Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 946: 174280, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-38942311

RESUMEN

Virus spillovers from managed honey bees, Apis mellifera, are thought to contribute to the decline of wild pollinators, including bumble bees. However, data on the impact of such viruses on wild pollinators remain scarce, and the influence of landscape structure on virus dynamics is poorly understood. In this study, we deployed bumble bee colonies in an agricultural landscape and studied changes in the bumble bee virome during field placement under varying habitat composition and configuration using a multiscale analytical framework. We estimated prevalence of viruses and viral loads (i.e. number of viral genomic equivalent copies) in bumble bees before and after placing them in the field using next generation sequencing and quantitative PCR. The results show that viral loads and number of different viruses present increased during placement in the field and that the virus composition of the colonies shifted from an initial dominance of honey bee associated viruses to a higher number (in both viral loads and number of viruses present) of bumble bee associated viruses. Especially DWV-B, typical for honey bees, drastically decreased after the time in the field. Viral loads prior to placing colonies in the field showed no effect on colony development, suggesting low impacts of these viruses in field settings. Notably, we further demonstrate that increased habitat diversity results in a lower number of different viruses present in Bombus colonies, while colonies in areas with well-connected farmland patches decreased in their total viral load after field placement. Our results emphasize the importance of landscape heterogeneity and connectivity for wild pollinator health and that these influences predominate at fine spatial scales.


Asunto(s)
Viroma , Animales , Abejas/virología , Abejas/fisiología , Ecosistema , Polinización , Carga Viral , Virus de Insectos/fisiología , Virus de Insectos/genética , Agricultura
2.
Microbiol Spectr ; 12(7): e0358123, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38860822

RESUMEN

In recent years, managed honey bee colonies have been suffering from an increasing number of biotic and abiotic stressors, resulting in numerous losses of colonies worldwide. A pan-European study, EPILOBEE, estimated the colony loss in Belgium to be 32.4% in 2012 and 14.8% in 2013. In the current study, absolute viral loads of four known honey bee viruses (DWV-A, DWV-B, AmFV, and BMLV) and three novel putative honey bee viruses (Apis orthomyxovirus 1, apthili virus, and apparli virus) were determined in 300 Flemish honey bee samples, and associations with winter survival were determined. This revealed that, in addition to the known influence of DWV-A and DWV-B on colony health, one of the newly described viruses (apthili virus) shows a strong yearly difference and is also associated with winter survival. Furthermore, all scrutinized viruses revealed significant spatial clustering patterns, implying that despite the limited surface area of Flanders, local virus transmission is paramount. The vast majority of samples were positive for at least one of the seven investigated viruses, and up to 20% of samples were positive for at least one of the three novel viruses. One of those three, Apis orthomyxovirus 1, was shown to be a genuine honey bee-infecting virus, able to infect all developmental stages of the honey bee, as well as the Varroa destructor mite. These results shed light on the most prevalent viruses in Belgium and their roles in the winter survival of honey bee colonies. IMPORTANCE: The western honey bee (Apis mellifera) is a highly effective pollinator of flowering plants, including many crops, which gives honey bees an outstanding importance both ecologically and economically. Alarmingly high annual loss rates of managed honey bee colonies are a growing concern for beekeepers and scientists and have prompted a significant research effort toward bee health. Several detrimental factors have been identified, such as varroa mite infestation and disease from various bacterial and viral agents, but annual differences are often not elucidated. In this study, we utilize the viral metagenomic survey of the EPILOBEE project, a European research program for bee health, to elaborate on the most abundant bee viruses of Flanders. We complement the existing metagenomic data with absolute viral loads and their spatial and temporal distributions. Furthermore, we identify Apis orthomyxovirus 1 as a potentially emerging pathogen, as we find evidence for its active replication honey bees.


Asunto(s)
Virus de Insectos , Estaciones del Año , Animales , Abejas/virología , Abejas/parasitología , Bélgica , Virus de Insectos/genética , Virus de Insectos/aislamiento & purificación , Virus de Insectos/fisiología , Carga Viral , Filogenia , Virus ARN/genética , Virus ARN/aislamiento & purificación , Virus ARN/clasificación , Virus/genética , Virus/aislamiento & purificación , Virus/clasificación
3.
Curr Opin Insect Sci ; 64: 101222, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38908822

RESUMEN

Mosquito-borne diseases have a major impact on global human health. Biological agents that colonize the mosquito vector are increasingly explored as an intervention strategy to prevent vector-borne disease transmission. For instance, the release of mosquitoes carrying the endosymbiotic bacterium Wolbachia effectively reduced dengue virus incidence and disease. Insect-specific viruses are likewise considered as biocontrol agents against vector-borne diseases. While most studies focused on insect-specific viruses as an intervention against arthropod-borne viruses, we here consider whether mosquito-specific viruses may affect the transmission of the malaria-causing Plasmodium parasite by Anopheles mosquitoes. Although there is no direct experimental evidence addressing this question, we found that viral infections in dipteran insects activate some of the immune pathways that are antiparasitic in Anopheles. These findings suggest that indirect virus-parasite interactions could occur and that insect-specific viruses may modulate malaria transmission. Tripartite interactions between viruses, parasites, and Anopheles mosquitoes thus merit further investigation.


Asunto(s)
Anopheles , Mosquitos Vectores , Animales , Mosquitos Vectores/virología , Mosquitos Vectores/fisiología , Anopheles/virología , Anopheles/parasitología , Virus de Insectos/fisiología , Malaria/transmisión , Plasmodium/fisiología
4.
Proc Biol Sci ; 291(2023): 20240518, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38747703

RESUMEN

Drosophila remains a pre-eminent insect model system for host-virus interaction, but the host range and fitness consequences of the drosophilid virome are poorly understood. Metagenomic studies have reported approximately 200 viruses associated with Drosophilidae, but few isolates are available to characterize the Drosophila immune response, and most characterization has relied on injection and systemic infection. Here, we use a more natural infection route to characterize the fitness effects of infection and to study a wider range of viruses. We exposed laboratory Drosophila melanogaster to 23 naturally occurring viruses from wild-collected drosophilids. We recorded transmission rates along with two components of female fitness: survival and the lifetime number of adult offspring produced. Nine different viruses transmitted during contact with laboratory D. melanogaster, although for the majority, rates of transmission were less than 20%. Five virus infections led to a significant decrease in lifespan (D. melanogaster Nora virus, D. immigrans Nora virus, Muthill virus, galbut virus and Prestney Burn virus), and three led to a reduction in the total number of offspring. Our findings demonstrate the utility of the Drosophila model for community-level studies of host-virus interactions, and suggest that viral infection could be a substantial fitness burden on wild flies.


Asunto(s)
Drosophila melanogaster , Longevidad , Animales , Drosophila melanogaster/virología , Drosophila melanogaster/fisiología , Femenino , Virus de Insectos/fisiología , Interacciones Huésped-Patógeno
5.
Curr Opin Insect Sci ; 63: 101194, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38522648

RESUMEN

Mosquitoes are vectors for arboviruses, such as dengue, Zika, and Chikungunya. Symbiotic interactions can affect the intrinsic ability of mosquitoes to acquire and transmit arboviruses, referred to as vector competence. Insect-specific viruses (ISVs) are commonly found in symbiotic associations with mosquitoes in the wild and can affect many aspects of mosquito biology. Here, we review current knowledge on the effects of symbiotic ISV-mosquito interactions on vector competence. We discuss potential mechanisms underlying these interactions and their implications for shaping new biological control strategies. Finally, we highlight the need for field data analyzing the circulation of ISVs in mosquitoes associated with mechanistic studies in the laboratory.


Asunto(s)
Arbovirus , Mosquitos Vectores , Simbiosis , Animales , Mosquitos Vectores/virología , Mosquitos Vectores/fisiología , Arbovirus/fisiología , Virus de Insectos/fisiología , Culicidae/virología , Culicidae/fisiología , Infecciones por Arbovirus/transmisión
6.
ISME J ; 18(1)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38519112

RESUMEN

The significance of gut microbiota in regulating animal immune response to viral infection is increasingly recognized. However, how chronic bee paralysis virus (CBPV) exploits host immune to disturb microbiota for its proliferation remains elusive. Through histopathological examination, we discovered that the hindgut harbored the highest level of CBPV, and displayed visible signs of damages. The metagenomic analysis showed that a notable reduction in the levels of Snodgrassella alvi and Lactobacillus apis, and a significant increase in the abundance of the opportunistic pathogens such as Enterobacter hormaechei and Enterobacter cloacae following CBPV infection. Subsequent co-inoculation experiments showed that these opportunistic pathogens facilitated the CBPV proliferation, leading to accelerated mortality in bees and exacerbation of bloated abdomen symptoms after CBPV infection. The expression level of antimicrobial peptide (AMP) was found to be significantly up-regulated by over 1000 times in response to CBPV infection, as demonstrated by subsequent transcriptome and quantitative real-time PCR investigations. In particular, through correlation analysis and a bacteriostatic test revealed that the AMPs did not exhibit any inhibitory effect against the two opportunistic pathogens. However, they did demonstrate inhibitory activity against S. alvi and L. apis. Our findings provide different evidence that the virus infection may stimulate and utilize the host's AMPs to eradicate probiotic species and facilitate the proliferation of opportunistic bacteria. This process weakens the intestinal barrier and ultimately resulting in the typical bloated abdomen.


Asunto(s)
Microbioma Gastrointestinal , Virus de Insectos , Virus ARN , Virosis , Virus , Abejas , Animales , Virus ARN/fisiología , Péptidos Antimicrobianos , Virus de Insectos/fisiología , Parálisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...