly understood. There is strong evidence that deformed wing virus (DWV), an (+)ssRNA virus, spills over from its reservoir host, the honeybee Apis mellifera, into the bumblebee Bombus terrestris. However, the low impact of DWV on B. terrestris in laboratory experiments suggests host barriers to virus spread in this recipient host. To investigate potential host barriers, we followed the spread of DWV genotype B (DWV-B) through a host's body using RT-PCR after experimental transmission to bumblebees in comparison to honeybees. Inoculation was per os, mimicking food-borne transmission, or by injection into the bee's haemocoel, mimicking vector-based transmission. In honeybees, DWV-B was present in both honeybee faeces and haemolymph within 3 days of inoculation per os or by injection. In contrast, DWV-B was not detected in B. terrestris haemolymph after inoculation per os, suggesting a gut barrier that hinders DWV-B's spread through the body of a B. terrestris. DWV-B was, however, detected in B. terrestris faeces after injection and feeding, albeit at a lower abundance than that observed for A. mellifera, suggesting that B. terrestris sheds less DWV-B than A. mellifera in faeces when infected. Barriers to viral spread in B. terrestris following oral infection may limit DWV's impact on this spillover host and reduce its contribution to the community epidemiology of DWV.


Asunto(s)
Virus ARN , Animales , Abejas/virología , Virus ARN/genética , Virus ARN/fisiología , Virus ARN/patogenicidad , Genotipo , Interacciones Huésped-Patógeno
6.
ISME J ; 18(1)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38519112

RESUMEN

The significance of gut microbiota in regulating animal immune response to viral infection is increasingly recognized. However, how chronic bee paralysis virus (CBPV) exploits host immune to disturb microbiota for its proliferation remains elusive. Through histopathological examination, we discovered that the hindgut harbored the highest level of CBPV, and displayed visible signs of damages. The metagenomic analysis showed that a notable reduction in the levels of Snodgrassella alvi and Lactobacillus apis, and a significant increase in the abundance of the opportunistic pathogens such as Enterobacter hormaechei and Enterobacter cloacae following CBPV infection. Subsequent co-inoculation experiments showed that these opportunistic pathogens facilitated the CBPV proliferation, leading to accelerated mortality in bees and exacerbation of bloated abdomen symptoms after CBPV infection. The expression level of antimicrobial peptide (AMP) was found to be significantly up-regulated by over 1000 times in response to CBPV infection, as demonstrated by subsequent transcriptome and quantitative real-time PCR investigations. In particular, through correlation analysis and a bacteriostatic test revealed that the AMPs did not exhibit any inhibitory effect against the two opportunistic pathogens. However, they did demonstrate inhibitory activity against S. alvi and L. apis. Our findings provide different evidence that the virus infection may stimulate and utilize the host's AMPs to eradicate probiotic species and facilitate the proliferation of opportunistic bacteria. This process weakens the intestinal barrier and ultimately resulting in the typical bloated abdomen.


Asunto(s)
Microbioma Gastrointestinal , Virus de Insectos , Virus ARN , Virosis , Virus , Abejas , Animales , Virus ARN/fisiología , Péptidos Antimicrobianos , Virus de Insectos/fisiología , Parálisis
7.
Proteomics ; 24(9): e2300312, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38446070

RESUMEN

The ectoparasitic mite Varroa destructor transmits and triggers viral infections that have deleterious effects on honey bee colonies worldwide. We performed a manipulative experiment in which worker bees collected at emergence were exposed to Varroa for 72 h, and their proteomes were compared with those of untreated control bees. Label-free quantitative proteomics identified 77 differentially expressed A. mellifera proteins (DEPs). In addition, viral proteins were identified by orthogonal analysis, and most importantly, Deformed wing virus (DWV) was found at high levels/intensity in Varroa-exposed bees. Pathway enrichment analysis suggested that the main pathways affected included peroxisomal metabolism, cyto-/exoskeleton reorganization, and cuticular proteins. Detailed examination of individual DEPs revealed that additional changes in DEPs were associated with peroxisomal function. In addition, the proteome data support the importance of TGF-ß signaling in Varroa-DWV interaction and the involvement of the mTORC1 and Hippo pathways. These results suggest that the effect of DWV on bees associated with Varroa feeding results in aberrant autophagy. In particular, autophagy is selectively modulated by peroxisomes, to which the observed proteome changes strongly corresponded. This study complements previous research with different study designs and suggests the importance of the peroxisome, which plays a key role in viral infections.


Asunto(s)
Peroxisomas , Virus ARN , Varroidae , Animales , Abejas/virología , Abejas/parasitología , Varroidae/virología , Peroxisomas/metabolismo , Peroxisomas/virología , Virus ARN/fisiología , Proteómica/métodos , Proteoma/metabolismo , Proteoma/análisis , Proteínas de Insectos/metabolismo , Transducción de Señal , Interacciones Huésped-Parásitos
8.
J Invertebr Pathol ; 203: 108056, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38176676

RESUMEN

Solenopsis invicta virus 3 (SINV-3) has been shown to cause significant mortality among all stages of its host, Solenopsis invicta. One impact of the virus is alteration of worker ant foraging behavior, which results in colony starvation and collapse over time. Additionally, it has been hypothesized that SINV-3 infection of S. invicta may disrupt worker ant brood care behavior. To investigate this possibility, various combinations of SINV-3-infected and -uninfected adult (worker) and immature (brood) stages were placed together and monitored using the response variables, mortality, egg hatch, and virus load. While significant differences in percent cumulative S. invicta worker ant mortality among six combinations of SINV-3-infected and -uninfected stages were observed, no significant differences in percent cumulative mortality of S. invicta larvae or pupae were observed. No significant differences in egg hatch were observed among SINV-3-uninfected, SINV-3-infected (colony-treated and queen-treated), and starved colonies. Eggs hatched normally in 10-12 days for all treatments indicating that egg care by worker ants was unaffected by SINV-3 infection status. The study further clarifies SINV-3 pathogenesis in its host, S. invicta. Larval mortality in SINV-3-infected colonies does not appear to be caused by worker ant neglect. S. invicta brood under the care of SINV-3-infected worker ants did not exhibit higher mortality rates compared with those tended by SINV-3-uninfected worker ants.


Asunto(s)
Hormigas , Virus ARN , Animales , Hormigas de Fuego , Virus ARN/fisiología , Hormigas/fisiología , Larva
9.
PeerJ ; 11: e16190, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37814626

RESUMEN

Background: Tilapia lake virus (TiLV), also known as Tilapinevirus tilapiae, poses a significant threat to tilapia aquaculture, causing extensive mortality and economic losses. Understanding the mechanisms and pathogenesis of TiLV is crucial to mitigate its impact on this valuable fish species. Methodology: In this study, we utilized transmission electron microscopy to investigate the ultrastructural changes in E-11 cells following TiLV infection. We also examined the presence of TiLV particles within the cells. Cellular viability and mitochondrial functions were assessed using MTT and ATP measurement assays and mitochondrial probes including JC-1 staining and MitoTracker™ Red. Results: Our findings provide novel evidence demonstrating that TiLV causes cytotoxicity through the destruction of mitochondria. Transmission electron micrographs showed that TiLV particles were present in the cytoplasm of E-11 cells as early as 1 h after infection. Progressive swelling of mitochondria and ultrastructural damage to the cells were observed at 1, 3 and 6 days post-infection. Furthermore, losses of mitochondrial mass and membrane potential (MMP) were detected at 1 day after TiLV inoculation, as determined by mitochondrial probes. The results of the MTT assay also supported the hypothesis that the cell deaths in E-11 cells during TiLV infection may be caused by the disruption of mitochondrial structure and function. Conclusions: Our study reveals the significant role of mitochondrial disruption in contributing to cellular death during the early stages of TiLV infection. These findings advance the understanding of TiLV pathogenesis and further enhance our knowledge of viral diseases in fish.


Asunto(s)
Enfermedades de los Peces , Infecciones por Orthomyxoviridae , Virus ARN , Tilapia , Virus , Animales , Virus ARN/fisiología
10.
Viruses ; 15(4)2023 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-37112880

RESUMEN

Tilapia lake virus (TiLV) is a novel RNA virus that has been causing substantial economic losses across the global tilapia industry. Despite extensive research on potential vaccines and disease control methods, the understanding of this viral infection and the associated host cell responses remains incomplete. In this study, the involvement of the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway in the early stages of TiLV infection was investigated. The results showed a distinct pattern of ERK phosphorylation (p-ERK) upon TiLV infection in two fish cell lines, E-11 and TiB. Specifically, the p-ERK levels in the TiB cells decreased substantially, while the p-ERK levels in the E-11 cells remained constant. Interestingly, a large number of cytopathic effects were observed in the infected E-11 cells but none in the infected TiB cells. Furthermore, when p-ERK was suppressed using the inhibitor PD0325901, a significant reduction in the TiLV load and decrease in the mx and rsad2 gene expression levels were observed in the TiB cells in days 1-7 following infection. These findings highlight the role of the MAPK/ERK signalling pathway and provide new insights into the cellular mechanisms during TiLV infection that could be useful in developing new strategies to control this virus.


Asunto(s)
Enfermedades de los Peces , Virus ARN , Tilapia , Virus , Animales , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Virus ARN/fisiología , Virus/metabolismo , Inmunidad
11.
Viruses ; 15(3)2023 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-36992427

RESUMEN

Infection with Aspergillus fumigatus polymycovirus 1 (AfuPmV-1) weakens the resistance of biofilms of common A. fumigatus reference strain Af293 in intermicrobial competition with Pseudomonas aeruginosa, and sensitizes A. fumigatus for antifungal effects of nikkomycin Z. We compared the sensitivity of two virus-infected (VI) and one virus-free (VF) Af293 strains to hypertonic salt. Salt stress impairs the growth of VI and VF at all times; VF control growth always exceeds VI, and VF growth in salt always exceeds VI. Since VF growth exceeds VI in the presence and absence of salt, we also examined growth in salt as a percentage of control growth. Initially, as a percentage of control, VI exceeded VF, but at 120 h VF began to exceed VI consistently even by this measure; thus, at that time the growth of VF in salt surges in relation to control growth, or, alternatively, its growth in salt persists compared to the relative inhibition of VI. In summary, virus infection impairs the response of A. fumigatus to several different stresses, including hypertonic salt.


Asunto(s)
Aspergillus fumigatus , Virus ARN , Cloruro de Sodio , Aspergillus fumigatus/efectos de los fármacos , Aspergillus fumigatus/fisiología , Aspergillus fumigatus/virología , Biopelículas , Virus ARN/fisiología , Estrés Salino , Cloruro de Sodio/farmacología
12.
J Mol Biol ; 435(16): 167955, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-36642156

RESUMEN

An emerging set of results suggests that liquid-liquid phase separation (LLPS) is the basis for the formation of membrane-less compartments in cells. Evidence is now mounting that various types of virus-induced membrane-less compartments and organelles are also assembled via LLPS. Specifically, viruses appear to use intracellular phase transitions to form subcellular microenvironments known as viral factories, inclusion bodies, or viroplasms. These compartments - collectively referred to as viral biomolecular condensates - can be used to concentrate replicase proteins, viral genomes, and host proteins that are required for virus replication. They can also be used to subvert or avoid the intracellular immune response. This review examines how certain DNA or RNA viruses drive the formation of viral condensates, the possible biological functions of those condensates, and the biophysical and biochemical basis for their assembly.


Asunto(s)
Condensados Biomoleculares , Virus ADN , Virus ARN , Virus ARN/química , Virus ARN/fisiología , Replicación Viral , Virus ADN/química , Virus ADN/fisiología , Transición de Fase , Condensados Biomoleculares/metabolismo , Condensados Biomoleculares/virología
14.
Mol Plant Microbe Interact ; 35(11): 989-1005, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35816413

RESUMEN

The molecular interactions between Polymyxa betae, the protist vector of sugar beet viruses, beet necrotic yellow vein virus (BNYVV), the causal agent of rhizomania, and Beta vulgaris have not been extensively studied. Here, the transmission of BNYVV to sugar beet by P. betae zoospores was optimized using genetically characterized organisms. Molecular interactions of aviruliferous and viruliferous protist infection on sugar beet were highlighted by transcriptomic analysis. P. betae alone induced limited gene expression changes in sugar beet, as a biotrophic asymptomatic parasite. Most differentially expressed plant genes were down-regulated and included resistance gene analogs and cell wall peroxidases. Several enzymes involved in stress regulation, such as the glutathione-S-transferases, were significantly induced. With BNYVV, the first stages of the P. betae life cycle on sugar beet were accelerated with a faster increase of relative protist DNA level and an earlier appearance of sporangia and sporosori in plants roots. A clear activation of plant defenses and the modulation of genes involved in plant cell wall metabolism were observed. The P. betae transcriptome in the presence of BNYVV revealed induction of genes possibly involved in the switch to the survival stage. The interactions were different depending on the presence or absence of the virus. P. betae alone alleviates plant defense response, playing hide-and-seek with sugar beet and allowing for their mutual development. Conversely, BNYVV manipulates plant defense and promotes the rapid invasion of plant roots by P. betae. This accelerated colonization is accompanied by the development of thick-walled resting spores, supporting the virus survival. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Beta vulgaris , Virus de Plantas , Plasmodiophorida , Virus ARN , Beta vulgaris/parasitología , Virus ARN/fisiología , Enfermedades de las Plantas/genética , Virus de Plantas/fisiología , Azúcares
15.
J Virol ; 96(14): e0078822, 2022 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-35862701

RESUMEN

Dabie bandavirus (DBV) is an emerging Bandavirus that causes multiorgan failure with a high fatality rate in humans. While many viruses can manipulate the actin cytoskeleton to facilitate viral growth, the regulation pattern of the actin cytoskeleton and the molecular mechanisms involved in DBV entry into the host cells remain unclear. In this study, we demonstrate that expression of nonstructural protein (NSs) or infection with DBV induces actin rearrangement, which presents a point-like distribution, and this destruction is dependent on inclusion bodies (IBs). Further experiments showed that NSs inhibits viral adsorption by destroying the filopodium structure. In addition, NSs also compromised the viral entry by inhibiting clathrin aggregation on the cell surface and capturing clathrin into IBs. Furthermore, NSs induced clathrin light chain B (CLTB) degradation through the K48-linked ubiquitin proteasome pathway, which could negatively regulate clathrin-mediated endocytosis, inhibiting the viral entry. Finally, we confirmed that this NSs-induced antiviral mechanism is broadly applicable to other viruses, such as enterovirus 71 (EV71) and influenza virus, A/PR8/34 (PR8), which use the same clathrin-mediated endocytosis to enter host cells. In conclusion, our study provides new insights into the role of NSs in inhibiting endocytosis and a novel strategy for treating DBV infections. IMPORTANCEDabie bandavirus (DBV), a member of the Phenuiviridae family, is a newly emerging tick-borne pathogen that causes multifunctional organ failure and even death in humans. The actin cytoskeleton is involved in various crucial cellular processes and plays an important role in viral life activities. However, the relationship between DBV infection and the actin cytoskeleton has not been described in detail. Here, we show for the first time the interaction between NSs and actin to induce actin rearrangement, which inhibits the viral adsorption and entry. We also identify a key mechanism underlying NSs-induced entry inhibition in which NSs prevents clathrin aggregation on the cell surface by hijacking clathrin into the inclusion body and induces CLTB degradation through the K48-linked ubiquitination modification. This paper is the first to reveal the antiviral mechanism of NSs and provides a theoretical basis for the search for new antiviral targets.


Asunto(s)
Actinas , Virus ARN , Proteínas no Estructurales Virales , Internalización del Virus , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Clatrina/metabolismo , Endocitosis/fisiología , Humanos , Virus ARN/metabolismo , Virus ARN/fisiología , Proteínas no Estructurales Virales/metabolismo
16.
Fish Shellfish Immunol ; 124: 118-133, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35367372

RESUMEN

The emergence of viral diseases affecting fish and causing very high mortality can lead to the disruption of aquaculture production. Recently, this occurred in Nile tilapia aquaculture where a disease caused by a systemic infection with a novel virus named tilapia lake virus (TiLV) caused havoc in cultured populations. With mortality surpassing 90% in young tilapia, the disease caused by TiLV has become a serious challenge for global tilapia aquaculture. In order to partly mitigate the losses, we explored the natural resistance to TiLV-induced disease in three genetic strains of tilapia which were kept at the University of Göttingen, Germany. We used two strains originating from Nilotic regions (Lake Mansala (MAN) and Lake Turkana (ELM)) and one from an unknown location (DRE). We were able to show that the virus is capable of overcoming the natural resistance of tilapia when injected, providing inaccurate mortality results that might complicate finding the resistant strains. Using the cohabitation infection model, we found an ELM strain that did not develop any clinical signs of the infection, which resulted in nearly 100% survival rate. The other two strains (DRE and MAN) showed severe clinical signs and much lower survival rates of 29.3% in the DRE strain and 6.7% in the MAN strain. The disease resistance of tilapia from the ELM strain was correlated with lower viral loads both at the mucosa and internal tissues. Our results suggest that the lower viral load could be caused by a higher magnitude of a mx1-based antiviral response in the initial phase of infection. The lower pro-inflammatory responses also found in the resistant strain might additionally contribute to its protection from developing pathological changes related to the disease. In conclusion, our results suggest the possibility of using TiLV-resistant strains as an ad hoc, cost-effective solution to the TiLV challenge. However, as the fish from the disease-resistant strain still retained significant virus loads in liver and brain and thus could become persistent virus carriers, they should be used within an integrative approach also combining biosecurity, diagnostics and vaccination measures.\.


Asunto(s)
Cíclidos , Enfermedades de los Peces , Infecciones por Virus ARN , Virus ARN , Tilapia , Animales , Virus ADN , Humanos , Virus ARN/fisiología
17.
Viruses ; 14(2)2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-35215767

RESUMEN

Several strategies have been developed to fight viral infections, not only in humans but also in animals and plants. Some of them are based on the development of efficient vaccines, to target the virus by developed antibodies, others focus on finding antiviral compounds with activities that inhibit selected virus replication steps. Currently, there is an increasing number of antiviral drugs on the market; however, some have unpleasant side effects, are toxic to cells, or the viruses quickly develop resistance to them. As the current situation shows, the combination of multiple antiviral strategies or the combination of the use of various compounds within one strategy is very important. The most desirable are combinations of drugs that inhibit different steps in the virus life cycle. This is an important issue especially for RNA viruses, which replicate their genomes using error-prone RNA polymerases and rapidly develop mutants resistant to applied antiviral compounds. Here, we focus on compounds targeting viral structural capsid proteins, thereby inhibiting virus assembly or disassembly, virus binding to cellular receptors, or acting by inhibiting other virus replication mechanisms. This review is an update of existing papers on a similar topic, by focusing on the most recent advances in the rapidly evolving research of compounds targeting capsid proteins of RNA viruses.


Asunto(s)
Antivirales/farmacología , Proteínas de la Cápside/antagonistas & inhibidores , Infecciones por Virus ARN/tratamiento farmacológico , Virus ARN/efectos de los fármacos , Ensamble de Virus/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Antivirales/química , Humanos , Infecciones por Virus ARN/virología , Virus ARN/fisiología
18.
Viruses ; 14(2)2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35215825

RESUMEN

Epithelial cells are apico-basolateral polarized cells that line all tubular organs and are often targets for infectious agents. This review focuses on the release of human RNA virus particles from both sides of polarized human cells grown on transwells. Most viruses that infect the mucosa leave their host cells mainly via the apical side while basolateral release is linked to virus propagation within the host. Viruses do this by hijacking the cellular factors involved in polarization and trafficking. Thus, understanding epithelial polarization is essential for a clear understanding of virus pathophysiology.


Asunto(s)
Células Epiteliales/virología , Virus ARN/fisiología , Liberación del Virus , Polaridad Celular , Humanos , Virión/fisiología , Ensamble de Virus , Replicación Viral
19.
Sci China Life Sci ; 65(2): 341-361, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34047913

RESUMEN

Viruses utilize cellular lipids and manipulate host lipid metabolism to ensure their replication and spread. Therefore, the identification of lipids and metabolic pathways that are suitable targets for antiviral development is crucial. Using a library of compounds targeting host lipid metabolic factors and testing them for their ability to block pseudorabies virus (PRV) and vesicular stomatitis virus (VSV) infection, we found that U18666A, a specific inhibitor of Niemann-Pick C1 (NPC1), is highly potent in suppressing the entry of diverse viruses including pseudotyped severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). NPC1 deficiency markedly attenuates viral growth by decreasing cholesterol abundance in the plasma membrane, thereby inhibiting the dynamics of clathrin-coated pits (CCPs), which are indispensable for clathrin-mediated endocytosis. Significantly, exogenous cholesterol can complement the dynamics of CCPs, leading to efficient viral entry and infectivity. Administration of U18666A improves the survival and pathology of PRV- and influenza A virus-infected mice. Thus, our studies demonstrate a unique mechanism by which NPC1 inhibition achieves broad antiviral activity, indicating a potential new therapeutic strategy against SARS-CoV-2, as well as other emerging viruses.


Asunto(s)
Androstenos/farmacología , Clatrina/fisiología , Invaginaciones Cubiertas de la Membrana Celular/fisiología , Virus ADN/efectos de los fármacos , Proteína Niemann-Pick C1/fisiología , Virus ARN/efectos de los fármacos , Internalización del Virus/efectos de los fármacos , Virus ADN/fisiología , Proteína Niemann-Pick C1/antagonistas & inhibidores , Virus ARN/fisiología
20.
Plant Cell Rep ; 41(2): 281-291, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34665312

RESUMEN

The genome of most plant viruses consists of a single positive-strand of RNA (+ ssRNA). Successful replication of these viruses is fully dependent on the endomembrane system of the infected cells, which experiences a massive proliferation and a profound reshaping that enables assembly of the macromolecular complexes where virus genome replication occurs. Assembly of these viral replicase complexes (VRCs) requires a highly orchestrated interplay of multiple virus and co-opted host cell factors to create an optimal microenvironment for efficient assembly and functioning of the virus genome replication machinery. It is now widely accepted that VRC formation involves the recruitment of high levels of sterols, but the specific role of these essential components of cell membranes and the precise molecular mechanisms underlying sterol enrichment at VRCs are still poorly known. In this review, we intend to summarize the most relevant knowledge on the role of sterols in ( +)ssRNA virus replication and discuss the potential of manipulating the plant sterol pathway to help plants fight these infectious agents.


Asunto(s)
Interacciones Huésped-Patógeno/fisiología , Fitosteroles/metabolismo , Virus de Plantas/fisiología , Plantas/metabolismo , Plantas/virología , Membrana Celular/metabolismo , Membrana Celular/virología , Genoma Viral , Enfermedades de las Plantas/virología , Virus de Plantas/patogenicidad , Virus ARN/patogenicidad , Virus ARN/fisiología , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA