RESUMEN
Patients with acute myeloid leukemia frequently present translocations of MLL gene. Rearrangements of MLL protein (MLL-r) in complexes that contain the histone methyltransferase DOT1L are common, which elicit abnormal methylation of lysine 79 of histone H3 at MLL target genes. Phase 1 clinical studies with pinometostat (EPZ-5676), an inhibitor of DOT1L activity, demonstrated the therapeutic potential for targeting DOT1L in MLL-r leukemia patients. We previously reported that down-regulation of DOT1L increases influenza and vesicular stomatitis virus replication and decreases the antiviral response. Here we show that DOT1L inhibition also reduces Sendai virus-induced innate response and its overexpression decreases influenza virus multiplication, reinforcing the notion of DOT1L controlling viral replication. Accordingly, genes involved in the host innate response against pathogens (RUBICON, TRIM25, BCL3) are deregulated in human lung epithelial cells treated with pinometostat. Concomitantly, deregulation of some of these genes together with that of the MicroRNA let-7B, may account for the beneficial effects of pinometostat treatment in patients with MLL-r involving DOT1L. These results support a possible increased vulnerability to infection in MLL-r leukemia patients undergoing pinometostat treatment. Close follow up of infection should be considered in pinometostat therapy to reduce some severe side effects during the treatment.
Asunto(s)
Antineoplásicos/efectos adversos , Bencimidazoles/efectos adversos , Inhibidores Enzimáticos/efectos adversos , Regulación Leucémica de la Expresión Génica , N-Metiltransferasa de Histona-Lisina/genética , Subtipo H1N1 del Virus de la Influenza A/genética , Infecciones Oportunistas/inducido químicamente , Células A549 , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/inmunología , Proteínas del Linfoma 3 de Células B/genética , Proteínas del Linfoma 3 de Células B/inmunología , Susceptibilidad a Enfermedades , N-Metiltransferasa de Histona-Lisina/antagonistas & inhibidores , N-Metiltransferasa de Histona-Lisina/inmunología , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Humanos , Subtipo H1N1 del Virus de la Influenza A/crecimiento & desarrollo , Subtipo H1N1 del Virus de la Influenza A/metabolismo , Gripe Humana/inducido químicamente , Gripe Humana/genética , Gripe Humana/inmunología , Gripe Humana/virología , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/inmunología , Leucemia Mieloide Aguda/patología , MicroARNs/genética , MicroARNs/inmunología , Infecciones Oportunistas/genética , Infecciones Oportunistas/inmunología , Infecciones Oportunistas/virología , Virus Sendai/genética , Virus Sendai/crecimiento & desarrollo , Virus Sendai/metabolismo , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/inmunología , Proteínas de Motivos Tripartitos/genética , Proteínas de Motivos Tripartitos/inmunología , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/inmunología , Replicación ViralRESUMEN
Interferon (IFN), the first ever-described cytokine, has a potent activity against viruses. Soon since its discovery, quantification of IFN has been an important issue. Most of the traditional methods to measure IFN biological activity rely on indirect methods that quantify dyes retained by IFN-protected cells against a lytic virus, or by techniques that indirectly quantify viral replication by measuring the expression level of viral-encoded reporter proteins such as the green fluorescent protein (GFP). In both cases, the IFN units are determined by the quantification of an effective dose 50, defined as the IFN dose that prevents 50% cell death of 50% reduction of the maximal amount of GFP intensity. In this study we propose the use of an alternative approach to measure IFN activity by calculating the minimal IFN dose 50 as the amount of IFN able to completely protect 50% of the cells from infection measured by the total absence of virus-dependent GFP signal in a cell culture plate. This sensitive approach could be used to easily quantify the Z value to determine IFN bioassay robustness. We believe that this approximation could be interesting to be considered by the IFN community.
Asunto(s)
Bioensayo , Interferón Tipo I/análisis , Animales , Células Cultivadas , Chlorocebus aethiops , Humanos , Proteínas Recombinantes/análisis , Virus Sendai/genética , Virus Sendai/crecimiento & desarrollo , Virus Sendai/aislamiento & purificación , Células VeroRESUMEN
microRNAs have been reported to play crucial roles in various biological processes, including cell proliferation, apoptosis, tumor genesis, and viral infections. miR-26b has been found to be involved in the pathogenesis of multiple tumors, however, little is known about the role it plays in innate immune responses. In this study, we report that miR-26b is able to induce type-I interferon (IFN) expression, which was supported by both quantitative real time polymerase chain reaction and luciferase reporter assays. Conversely, production of IFN was reduced upon inhibition of miR-26b. Sequentially, ectopic expression of miR-26b led to upregulated expression of STAT1 and IFN-stimulated genes (ISGs). Furthermore, overexpression of miR-26b repressed the replication of vesicular stomatitis virus (VSV) and Sendai virus (SeV). In turn, IFN was able to induce the expression of miR-26b in a time-dependent manner. In all, we found that miR-26b could inhibit VSV replication through upregulation of type-I IFNs and ISGs and could in turn be upregulated by IFNs.
Asunto(s)
Inmunidad Innata , Interferón Tipo I/metabolismo , MicroARNs/metabolismo , Virus Sendai/inmunología , Transducción de Señal , Vesiculovirus/inmunología , Replicación Viral , Perfilación de la Expresión Génica , Genes Reporteros , Células HEK293 , Humanos , Factores Inmunológicos/biosíntesis , Factores Inmunológicos/genética , Luciferasas/análisis , Luciferasas/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Virus Sendai/crecimiento & desarrollo , Vesiculovirus/crecimiento & desarrolloRESUMEN
The human DEAD-box helicase 3 (DDX3) has been shown to contribute to type I interferon (IFN) induction downstream from antiviral pattern recognition receptors. It binds to TANK-binding kinase 1 and IκB-kinase-ε (IKKε), the two key kinases mediating activation of IFN regulatory factor (IRF) 3 and IRF7. We previously demonstrated that DDX3 facilitates IKKε activation downstream from RIG-I and then links the activated kinase to IRF3. In the present study, we probed the interactions between DDX3 and other key signalling molecules in the RIG-I pathway and identified a novel direct interaction between DDX3 and TNF receptor-associated factor 3 (TRAF3) mediated by a TRAF-interaction motif in the N-terminus of DDX3, which was required for TRAF3 ubiquitination. Interestingly, we observed two waves of K63-linked TRAF3 ubiquitination following RIG-I activation by Sendai virus (SeV) infection, both of which were suppressed by DDX3 knockdown. We also investigated the spatiotemporal formation of endogenous downstream signalling complexes containing the mitochondrial antiviral signalling (MAVS) adaptor, DDX3, IκB-kinase-ε (IKKε), TRAF3 and IRF3. DDX3 was recruited to MAVS early after SeV infection, suggesting that it might mediate subsequent recruitment of other molecules. Indeed, knockdown of DDX3 prevented the formation of TRAF3-MAVS and TRAF3-IKKε complexes. Based on our data, we propose that early TRAF3 ubiquitination is required for the formation of a stable MAVS-TRAF3 complex, while the second wave of TRAF3 ubiquitination mediates IRF3 recruitment and activation. Our study characterises DDX3 as a multifunctional adaptor molecule that co-ordinates assembly of different TRAF3, IKKε and IRF3-containing signalling complexes downstream from MAVS. Additionally, it provides novel insights into the role of TRAF3 in RIG-I signalling.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , ARN Helicasas DEAD-box/metabolismo , Interacciones Huésped-Patógeno , Virus Sendai/metabolismo , Factor 3 Asociado a Receptor de TNF/metabolismo , Células A549 , Proteínas Adaptadoras Transductoras de Señales/genética , Proteína 58 DEAD Box/genética , Proteína 58 DEAD Box/metabolismo , ARN Helicasas DEAD-box/antagonistas & inhibidores , ARN Helicasas DEAD-box/genética , Regulación de la Expresión Génica , Células HEK293 , Humanos , Quinasa I-kappa B/genética , Quinasa I-kappa B/metabolismo , Interferones/biosíntesis , Interferones/genética , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Receptores Inmunológicos , Virus Sendai/genética , Virus Sendai/crecimiento & desarrollo , Transducción de Señal , Factor 3 Asociado a Receptor de TNF/genética , UbiquitinaciónRESUMEN
The activation of retinoic acid-inducible gene 1 (RIG-I), a cytoplasmic innate sensor for viral RNA, is tightly regulated to maintain immune homeostasis properly and prevent excessive inflammatory reactions other than initiation of antiviral innate response to eliminate RNA virus effectively. Posttranslational modifications, particularly ubiquitination, are crucial for regulation of RIG-I activity. Increasing evidence suggests that E3 ligases play important roles in various cellular processes, including cell proliferation and antiviral innate signaling. Here we identify that E3 ubiquitin ligase RING finger protein 122 (RNF122) directly interacts with mouse RIG-I through MS screening of RIG-I-interacting proteins in RNA virus-infected cells. The transmembrane domain of RNF122 associates with the caspase activation and recruitment domains (CARDs) of RIG-I; this interaction effectively triggers RING finger domain of RNF122 to deliver the Lys-48-linked ubiquitin to the Lys115 and Lys146 residues of RIG-I CARDs and promotes RIG-I degradation, resulting in a marked inhibition of RIG-I downstream signaling. RNF122 is widely expressed in various immune cells, with preferential expression in macrophages. Deficiency of RNF122 selectively increases RIG-I-triggered production of type I IFNs and proinflammatory cytokines in macrophages. RNF122-deficient mice exhibit more resistance against lethal RNA virus infection, with increased production of type I IFNs. Thus, we demonstrate that RNF122 acts as a selective negative regulator of RIG-I-triggered antiviral innate response by targeting CARDs of RIG-I and mediating proteasomal degradation of RIG-I. Our study outlines a way for E3 ligase to regulate innate sensor RIG-I for the control of antiviral innate immunity.
Asunto(s)
Inmunidad Innata , Interferón Tipo I/inmunología , Macrófagos/inmunología , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/genética , Ubiquitina-Proteína Ligasas/genética , Animales , Regulación de la Expresión Génica , Interferón Tipo I/antagonistas & inhibidores , Interferón Tipo I/biosíntesis , Macrófagos/virología , Proteínas de la Membrana/inmunología , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/inmunología , Complejo de la Endopetidasa Proteasomal/metabolismo , Dominios y Motivos de Interacción de Proteínas , Proteolisis , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Receptores de Superficie Celular , Virus Sendai/crecimiento & desarrollo , Virus Sendai/inmunología , Transducción de Señal , Ubiquitina-Proteína Ligasas/antagonistas & inhibidores , Ubiquitina-Proteína Ligasas/deficiencia , Vesiculovirus/crecimiento & desarrollo , Vesiculovirus/inmunologíaRESUMEN
Viral infection triggers activation of the transcription factors NF-κB and IRF3, which collaborate to induce the expression of type I interferons (IFNs) and elicit innate antiviral response. In this report, we identified Krüppel-like factor 4 (KLF4) as a negative regulator of virus-triggered signaling. Overexpression of KLF4 inhibited virus-induced activation of ISRE and IFN-ß promoter in various types of cells, while knockdown of KLF4 potentiated viral infection-triggered induction of IFNB1 and downstream genes and attenuated viral replication. In addition, KLF4 was found to be localized in the cytosol and nucleus, and viral infection promoted the translocation of KLF4 from cytosol to nucleus. Upon virus infection, KLF4 was bound to the promoter of IFNB gene and inhibited the recruitment of IRF3 to the IFNB promoter. Our study thus suggests that KLF4 negatively regulates cellular antiviral response.
Asunto(s)
Virus de la Ectromelia/inmunología , Interacciones Huésped-Patógeno , Interferón beta/inmunología , Factores de Transcripción de Tipo Kruppel/inmunología , Virus Sendai/inmunología , Fraccionamiento Celular , Núcleo Celular/inmunología , Núcleo Celular/virología , Inmunoprecipitación de Cromatina , Citosol/inmunología , Citosol/virología , Virus de la Ectromelia/crecimiento & desarrollo , Regulación de la Expresión Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Humanos , Factor 3 Regulador del Interferón/genética , Factor 3 Regulador del Interferón/inmunología , Interferón beta/genética , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/antagonistas & inhibidores , Factores de Transcripción de Tipo Kruppel/genética , Luciferasas/genética , Luciferasas/metabolismo , FN-kappa B/genética , FN-kappa B/inmunología , Regiones Promotoras Genéticas , Transporte de Proteínas , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Virus Sendai/crecimiento & desarrollo , Transducción de Señal , Replicación ViralRESUMEN
UNLABELLED: The discovery that measles virus (MV) uses the adherens junction protein nectin-4 as its epithelial receptor provides a new vantage point from which to characterize its rapid spread in the airway epithelium. We show here that in well-differentiated primary cultures of airway epithelial cells from human donors (HAE), MV infectious centers form rapidly and become larger than those of other respiratory pathogens: human respiratory syncytial virus, parainfluenza virus 5, and Sendai virus. While visible syncytia do not form after MV infection of HAE, the cytoplasm of an infected cell suddenly flows into an adjacent cell, as visualized through wild-type MV-expressed cytoplasmic green fluorescent protein (GFP). High-resolution video microscopy documents that GFP flows through openings that form on the lateral surfaces between columnar epithelial cells. To assess the relevance of the protein afadin, which connects nectin-4 to the actin cytoskeleton, we knocked down its mRNA. This resulted in more-limited infectious-center formation. We also generated a nectin-4 mutant without the afadin-binding site in its cytoplasmic tail. This mutant was less effective than wild-type human nectin-4 at promoting MV infection in primary cultures of porcine airway epithelia. Thus, in airway epithelial cells, MV spread requires the nectin-4/afadin complex and is based on cytoplasm transfer between columnar cells. Since the viral membrane fusion apparatus may open the passages that allow cytoplasm transfer, we refer to them as intercellular membrane pores. Virus-induced intercellular pores may contribute to extremely efficient measles contagion by promoting the rapid spread of the virus through the upper respiratory epithelium. IMPORTANCE: Measles virus (MV), while targeted for eradication, still causes about 120,000 deaths per year worldwide. The recent reemergence of measles in insufficiently vaccinated populations in Europe and North America reminds us that measles is extremely contagious, but the processes favoring its spread in the respiratory epithelium remain poorly defined. Here we characterize wild-type MV spread in well-differentiated primary cultures of human airway epithelial cells. We observed that viral infection promotes the flow of cytoplasmic contents from infected to proximal uninfected columnar epithelial cells. Cytoplasm flows through openings that form on the lateral surfaces. Infectious-center growth is facilitated by afadin, a protein connecting the adherens junction and the actin cytoskeleton. The viral fusion apparatus may open intercellular pores, and the cytoskeleton may stabilize them. Rapid homogenization of cytoplasmic contents in epithelial infectious centers may favor rapid spread and contribute to the extremely contagious nature of measles.
Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Células Epiteliales/virología , Interacciones Huésped-Patógeno , Virus del Sarampión/crecimiento & desarrollo , Proteínas de Microfilamentos/metabolismo , Animales , Células Cultivadas , Humanos , Microscopía por Video , Virus de la Parainfluenza 5/crecimiento & desarrollo , Virus Sincitial Respiratorio Humano/crecimiento & desarrollo , Virus Sendai/crecimiento & desarrollo , Porcinos , Internalización del VirusRESUMEN
Human parainfluenza virus type 1 (hPIV-1) is the most common cause of laryngotracheobronchitis (croup), resulting in tens of thousands of hospitalizations each year in the United States alone. No licensed vaccine is yet available. We have developed murine PIV-1 (Sendai virus [SeV]) as a live Jennerian vaccine for hPIV-1. Here, we describe vaccine testing in healthy 3- to 6-year-old hPIV-1-seropositive children in a dose escalation study. One dose of the vaccine (5 × 10(5), 5 × 10(6), or 5 × 10(7) 50% egg infectious doses) was delivered by the intranasal route to each study participant. The vaccine was well tolerated by all the study participants. There was no sign of vaccine virus replication in the airway in any participant. Most children exhibited an increase in antibody binding and neutralizing responses toward hPIV-1 within 4 weeks from the time of vaccination. In several children, antibody responses remained above incoming levels for at least 6 months after vaccination. Data suggest that SeV may provide a benefit to 3- to 6-year-old children, even when vaccine recipients have preexisting cross-reactive antibodies due to previous exposures to hPIV-1. Results encourage the testing of SeV administration in young seronegative children to protect against the serious respiratory tract diseases caused by hPIV-1 infections.
Asunto(s)
Anticuerpos Antivirales/sangre , Virus de la Parainfluenza 1 Humana/inmunología , Infecciones por Respirovirus/prevención & control , Virus Sendai/inmunología , Vacunas Vivas no Atenuadas/administración & dosificación , Vacunas Vivas no Atenuadas/inmunología , Vacunas Virales/administración & dosificación , Administración Intranasal , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Niño , Preescolar , Reacciones Cruzadas , Femenino , Humanos , Lactante , Masculino , Ratones , Virus Sendai/crecimiento & desarrollo , Estados Unidos , Vacunas de ADN/administración & dosificación , Vacunas de ADN/inmunología , Vacunas Virales/efectos adversos , Vacunas Virales/inmunologíaRESUMEN
The mammalian type I interferon (IFN) response is a primary barrier for virus infection and is essential for complete innate and adaptive immunity. Both IFN production and IFN-mediated antiviral signaling are the result of differential cellular gene expression, a process that is tightly controlled at transcriptional and translational levels. To determine the potential for microRNA (miRNA)-mediated regulation of the antiviral response, small-RNA profiling was used to analyze the miRNA content of human A549 cells at steady state and following infection with the Cantell strain of Sendai virus, a potent inducer of IFN and cellular antiviral responses. While the miRNA content of the cells was largely unaltered by infection, specific changes in miRNA abundance were identified during Sendai virus infection. One miRNA, miR-203, was found to accumulate in infected cells and in response to IFN treatment. Results indicate that miR-203 is an IFN-inducible miRNA that can negatively regulate a number of cellular mRNAs, including an IFN-stimulated gene target, IFIT1/ISG56, by destabilizing its mRNA transcript.
Asunto(s)
Proteínas Portadoras/biosíntesis , Células Epiteliales/virología , Interacciones Huésped-Patógeno , Interferones/metabolismo , MicroARNs/metabolismo , Virus Sendai/crecimiento & desarrollo , Factores de Transcripción/biosíntesis , Proteínas Adaptadoras Transductoras de Señales , Células Epiteliales/inmunología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Humanos , Interferones/inmunología , Proteínas de Unión al ARN , Virus Sendai/inmunologíaRESUMEN
Mast cells have been implicated in the first line of defence against parasites and bacteria, but less is known about their role in anti-viral responses. Allergic diseases often exacerbate during viral infection, suggesting an increased activation of mast cells in the process. In this study we investigated human mast cell response to double-stranded RNA and viral infection. Cultured human mast cells were incubated with poly(I:C), a synthetic RNA analogue and live Sendai virus as a model of RNA parainfluenza virus infection, and analysed for their anti-viral response. Mast cells responded to intracellular poly(I:C) by inducing type 1 and type 3 interferons and TNF-α. In contrast, extracellular Toll-like receptor 3 (TLR)-3-activating poly(I:C) failed to induce such response. Infection of mast cells with live Sendai virus induced an anti-viral response similar to that of intracellular poly(I:C). Type 1, but not type 3 interferons, up-regulated the expression of melanoma differentiation-associated gene 5 (MDA-5) and retinoic acid-inducible gene-1 (RIG-1), and TLR-3, demonstrating that human mast cells do not express functional receptors for type 3 interferons. Furthermore, virus infection induced the anti-viral proteins MxA and IFIT3 in human mast cells. In conclusion, our results support the notion that mast cells can recognize an invading virus through intracellular virus sensors and produce high amounts of type 1 and type 3 interferons and the anti-viral proteins human myxovirus resistance gene A (MxA) and interferon-induced protein with tetratricopeptide repeats 3 (IFIT3) in response to the virus infection.
Asunto(s)
Inductores de Interferón/farmacología , Mastocitos/inmunología , Mastocitos/virología , Poli I-C/farmacología , ARN Bicatenario/farmacología , Virus Sendai/inmunología , Células Cultivadas , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/inmunología , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/inmunología , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Helicasa Inducida por Interferón IFIH1 , Interferones/biosíntesis , Interferones/inmunología , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/inmunología , Mastocitos/efectos de los fármacos , Proteínas de Resistencia a Mixovirus , Receptores de Ácido Retinoico/genética , Receptores de Ácido Retinoico/inmunología , Virus Sendai/crecimiento & desarrollo , Transducción de Señal/efectos de los fármacos , Receptor Toll-Like 3/genética , Receptor Toll-Like 3/inmunología , Factor de Necrosis Tumoral alfa/agonistas , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/inmunologíaRESUMEN
The P gene of paramyxoviruses is unique in producing not only P but also "accessory" C and/or V proteins. Successful generation of C- or V-deficient recombinant viruses using a reverse genetics technique has been revealing their importance in viral pathogenesis as well as replication. As for Sendai virus (SeV), the C proteins, a nested set of four polypeptides C', C, Y1, and Y2, have been shown to exert multiple functions in escaping from the host innate immunity, inhibiting virus-induced apoptosis, promoting virus assembly and budding, and regulating viral RNA synthesis. In this study, we subjected the 4C(-) recombinant lacking expression of all four C proteins to serial passages through eggs, and found the rapid emergence of a C-recovered revertant virus. Unlike the SeV strains or the recombinants reported previously or tested in this study, this was caused by an exceptionally quick accumulation of U-to-C transitions in a limited region of the 4C(-) genome causing recovery of the C protein expression. These results suggest that a lack of C proteins could lead unexpectedly to strong selective pressures, and that the C proteins might play more critical roles in SeV replication than ever reported.
Asunto(s)
ARN Viral , Virus Sendai , Proteínas Virales/genética , Animales , Línea Celular , Embrión de Pollo , Citosina/química , Genoma Viral , Macaca mulatta , ARN Viral/biosíntesis , ARN Viral/química , ARN Viral/genética , Recombinación Genética , Virus Sendai/genética , Virus Sendai/crecimiento & desarrollo , Virus Sendai/patogenicidad , Uracilo/química , Proteínas Virales/metabolismo , Replicación ViralRESUMEN
Tetherin (also known as BST-2 or CD317) has recently been identified as a potent IFN-induced anti-viral protein that inhibits the release of diverse enveloped virus particles from infected cells. The anti-viral activity of tetherin on a number of enveloped viruses, including retroviruses, filoviruses and arenaviruses, has been examined. Here, we show that tetherin is also capable of blocking the release of virus-like particles (VLPs) driven by the matrix protein of Sendai virus. Together with inhibition of Nipah virus VLP release by tetherin, these results indicate that paramyxoviruses are to be added to the list of viruses that are susceptible to tetherin inhibition. Tetherin co-localized with Nipah virus matrix proteins and accumulated in cells, indicating that it is present at, or recruited to, sites of particle assembly. It should be noted, however, that tetherin was not effective against the release of paramyxovirus mumps VLPs, indicating that certain enveloped viruses may not be sensitive to tetherin activity.
Asunto(s)
Antígenos CD/metabolismo , Infecciones por Henipavirus/metabolismo , Virus Nipah/crecimiento & desarrollo , Infecciones por Respirovirus/metabolismo , Virus Sendai/crecimiento & desarrollo , Proteínas Ligadas a GPI/metabolismo , Células HEK293 , Infecciones por Henipavirus/virología , Proteínas del Virus de la Inmunodeficiencia Humana/metabolismo , Humanos , Paperas/metabolismo , Paperas/virología , Virus de la Parotiditis/crecimiento & desarrollo , Infecciones por Respirovirus/virología , Proteínas Reguladoras y Accesorias Virales/metabolismoRESUMEN
Virus infection of mammalian cells induces the production of high levels of type I interferons (IFNα and ß), cytokines that orchestrate antiviral innate and adaptive immunity. Previous studies have shown that only a fraction of the infected cells produce IFN. However, the mechanisms responsible for this stochastic expression are poorly understood. Here we report an in depth analysis of IFN-expressing and non-expressing mouse cells infected with Sendai virus. Mouse embryonic fibroblasts in which an internal ribosome entry site/yellow fluorescent protein gene was inserted downstream from the endogenous IFNß gene were used to distinguish between the two cell types, and they were isolated from each other using fluorescence-activated cell sorting methods. Analysis of the separated cells revealed that stochastic IFNß expression is a consequence of cell-to-cell variability in the levels and/or activities of limiting components at every level of the virus induction process, ranging from viral replication and expression, to the sensing of viral RNA by host factors, to activation of the signaling pathway, to the levels of activated transcription factors. We propose that this highly complex stochastic IFNß gene expression evolved to optimize both the level and distribution of type I IFNs in response to virus infection.
Asunto(s)
Fibroblastos/inmunología , Interferón beta/genética , Virus Sendai/inmunología , Animales , Línea Celular , Fibroblastos/virología , Citometría de Flujo , Regulación de la Expresión Génica , Variación Genética , Interacciones Huésped-Patógeno , Interferón-alfa/biosíntesis , Interferón-alfa/genética , Interferón beta/biosíntesis , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Poli I-C/genética , Receptores de Superficie Celular , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/inmunología , Virus Sendai/crecimiento & desarrollo , Transducción de Señal , Procesos Estocásticos , Factores de Transcripción/genética , Factores de Transcripción/inmunología , Transcripción Genética , Replicación ViralRESUMEN
Cellular membrane cholesterol has been shown to support various membrane proteins. However, the role and function of membrane cholesterol in viral production are still unclear. Here, we investigated the effects of cholesterol depletion from the cell membrane on the production of hemagglutinating virus of Japan (HVJ; Sendai virus). Cholesterol depletion from LLC-MK2 cells by methyl-beta cyclodextrin treatment resulted in a marked increase in the production of both HVJ from the infected cells and virus-like particles from M-gene-transfected cells. The HVJ produced from cholesterol-depleted cells possessed a reduced amount of envelope cholesterol and showed a rather wide range of particle sizes and amount of envelope protein compared to HVJ produced from untreated cells. Direct depletion of envelope cholesterol from HVJ significantly impaired its infectivity, even without a change in envelope protein composition. These results suggest that membrane cholesterol plays important roles in regulating the production of infectious HVJ.
Asunto(s)
Membrana Celular/virología , Colesterol/fisiología , Microdominios de Membrana/química , Microdominios de Membrana/virología , Virus Sendai/crecimiento & desarrollo , beta-Ciclodextrinas/farmacología , Animales , Anticolesterolemiantes/farmacología , Western Blotting , Línea Celular , Membrana Celular/química , Colesterol/análisis , Electroforesis en Gel de Poliacrilamida , Macaca mulatta , Microdominios de Membrana/efectos de los fármacos , Microscopía Electrónica , Virus Sendai/metabolismo , Virus Sendai/patogenicidadRESUMEN
The large (about 2200 amino acids) L polymerase protein of nonsegmented negative-strand RNA viruses (order Mononegavirales) has six conserved sequence regions ("domains") postulated to constitute the specific enzymatic activities involved in viral mRNA synthesis, 5'-end capping, cap methylation, 3' polyadenylation, and genomic RNA replication. Previous studies with vesicular stomatitis virus identified amino acid residues within the L protein domain VI required for mRNA cap methylation. In our recent study we analyzed four amino acid residues within domain VI of the Sendai virus L protein and our data indicated that there could be differences in L protein sequence requirements for cap methylation in two different families of Mononegavirales - rhabdoviruses and paramyxoviruses. In this study, we conducted a more comprehensive mutational analysis by targeting the entire SeV L protein domain VI, creating twenty-four L mutants, and testing these mutations for their effects on viral mRNA synthesis, cap methylation, viral genome replication and virus growth kinetics. Our analysis identified several residues required for successful cap methylation and virus replication and clearly showed the importance of the K-D-K-E tetrad and glycine-rich motif in the SeV cap methylation. This study is the first extensive sequence analysis of the L protein domain VI in the family Paramyxoviridae, and it confirms structural and functional similarity of this domain across different families of the order Mononegavirales.
Asunto(s)
ARN Polimerasas Dirigidas por ADN , Caperuzas de ARN/metabolismo , Virus Sendai/metabolismo , Virus Sendai/fisiología , Proteínas Virales , Replicación Viral , Secuencias de Aminoácidos/genética , Secuencia de Aminoácidos , Animales , Línea Celular , Chlorocebus aethiops , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Humanos , Metilación , Metiltransferasas/metabolismo , Datos de Secuencia Molecular , Mononegavirales/química , Mononegavirales/clasificación , Mononegavirales/genética , Mononegavirales/metabolismo , Mutagénesis Sitio-Dirigida , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Viral/genética , ARN Viral/metabolismo , Virus Sendai/genética , Virus Sendai/crecimiento & desarrollo , Alineación de Secuencia , Relación Estructura-Actividad , Células Vero , Proteínas Virales/química , Proteínas Virales/genética , Proteínas Virales/metabolismoRESUMEN
Ribavirin (RBV) is a synthetic nucleoside analog with broad spectrum antiviral activity. Although RBV is approved for the treatment of hepatitis C virus, respiratory syncytial virus, and Lassa fever virus infections, its mechanism of action and therapeutic efficacy remains highly controversial. Recent reports show that the development of cell-based resistance after continuous RBV treatment via decreased RBV uptake can greatly limit its efficacy. Here, we examined whether certain cell types are naturally resistant to RBV even without prior drug exposure. Seven different cell lines from various host species were compared for RBV antiviral activity against two nonsegmented negative-strand RNA viruses, vesicular stomatitis virus (VSV, a rhabdovirus) and Sendai virus (SeV, a paramyxovirus). Our results show striking differences between cell types in their response to RBV, ranging from virtually no antiviral effect to very effective inhibition of viral replication. Despite differences in viral replication kinetics for VSV and SeV in the seven cell lines, the observed pattern of RBV resistance was very similar for both viruses, suggesting that cellular rather than viral determinants play a major role in this resistance. While none of the tested cell lines was defective in RBV uptake, dramatic variations were observed in the long-term accumulation of RBV in different cell types, and it correlated with the antiviral efficacy of RBV. While addition of guanosine neutralized RBV only in cells already highly resistant to RBV, actinomycin D almost completely reversed the RBV effect (but not uptake) in all cell lines. Together, our data suggest that RBV may inhibit the same virus via different mechanisms in different cell types depending on the intracellular RBV metabolism. Our results strongly point out the importance of using multiple cell lines of different origin when antiviral efficacy and potency are examined for new as well as established drugs in vitro.
Asunto(s)
Antivirales/farmacología , Ribavirina/farmacología , Virus Sendai/efectos de los fármacos , Vesiculovirus/efectos de los fármacos , Animales , Línea Celular , Farmacorresistencia Viral , Humanos , Virus Sendai/crecimiento & desarrollo , Vesiculovirus/crecimiento & desarrollo , Ensayo de Placa ViralRESUMEN
Activation of interferon regulatory factors (IRFs) 3 and 7 is essential for the induction of Type I interferons (IFN) and innate antiviral responses, and herpesviruses have evolved mechanisms to evade such responses. We previously reported that Epstein-Barr virus BZLF1, an immediate-early (IE) protein, inhibits the function of IRF7, but the role of BRLF1, the other IE transactivator, in IRF regulation has not been examined. We now show that BRLF1 expression decreased induction of IFN-beta, and reduced expression of IRF3 and IRF7; effects were dependent on N- and C-terminal regions of BRLF1 and its nuclear localization signal. Endogenous IRF3 and IRF7 RNA and protein levels were also decreased during cytolytic EBV infection. Finally, production of IFN-beta was decreased during lytic EBV infection and was associated with increased susceptibility to superinfection with Sendai virus. These data suggest a new role for BRLF1 with the ability to evade host innate immune responses.
Asunto(s)
Proteínas Aviares/antagonistas & inhibidores , Herpesvirus Humano 4/patogenicidad , Interacciones Huésped-Patógeno , Proteínas Inmediatas-Precoces/fisiología , Factor 7 Regulador del Interferón/antagonistas & inhibidores , Factores Reguladores del Interferón/antagonistas & inhibidores , Interferón beta/antagonistas & inhibidores , Transactivadores/fisiología , Proteínas Aviares/inmunología , Línea Celular , Herpesvirus Humano 4/inmunología , Humanos , Factor 7 Regulador del Interferón/inmunología , Factores Reguladores del Interferón/inmunología , Interferón beta/inmunología , Señales de Localización Nuclear , Mapeo de Interacción de Proteínas , Virus Sendai/crecimiento & desarrollo , Transcripción GenéticaRESUMEN
Reverse genetics has facilitated the use of non-segmented negative strand RNA viruses (NNSV) as vectors. Currently, heterologous gene expression necessitates insertion of extra-numeral transcription units (ENTUs), which may alter the NNSV polar transcription gradient and attenuate growth relative to wild-type (Wt). We hypothesized that rescuing recombinant Sendai Virus (rSeV) with a bicistronic gene might circumvent this attenuation but still allow heterologous open reading frame (ORF) expression. Therefore, we used a 9-nucleotide sequence previously described with internal ribosome entry site (IRES) activity, which, when constructed as several repeats, synergistically increased the level of expression of the second cistron [Chappell, S.A., Edelman, G.M., Mauro, V.P., 2000. A 9-nt segment of a cellular mRNA can function as an internal ribosome entry site (IRES) and when present in linked multiple copies greatly enhances IRES activity. Proc. Natl. Acad. Sci. U.S.A. 97, 1536-1541]. We inserted the Renilla luciferase (rLuc) ORF, preceded by 1, 3 or 7 IRES copies, downstream of the SeV N ORF in an infectious clone. Corresponding rSeVs were successfully rescued. Interestingly, bicistronic rSeVs grew as fast as or faster than Wt rSeV. Furthermore, SeV gene transcription downstream of the N/rLuc gene was either equivalent to, or slightly enhanced, compared to Wt rSeV. Importantly, all rSeV/rLuc viruses efficiently expressed rLuc. IRES repetition increased rLuc expression at a multiplicity of infection of 0.1, although without evidence of synergistic enhancement. In conclusion, our approach provides a novel way of insertion and expression of foreign genes in NNSVs.
Asunto(s)
Vectores Genéticos , ARN/genética , Proteínas Recombinantes/biosíntesis , Virus Sendai/genética , Animales , Secuencia de Bases , Línea Celular , ADN Complementario/genética , Regulación Viral de la Expresión Génica , Genoma Viral , Humanos , Datos de Secuencia Molecular , Proteínas de la Nucleocápside/genética , Sistemas de Lectura Abierta , Plásmidos , ARN Viral/genética , Virus Sendai/crecimiento & desarrollo , Transcripción GenéticaRESUMEN
Viral infection causes host cells to produce type I interferons (IFNs), which are critically involved in viral clearance. Previous studies have demonstrated that activation of the transcription factor interferon regulatory factor (IRF)3 is essential for virus-triggered induction of type I IFNs. Here we show that the E3 ubiquitin ligase RBCC protein interacting with PKC1 (RBCK1) catalyzes the ubiquitination and degradation of IRF3. Overexpression of RBCK1 negatively regulates Sendai virus-triggered induction of type I IFNs, while knockdown of RBCK1 has the opposite effect. Plaque assays consistently demonstrate that RBCK1 negatively regulates the cellular antiviral response. Furthermore, viral infection leads to induction of RBCK1 and subsequent degradation of IRF3. These findings suggest that the cellular antiviral response is controlled by a negative feedback regulatory mechanism involving RBCK1-mediated ubiquitination and degradation of IRF3.
Asunto(s)
Regulación de la Expresión Génica , Factor 3 Regulador del Interferón/genética , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Antivirales/metabolismo , Línea Celular , Retroalimentación Fisiológica , Humanos , Interferón Tipo I/inmunología , Virus Sendai/genética , Virus Sendai/crecimiento & desarrollo , Virus Sendai/metabolismo , Transducción de Señal , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ensayo de Placa ViralRESUMEN
Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) is a monogenic autoimmune disease caused by mutations in the autoimmune regulator (AIRE) gene. AIRE functions as a transcriptional regulator, and it has a central role in the development of immunological tolerance. AIRE regulates the expression of ectopic antigens in epithelial cells of the thymic medulla and has been shown to participate in the development of peripheral tolerance. However, the mechanism of action of AIRE has remained elusive. To further investigate the role of AIRE in host immune functions, we studied the properties and transcript profiles in in vitro monocyte-differentiated dendritic cells (moDCs) obtained from APECED patients and healthy controls. AIRE-deficient monocytes showed typical DC morphology and expressed DC marker proteins cluster of differentiation 86 and human leukocyte antigen class II. APECED patient-derived moDCs were functionally impaired: the transcriptional response of cytokine genes to pathogens was drastically reduced. Interestingly, some changes were observable already at the immature DC stage. Pathway analyses of transcript profiles revealed that the expression of the components of the host cell signaling pathways involved in cell-cell signalling, innate immune responses, and cytokine activity were reduced in APECED moDCs. Our observations support a role for AIRE in peripheral tolerance and are the first ones to show that AIRE has a critical role in DC responses to microbial stimuli in humans.