Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Gen Virol ; 105(7)2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38959049

RESUMEN

Phasmaviridae is a family for negative-sense RNA viruses with genomes of about 9.7-15.8 kb. These viruses are maintained in and/or transmitted by insects. Phasmavirids produce enveloped virions containing three single-stranded RNA segments that encode a nucleoprotein (N), a glycoprotein precursor (GPC), and a large (L) protein containing an RNA-directed RNA polymerase (RdRP) domain. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Phasmaviridae, which is available at ictv.global/report/phasmaviridae.


Asunto(s)
Genoma Viral , ARN Viral , Animales , ARN Viral/genética , Virus ARN de Sentido Negativo/genética , Virus ARN de Sentido Negativo/clasificación , Virión/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo , Insectos/virología , Filogenia , Replicación Viral
2.
Arch Virol ; 169(8): 166, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38995418

RESUMEN

The virus family Phenuiviridae (order Hareavirales, comprising segmented negative-sense single stranded RNA viruses) has highly diverse members that are known to infect animals, plants, protozoans, and fungi. In this study, we identified a novel phenuivirus infecting a strain of the entomopathogenic fungus Cordyceps javanica isolated from a small brown plant hopper (Laodelphax striatellus), and this virus was tentatively named "Cordyceps javanica negative-strand RNA virus 1" (CjNRSV1). The CjNRSV1 genome consists of three negative-sense single stranded RNA segments (RNA1-3) with lengths of 7252, 2401, and 1117 nt, respectively. The 3'- and 5'-terminal regions of the RNA1, 2, and 3 segments have identical sequences, and the termini of the RNA segments are complementary to each other, reflecting a common characteristic of viruses in the order Hareavirales. RNA1 encodes a large protein (∼274 kDa) containing a conserved domain for the bunyavirus RNA-dependent RNA polymerase (RdRP) superfamily, with 57-80% identity to the RdRP encoded by phenuiviruses in the genus Laulavirus. RNA2 encodes a protein (∼79 kDa) showing sequence similarity (47-63% identity) to the movement protein (MP, a plant viral cell-to-cell movement protein)-like protein (MP-L) encoded by RNA2 of laulaviruses. RNA3 encodes a protein (∼28 kDa) with a conserved domain of the phenuivirid nucleocapsid protein superfamily. Phylogenetic analysis using the RdRPs of various phenuiviruses and other unclassified phenuiviruses showed CjNRSV1 to be grouped with established members of the genus Laulavirus. Our results suggest that CjNRSV1 is a novel fungus-infecting member of the genus Laulavirus in the family Phenuiviridae.


Asunto(s)
Cordyceps , Genoma Viral , Filogenia , ARN Viral , Cordyceps/genética , ARN Viral/genética , Virus Fúngicos/clasificación , Virus Fúngicos/genética , Virus Fúngicos/aislamiento & purificación , Proteínas Virales/genética , Virus ARN de Sentido Negativo/genética , Virus ARN de Sentido Negativo/clasificación , ARN Polimerasa Dependiente del ARN/genética , Virus ARN/genética , Virus ARN/clasificación , Virus ARN/aislamiento & purificación , Secuencia de Aminoácidos , Sistemas de Lectura Abierta
3.
J Virol ; 98(8): e0033224, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39078194

RESUMEN

The Mononegavirales, or non-segmented negative-sense RNA viruses (nsNSVs), includes significant human pathogens, such as respiratory syncytial virus, parainfluenza virus, measles virus, Ebola virus, and rabies virus. Although these viruses differ widely in their pathogenic properties, they are united by each having a genome consisting of a single strand of negative-sense RNA. Consistent with their shared genome structure, the nsNSVs have evolved similar ways to transcribe their genome into mRNAs and replicate it to produce new genomes. Importantly, both mRNA transcription and genome replication are performed by a single virus-encoded polymerase. A fundamental and intriguing question is: how does the nsNSV polymerase commit to being either an mRNA transcriptase or a replicase? The polymerase must become committed to one process or the other either before it interacts with the genome template or in its initial interactions with the promoter sequence at the 3´ end of the genomic RNA. This review examines the biochemical, molecular biology, and structural biology data regarding the first steps of transcription and RNA replication that have been gathered over several decades for different families of nsNSVs. These findings are discussed in relation to possible models that could explain how an nsNSV polymerase initiates and commits to either transcription or genome replication.


Asunto(s)
Genoma Viral , ARN Viral , Replicación Viral , Humanos , ARN Viral/genética , ARN Viral/metabolismo , Transcripción Viral/genética , Virus ARN de Sentido Negativo/genética , Virus ARN de Sentido Negativo/metabolismo , Transcripción Genética , Proteínas Virales/metabolismo , Proteínas Virales/genética , ARN Polimerasa Dependiente del ARN/metabolismo , ARN Polimerasa Dependiente del ARN/genética
4.
Viruses ; 16(7)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-39066236

RESUMEN

A novel negative-sense single-stranded RNA virus showing genetic similarity to viruses of the genus Rubodvirus has been found in raspberry plants in the Czech Republic and has tentatively been named raspberry rubodvirus 1 (RaRV1). Phylogenetic analysis confirmed its clustering within the group, albeit distantly related to other members. A screening of 679 plant and 168 arthropod samples from the Czech Republic and Norway revealed RaRV1 in 10 raspberry shrubs, one batch of Aphis idaei, and one individual of Orius minutus. Furthermore, a distinct isolate of this virus was found, sharing 95% amino acid identity in both the full nucleoprotein and partial sequence of the RNA-dependent RNA polymerase gene sequences, meeting the species demarcation criteria. This discovery marks the first reported instance of a rubodvirus infecting raspberry plants. Although transmission experiments under experimental conditions were unsuccessful, positive detection of the virus in some insects suggests their potential role as vectors for the virus.


Asunto(s)
Filogenia , Enfermedades de las Plantas , Rubus , Rubus/virología , Enfermedades de las Plantas/virología , Animales , ARN Viral/genética , República Checa , Noruega , Virus ARN de Sentido Negativo/genética , Virus ARN de Sentido Negativo/clasificación , Virus ARN de Sentido Negativo/aislamiento & purificación , Análisis de Secuencia de ADN , Análisis por Conglomerados
5.
J Gen Virol ; 105(5)2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38695734

RESUMEN

Members of the family Fimoviridae are plant viruses with a multipartite negative-sense enveloped RNA genome (-ssRNA), composed of 4-10 segments comprising 12.3-18.5 kb in total, within quasi-spherical virions. Fimoviruses are transmitted to plants by eriophyid mites and induce characteristic cytopathologies in their host plants, including double membrane-bound bodies in the cytoplasm of virus-infected cells. Most fimoviruses infect dicotyledonous plants, and many cause serious disease epidemics. This is a summary of the ICTV Report on the family Fimoviridae, which is available at ictv.global/report/fimoviridae.


Asunto(s)
Genoma Viral , Enfermedades de las Plantas , Virus de Plantas , Enfermedades de las Plantas/virología , Animales , Virus de Plantas/genética , Virus de Plantas/clasificación , Virus de Plantas/fisiología , ARN Viral/genética , Virión/ultraestructura , Plantas/virología , Virus ARN de Sentido Negativo/genética , Virus ARN de Sentido Negativo/clasificación , Ácaros/virología , Filogenia
6.
J Gen Virol ; 105(4)2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38587456

RESUMEN

Hantaviridae is a family for negative-sense RNA viruses with genomes of about 10.5-14.6 kb. These viruses are maintained in and/or transmitted by fish, reptiles, and mammals. Several orthohantaviruses can infect humans, causing mild, severe, and sometimes-fatal diseases. Hantavirids produce enveloped virions containing three single-stranded RNA segments with open reading frames that encode a nucleoprotein (N), a glycoprotein precursor (GPC), and a large (L) protein containing an RNA-directed RNA polymerase (RdRP) domain. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Hantaviridae, which is available at ictv.global/report/hantaviridae.


Asunto(s)
Virus ARN , Animales , Humanos , Virus ARN de Sentido Negativo , Virión/genética , Nucleoproteínas , Sistemas de Lectura Abierta , Mamíferos
7.
J Gen Virol ; 105(2)2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38421275

RESUMEN

Kolmioviridae is a family for negative-sense RNA viruses with circular, viroid-like genomes of about 1.5-1.7 kb that are maintained in mammals, amphibians, birds, fish, insects and reptiles. Deltaviruses, for instance, can cause severe hepatitis in humans. Kolmiovirids encode delta antigen (DAg) and replicate using host-cell DNA-directed RNA polymerase II and ribozymes encoded in their genome and antigenome. They require evolutionary unrelated helper viruses to provide envelopes and incorporate helper virus proteins for infectious particle formation. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Kolmioviridae, which is available at ictv.global/report/kolmioviridae.


Asunto(s)
Virus Helper , Viroides , Animales , Humanos , Evolución Biológica , Virus ARN de Sentido Negativo , ARN Polimerasa II , Mamíferos
8.
J Gen Virol ; 104(12)2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38064269

RESUMEN

Leishbuviridae is a family of negative-sense RNA viruses with genomes of about 8.0 kb that have been found in protists. The leishbuvirid genome consists of three monocistronic RNA segments with open reading frames (ORFs) that encode a nucleoprotein (NP), a glycoprotein (GP), and a large (L) protein containing an RNA-directed RNA polymerase (RdRP) domain. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Leishbuviridae, which is available at ictv.global/report/leishbuviridae.


Asunto(s)
Genoma Viral , Virus ARN , Virus ARN/genética , Virus ARN de Sentido Negativo , Nucleoproteínas/genética , Replicación Viral , Virión/genética
9.
J Gen Virol ; 104(12)2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38059782

RESUMEN

Discoviridae is a family of negative-sense RNA viruses with genomes of 6.2-9.7 kb that have been associated with fungi and stramenopiles. The discovirid genome consists of three monocistronic RNA segments with open reading frames (ORFs) that encode a nucleoprotein (NP), a nonstructural protein (Ns), and a large (L) protein containing an RNA-directed RNA polymerase (RdRP) domain. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Discoviridae, which is available at ictv.global/report/discoviridae.


Asunto(s)
Virus ARN , Virus , Virus ARN/genética , Genoma Viral , Virus/genética , Virus ARN de Sentido Negativo , Nucleoproteínas/genética , Replicación Viral , Virión/genética
10.
J Gen Virol ; 104(12)2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38112154

RESUMEN

Jingchuvirales is an order of negative-sense RNA viruses with genomes of 9.1-15.3 kb that have been associated with arachnids, barnacles, crustaceans, insects, fish and reptiles in Africa, Asia, Australia, Europe, North America and South America. The jingchuviral genome has two to four open reading frames (ORFs) that encode a glycoprotein (GP), a nucleoprotein (NP), a large (L) protein containing an RNA-directed RNA polymerase (RdRP) domain, and/or proteins of unknown function. Viruses in the order are only known from their genome sequences. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the order Jingchuvirales and on the families Aliusviridae, Chuviridae, Crepuscuviridae, Myriaviridae and Natareviridae, which are available at ictv.global/report/jingchuvirales, ictv.global/report/aliusviridae, ictv.global/report/chuviridae, ictv.global/report/crepuscuviridae, ictv.global/report/myriaviridae and ictv.global/report/natareviridae, respectively.


Asunto(s)
Genoma Viral , Virus ARN , Humanos , Animales , Virus ARN/genética , Filogenia , Nucleoproteínas/genética , Virus ARN de Sentido Negativo , Replicación Viral , Virión
11.
J Gen Virol ; 104(12)2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38112172

RESUMEN

Mypoviridae is a family of negative-sense RNA viruses with genomes of about 16.0 kb that have been found in myriapods. The mypovirid genome consists of three monocistronic RNA segments that encode a nucleoprotein (NP), a glycoprotein (GP), and a large (L) protein containing an RNA-directed RNA polymerase (RdRP) domain. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Mypoviridae, which is available at: ictv.global/report/mypoviridae.


Asunto(s)
Artrópodos , Virus ARN , Virus , Animales , Genoma Viral , Virus ARN/genética , Virus/genética , Virus ARN de Sentido Negativo , Replicación Viral , Virión/genética
12.
J Gen Virol ; 104(12)2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38116933

RESUMEN

Wupedeviridae is a family of negative-sense RNA viruses with genomes of about 20.5 kb that have been found in myriapods. The wupedevirid genome consists of three monocistronic RNA segments with open reading frames (ORFs) that encode a nucleoprotein (NP), a glycoprotein (GP), and a large (L) protein containing an RNA-directed RNA polymerase (RdRP) domain. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Wupedeviridae, which is available at ictv.global/report/wupedeviridae.


Asunto(s)
Artrópodos , Virus ARN , Virus , Animales , Genoma Viral , Virus ARN/genética , Virus/genética , Virus ARN de Sentido Negativo , Replicación Viral , Virión/genética
13.
J Gen Virol ; 104(12)2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38117185

RESUMEN

Cruliviridae is a family of negative-sense RNA viruses with genomes of 10.8-11.5 kb that have been found in crustaceans. The crulivirid genome consists of three RNA segments with ORFs that encode a nucleoprotein (NP), a glycoprotein (GP), a large (L) protein containing an RNA-directed RNA polymerase (RdRP) domain, and in some family members, a zinc-finger (Z) protein of unknown function. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Cruliviridae, which is available at ictv.global/report/cruliviridae.


Asunto(s)
Virus ARN , Virus ARN de Sentido Negativo , Nucleoproteínas , Sistemas de Lectura Abierta , ARN
14.
J Virol ; 97(12): e0150123, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-37982618

RESUMEN

IMPORTANCE: The type-I interferon (IFN-I) signaling pathway is the first line of antiviral innate immunity. It must be precisely regulated against virus-induced damage. The tightly regulated mechanisms of action of host genes in the antiviral innate immune signaling pathway are still worth studying. Here, we report a novel role of DLG1 in positively regulating the IκB kinase epsilon (IKKε)-mediated IFN-I signaling response against negative-stranded RNA virus replication, whereas the RNA virus inhibits the expression of DLG1 for immune escape. Importantly, the E3 ligase March2 interacts with and promotes K27-linked polyubiquitination of IKKε, and p62 is a cargo receptor that recognizes ubiquitinated IKKε for eventual autophagic degradation. Together, the current findings elucidate the role of DLG1 in the antiviral IFN-I signaling pathway and viral infection repression.


Asunto(s)
Autofagia , Homólogo 1 de la Proteína Discs Large , Quinasa I-kappa B , Inmunidad Innata , Virus ARN de Sentido Negativo , Proteína Sequestosoma-1 , Virosis , Humanos , Homólogo 1 de la Proteína Discs Large/metabolismo , Quinasa I-kappa B/metabolismo , Inmunidad Innata/inmunología , Virus ARN de Sentido Negativo/crecimiento & desarrollo , Virus ARN de Sentido Negativo/inmunología , Poliubiquitina/metabolismo , Proteína Sequestosoma-1/antagonistas & inhibidores , Transducción de Señal , Virosis/inmunología , Animales , Línea Celular
15.
J Gen Virol ; 104(10)2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37873742

RESUMEN

Amnoonviridae is a family of negative-sense RNA viruses with genomes totalling about 10.3 kb. These viruses have been found in fish. The amnoonvirid genome consists of 10 segments, each with at least 1 open reading frame (ORF). The RNA1-3 ORFs encode the three subunits of the viral polymerase. The RNA4 ORF encodes a nucleoprotein. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Amnoonviridae, which is available at ictv.global/report/amnoonviridae.


Asunto(s)
Genoma Viral , Virus ARN , Animales , Virus ARN/genética , Filogenia , Virus ARN de Sentido Negativo , Sistemas de Lectura Abierta , Replicación Viral
16.
J Gen Virol ; 104(10)2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37831500

RESUMEN

Sunviridae is a family of negative-sense RNA viruses with genomes of about 17.2 kb that have been found in snakes. The sunvirid genome comprises nonsegmented RNA with six open reading frames (ORFs) >1 kb that are predicted to encode six proteins. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Sunviridae, which is available at ictv.global/report/sunviridae.


Asunto(s)
Genoma Viral , Virus ARN , Filogenia , Virus ARN de Sentido Negativo , Replicación Viral , Virus ARN/genética , Virión
17.
Annu Rev Virol ; 10(1): 261-282, 2023 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-37774125

RESUMEN

Negative-stranded RNA viruses are a large group of viruses that encode their genomes in RNA across multiple segments in an orientation antisense to messenger RNA. Their members infect broad ranges of hosts, and there are a number of notable human pathogens. Here, we examine the development of reverse genetic systems as applied to these virus families, emphasizing conserved approaches illustrated by some of the prominent members that cause significant human disease. We also describe the utility of their genetic systems in the development of reporter strains of the viruses and some biological insights made possible by their use. To conclude the review, we highlight some possible future uses of reporter viruses that not only will increase our basic understanding of how these viruses replicate and cause disease but also could inform the development of new approaches to therapeutically intervene.


Asunto(s)
Virus ARN de Sentido Negativo , Virus ARN , Humanos , Virus ARN de Sentido Negativo/genética , Virus ARN/genética , ARN Viral/genética
18.
J Gen Virol ; 104(8)2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37622664

RESUMEN

In April 2023, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. The phylum was expanded by one new family, 14 new genera, and 140 new species. Two genera and 538 species were renamed. One species was moved, and four were abolished. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV.


Asunto(s)
Virus ARN de Sentido Negativo , Virus ARN , Virus ARN/genética , ARN Polimerasa Dependiente del ARN/genética
19.
Viruses ; 14(12)2022 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-36560761

RESUMEN

Culex spp. mosquitoes transmit several pathogens concerning public health, including West Nile virus and Saint Louis encephalitis virus. Understanding the antiviral immune system of Culex spp. mosquitoes is important for reducing the transmission of these viruses. Mosquitoes rely on RNA interference (RNAi) to control viral replication. While the siRNA pathway in mosquitoes is heavily studied, less is known about the piRNA pathway. The piRNA pathway in mosquitoes has recently been connected to mosquito antiviral immunity. In Aedes aegypti, Piwi4 has been implicated in antiviral responses. The antiviral role of the piRNA pathway in Culex spp. mosquitoes is understudied compared to Ae. aegypti. Here, we aimed to identify the role of PIWI genes and piRNAs in Culex quinquefasciatus and Culex tarsalis cells during virus infection. We examined the effect of PIWI gene silencing on virus replication of two arboviruses and three insect-specific viruses in Cx. quinquefasciatus derived cells (Hsu) and Cx. tarsalis derived (CT) cells. We show that Piwi4 is antiviral against the La Crosse orthobunyavirus (LACV) in Hsu and CT cells, and the insect-specific rhabdovirus Merida virus (MERDV) in Hsu cells. None of the silenced PIWI genes impacted replication of the two flaviviruses Usutu virus (USUV) and Calbertado virus, or the phasivirus Phasi-Charoen-like virus. We further used small RNA sequencing to determine that LACV-derived piRNAs, but not USUV-derived piRNAs were generated in Hsu cells and that PIWI gene silencing resulted in a small reduction in vpiRNAs. Finally, we determined that LACV-derived DNA was produced in Hsu cells during infection, but whether this viral DNA is required for vpiRNA production remains unclear. Overall, we expanded our knowledge on the piRNA pathway and how it relates to the antiviral response in Culex spp mosquitoes.


Asunto(s)
Aedes , Culex , Animales , Culex/genética , Virus ARN de Sentido Negativo , Antivirales
20.
Microbiol Mol Biol Rev ; 86(3): e0008621, 2022 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-35658541

RESUMEN

Negative-sense RNA virus populations are composed of diverse viral components that interact to form a community and shape the outcome of virus infections. At the genomic level, RNA virus populations consist not only of a homogeneous population of standard viral genomes but also of an extremely large number of genome variants, termed viral quasispecies, and nonstandard viral genomes, which include copy-back viral genomes, deletion viral genomes, mini viral RNAs, and hypermutated RNAs. At the particle level, RNA virus populations are composed of pleomorphic particles, particles missing or having additional genomes, and single particles or particle aggregates. As we continue discovering more about the components of negative-sense RNA virus populations and their crucial functions during virus infection, it will become more important to study RNA virus populations as a whole rather than their individual parts. In this review, we will discuss what is known about the components of negative-sense RNA virus communities, speculate how the components of the virus community interact, and summarize what vaccines and antiviral therapies are being currently developed to target or harness these components.


Asunto(s)
Virus ARN de Sentido Negativo , Virus ARN , Antivirales , Genoma Viral , Virus ARN/genética , ARN Viral/genética , Ensamble de Virus/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...