Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 304
Filtrar
1.
Int J Mol Sci ; 25(13)2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-39000284

RESUMEN

African swine fever (ASF), caused by the African swine fever virus (ASFV), is one of the most important infectious diseases that cause high morbidity and mortality in pigs and substantial economic losses to the pork industry of affected countries due to the lack of effective vaccines. The need to develop alternative robust antiviral countermeasures, especially anti-ASFV agents, is of the utmost urgency. This study shows that fangchinoline (FAN), a bisbenzylisoquinoline alkaloid found in the roots of Stephania tetrandra of the family Menispermaceae, significantly inhibits ASFV replication in porcine alveolar macrophages (PAMs) at micromolar concentrations (IC50 = 1.66 µM). Mechanistically, the infection of ASFV triggers the AKT/mTOR/NF-κB signaling pathway. FAN significantly inhibits ASFV-induced activation of such pathways, thereby suppressing viral replication. Such a mechanism was confirmed using an AKT inhibitor MK2206 as it inhibited AKT phosphorylation and ASFV replication in PAMs. Altogether, the results suggest that the AKT/mTOR pathway could potentially serve as a treatment strategy for combating ASFV infection and that FAN could potentially emerge as an effective novel antiviral agent against ASFV infections and deserves further in vivo antiviral evaluations.


Asunto(s)
Virus de la Fiebre Porcina Africana , Antivirales , Bencilisoquinolinas , Macrófagos Alveolares , FN-kappa B , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Serina-Treonina Quinasas TOR , Replicación Viral , Animales , Macrófagos Alveolares/virología , Macrófagos Alveolares/efectos de los fármacos , Macrófagos Alveolares/metabolismo , Replicación Viral/efectos de los fármacos , Virus de la Fiebre Porcina Africana/efectos de los fármacos , Virus de la Fiebre Porcina Africana/fisiología , Porcinos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Transducción de Señal/efectos de los fármacos , FN-kappa B/metabolismo , Bencilisoquinolinas/farmacología , Antivirales/farmacología , Fiebre Porcina Africana/virología , Fiebre Porcina Africana/tratamiento farmacológico , Fiebre Porcina Africana/metabolismo
2.
Virulence ; 15(1): 2375550, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38973077

RESUMEN

African swine fever (ASF) is a devastating disease with a high impact on the pork industry worldwide. ASF virus (ASFV) is a very complex pathogen, the sole member of the family Asfaviridae, which induces a state of immune suppression in the host through infection of myeloid cells and apoptosis of lymphocytes. Moreover, haemorrhages are the other main pathogenic effect of ASFV infection in pigs, related to the infection of endothelial cells, as well as the activation and structural changes of this cell population by proinflammatory cytokine upregulation within bystander monocytes and macrophages. There are still many gaps in the knowledge of the role of proteins produced by the ASFV, which is related to the difficulty in producing a safe and effective vaccine to combat the disease, although few candidates have been approved for use in Southeast Asia in the past couple of years.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Virus de la Fiebre Porcina Africana/patogenicidad , Virus de la Fiebre Porcina Africana/inmunología , Virus de la Fiebre Porcina Africana/fisiología , Animales , Fiebre Porcina Africana/virología , Fiebre Porcina Africana/inmunología , Porcinos , Virulencia
3.
Emerg Microbes Infect ; 13(1): 2366406, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38847223

RESUMEN

African swine fever, caused by African swine fever virus (ASFV), is a highly contagious and fatal disease that poses a significant threat to the global pig industry. The limited information on ASFV pathogenesis and ASFV-host interactions has recently prompted numerous transcriptomic studies. However, most of these studies have focused on elucidating the transcriptome profiles of ASFV-infected porcine alveolar macrophages in vitro. Here, we analyzed dynamic transcriptional patterns in vivo in nine organ tissues (spleen, submandibular lymph node, mesenteric lymph node, inguinal lymph node, tonsils, lungs, liver, kidneys, and heart) obtained from pigs in the early stages of ASFV infection (1 and 3 d after viremia). We observed rapid spread of ASFV to the spleen after viremia, followed by broad transmission to the liver and lungs and subsequently, the submandibular and inguinal lymph nodes. Profound variations in gene expression patterns were observed across all organs and at all time-points, providing an understanding of the distinct defence strategies employed by each organ against ASFV infection. All ASFV-infected organs exhibited a collaborative response, activating immune-associated genes such as S100A8, thereby triggering a pro-inflammatory cytokine storm and interferon activation. Functional analysis suggested that ASFV exploits the PI3K-Akt signalling pathway to evade the host immune system. Overall, our findings provide leads into the mechanisms underlying pathogenesis and host immune responses in different organs during the early stages of infection, which can guide further explorations, aid the development of efficacious antiviral strategies against ASFV, and identify valuable candidate gene targets for vaccine development.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Transcriptoma , Animales , Virus de la Fiebre Porcina Africana/genética , Virus de la Fiebre Porcina Africana/fisiología , Porcinos , Fiebre Porcina Africana/virología , Perfilación de la Expresión Génica , Ganglios Linfáticos/virología , Bazo/virología , Bazo/metabolismo , Viremia , Pulmón/virología , Hígado/virología , Hígado/metabolismo
4.
Vet Res ; 55(1): 73, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849962

RESUMEN

African swine fever virus (ASFV) causes a devastating disease affecting domestic and wild pigs. ASF was first introduced in Sardinia in 1978 and until 2019 only genotype I isolates were identified. A remarkable genetic stability of Sardinian ASFV isolates was described, nevertheless in 2019 two wild boar isolates with a sustained genomic deletion (4342 base pairs) were identified (7303WB/19, 7212WB/19). In this study, we therefore performed in vitro experiments with monocyte-derived macrophages (moMФ) to unravel the phenotypic characteristics of these deleted viruses. Both 7303WB/19 and 7212WB/19 presented a lower growth kinetic in moMФ compared to virulent Sardinian 26544/OG10, using either a high (1) or a low (0.01) multiplicity of infection (MOI). In addition, flow cytometric analysis showed that both 7303WB/19 and 7212WB/19 presented lower intracellular levels of both early and late ASFV proteins. We subsequently investigated whether deleted virus variants were previously circulating in wild boars in Sardinia. In the four years preceding the last genotype I isolation (February 2015-January 2019), other eight wild boar isolates were collected, all belonging to p72 genotype I, B602L subgroup X, but none of them presented a sustained genomic deletion. Overall, we observed the deleted virus isolates in Sardinia only in 2019, at the end of a strong eradication campaign, and our data suggest that it might possess an attenuated phenotype in vivo. A better understanding of ASFV evolution in endemic territories might contribute to development of effective control measures against ASF.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Genotipo , Sus scrofa , Animales , Virus de la Fiebre Porcina Africana/genética , Virus de la Fiebre Porcina Africana/fisiología , Porcinos , Italia , Fiebre Porcina Africana/virología , Genoma Viral , Fenotipo , Eliminación de Secuencia , Macrófagos/virología
5.
Trop Anim Health Prod ; 56(5): 166, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38758410

RESUMEN

African Swine Fever (ASF) disease transmission parameters are crucial for making response and control decisions when faced with an outbreak, yet they are poorly quantified for smallholder and village contexts within Southeast Asia. Whilst disease-specific factors - such as latent and infectious periods - should remain reasonably consistent, host, environmental and management factors are likely to affect the rate of disease spread. These differences are investigated using Approximate Bayesian Computation with Sequential Monte-Carlo methods to provide disease parameter estimates in four naïve pig populations in villages of Lao People's Democratic Republic. The villages represent smallholder pig farmers of the Northern province of Oudomxay and the Southern province of Savannakhet, and the model utilised field mortality data to validate the transmission parameter estimates over the course of multiple model generations. The basic reproductive number between-pigs was estimated to range from 3.08 to 7.80, whilst the latent and infectious periods were consistent with those published in the literature for similar genotypes in the region (4.72 to 6.19 days and 2.63 to 5.50 days, respectively). These findings demonstrate that smallholder village pigs interact similarly to commercial pigs, however the spread of disease may occur slightly slower than in commercial study groups. Furthermore, the findings demonstrated that despite diversity across the study groups, the disease behaved in a consistent manner. This data can be used in disease control programs or for future modelling of ASF in smallholder contexts.


Asunto(s)
Fiebre Porcina Africana , Teorema de Bayes , Animales , Fiebre Porcina Africana/transmisión , Fiebre Porcina Africana/epidemiología , Porcinos , Laos/epidemiología , Número Básico de Reproducción , Crianza de Animales Domésticos/métodos , Método de Montecarlo , Sus scrofa , Virus de la Fiebre Porcina Africana/fisiología , Brotes de Enfermedades/veterinaria
6.
Microbes Infect ; 26(5-6): 105348, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38697277

RESUMEN

African swine fever virus (ASFV) infection causes African swine fever (ASF), a highly contagious and fatal disease that poses severe threat to swine production. To gain insights into the host responses to ASFV, we generated recombinant adenovirus Ad5 expressing viral membrane proteins p54, p17, and pB117L individually and infected an alveolar cell line, 3D4/21, with these recombinant viruses. Then, the cell lysates were analyzed using label-free quantification proteomic analysis method. A total of 2158 differentially expressed proteins (DEPs) were identified, of which 817, 466, and 875 proteins were from Ad5-p54-, Ad5-p17-, Ad5-pB117L-infected 3D4/21 cells, respectively. Gene Ontology (GO) classification and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis revealed distinct yet interconnecting patterns of protein interaction networks. Specifically, the Ad5-p54 virus infection enriched the DEPs primarily involved in the metabolic pathways, endocytosis, adherens junction, and SNARE interactions in vesicular transport. The Ad5-p17 virus infection enriched the DEPs in endocytosis, ubiquitin-mediated proteolysis, N-Glycan biosynthesis, and apoptosis, while the Ad5-pB117L virus infection enriched the DEPs in metabolic pathways, endocytosis, oxidative phosphorylation, and focal adhesion. In summary, these results provide a comprehensive proteinomics analysis of the cellular responses to three ASFV membrane proteins, thus facilitating our understanding of ASFV pathogenesis.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Proteómica , Virus de la Fiebre Porcina Africana/genética , Virus de la Fiebre Porcina Africana/fisiología , Virus de la Fiebre Porcina Africana/metabolismo , Animales , Porcinos , Proteómica/métodos , Línea Celular , Fiebre Porcina Africana/virología , Fiebre Porcina Africana/metabolismo , Interacciones Huésped-Patógeno , Mapas de Interacción de Proteínas , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Matriz Viral/metabolismo , Proteínas de la Matriz Viral/genética
7.
Virol Sin ; 39(3): 469-477, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38789040

RESUMEN

Virus replication relies on complex interactions between viral proteins. In the case of African swine fever virus (ASFV), only a few such interactions have been identified so far. In this study, we demonstrate that ASFV protein p72 interacts with p11.5 using co-immunoprecipitation and liquid chromatography-mass spectrometry (LC-MS). It was found that protein p72 interacts specifically with p11.5 â€‹at sites amino acids (aa) 1-216 of p72 and aa 1-68 of p11.5. To assess the importance of p11.5 in ASFV infection, we developed a recombinant virus (ASFVGZΔA137R) by deleting the A137R gene from the ASFVGZ genome. Compared with ASFVGZ, the infectious progeny virus titers of ASFVGZΔA137R were reduced by approximately 1.0 logs. In addition, we demonstrated that the growth defect was partially attributable to a higher genome copies-to-infectious virus titer ratios produced in ASFVGZΔA137R-infected MA104 â€‹cells than in those infected with ASFVGZ. This finding suggests that MA104 â€‹cells infected with ASFVGZΔA137R may generate larger quantities of noninfectious particles. Importantly, we found that p11.5 did not affect virus-cell binding or endocytosis. Collectively, we show for the first time the interaction between ASFV p72 and p11.5. Our results effectively provide the relevant information of the p11.5 protein. These results extend our understanding of complex interactions between viral proteins, paving the way for further studies of the potential mechanisms and pathogenesis of ASFV infection.


Asunto(s)
Virus de la Fiebre Porcina Africana , Proteínas Virales , Replicación Viral , Virus de la Fiebre Porcina Africana/genética , Virus de la Fiebre Porcina Africana/fisiología , Animales , Porcinos , Proteínas Virales/metabolismo , Proteínas Virales/genética , Chlorocebus aethiops , Fiebre Porcina Africana/virología , Fiebre Porcina Africana/metabolismo , Línea Celular , Unión Proteica , Cromatografía Liquida , Células Vero , Espectrometría de Masas
8.
Front Biosci (Landmark Ed) ; 29(4): 164, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38682190

RESUMEN

BACKGROUND: The African swine fever (ASF) virus (ASFV) and ASF-like viral sequences were identified in human samples and sewage as well as in different water environments. Pigs regularly experience infections by the ASFV. The considerable stability of the virus in the environment suggests that there is ongoing and long-term contact between humans and the ASFV. However, humans exhibit resistance to the ASFV, and the decisive factor in developing infection in the body is most likely the reaction of target macrophages to the virus. Therefore, this study aimed to characterize the responses of human macrophages to the virus and explore the distinct features of the viral replication cycle within human macrophages. METHODS: The ASFV Armenia/07 strain was used in all experiments. In this study, quantitative real-time polymerase chain reaction (qRT-PCR) was used to determine the ASFV gene expression; flow cytometry analysis was performed to evaluate the effects of the inactive and active ASFV (inASFV and aASFV) treatments on the phenotype of THP-1-derived macrophages (Mφ0) and inflammatory markers. Moreover, other methods such as cell viability and apoptosis assays, staining techniques, phagocytosis assay, lysosome-associated membrane protein (LAMP-1) cytometry, and cytokine detection were used during experiments. RESULTS: Our findings showed that the virus initiated replication by entering human macrophages. Subsequently, the virus shed its capsid and initiated the transcription of numerous viral genes, and at least some of these genes executed their functions. In THP-1-derived macrophages (Mφ0), the ASFV implemented several functions to suppress cell activity, although the timing of their implementation was slower compared with virus-sensitive porcine alveolar macrophages (PAMs). Additionally, the virus could not complete the entire replication cycle in human Mφ0, as indicated by the absence of viral factories and a decrease in infectious titers of the virus with each subsequent passage. Overall, the infection of Mφ0 with the ASFV caused significant alterations in their phenotype and functions, such as increased TLR2, TLR3, CD80, CD36, CD163, CXCR2, and surface LAMP-1 expression. Increased production of the tumor necrosis factor (TNF) and interleukin (IL)-10 and decreased production of interferon (IFN)-α were also observed. Taken together, the virus enters human THP-1-derived macrophages, starts transcription, and causes immunological responses by target cells but cannot complete the replicative cycle. CONCLUSION: These findings suggest that there may be molecular limitations within human macrophages that at least partially restrict the complete replication of the ASFV. Understanding the factors that hinder viral replication in Mφ0 can provide valuable insights into the host-virus interactions and the mechanisms underlying the resistance of human macrophages to the ASFV.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Macrófagos , Replicación Viral , Virus de la Fiebre Porcina Africana/fisiología , Virus de la Fiebre Porcina Africana/genética , Humanos , Macrófagos/virología , Macrófagos/metabolismo , Animales , Fiebre Porcina Africana/virología , Fiebre Porcina Africana/inmunología , Fiebre Porcina Africana/metabolismo , Apoptosis , Porcinos , Fagocitosis , Células THP-1 , Supervivencia Celular , Citocinas/metabolismo , Citocinas/genética
9.
Virol J ; 21(1): 95, 2024 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664855

RESUMEN

BACKGROUND: African swine fever virus (ASFV) is a major threat to pig production and the lack of effective vaccines underscores the need to develop robust antiviral countermeasures. Pathologically, a significant elevation in pro-inflammatory cytokine production is associated with ASFV infection in pigs and there is high interest in identifying dual-acting natural compounds that exhibit antiviral and anti-inflammatory activities. METHODS: Using the laboratory-adapted ASFV BA71V strain, we screened a library of 297 natural, anti-inflammatory compounds to identify promising candidates that protected Vero cells against virus-induced cytopathic effect (CPE). Virus yield reduction, virucidal, and cell cytotoxicity experiments were performed on positive hits and two lead compounds were further characterized in dose-dependent assays along with time-of-addition, time-of-removal, virus entry, and viral protein synthesis assays. The antiviral effects of the two lead compounds on mitigating virulent ASFV infection in porcine macrophages (PAMs) were also tested using similar methods, and the ability to inhibit pro-inflammatory cytokine production during virulent ASFV infection was assessed by enzyme-linked immunosorbent assay (ELISA). RESULTS: The screen identified five compounds that inhibited ASFV-induced CPE by greater than 50% and virus yield reduction experiments showed that two of these compounds, tetrandrine and berbamine, exhibited particularly high levels of anti-ASFV activity. Mechanistic analysis confirmed that both compounds potently inhibited early stages of ASFV infection and that the compounds also inhibited infection of PAMs by the virulent ASFV Arm/07 isolate. Importantly, during ASFV infection in PAM cells, both compounds markedly reduced the production of pro-inflammatory cytokines involved in disease pathogenesis while tetrandrine had a greater and more sustained anti-inflammatory effect than berbamine. CONCLUSIONS: Together, these findings support that dual-acting natural compounds with antiviral and anti-inflammatory properties hold promise as preventative and therapeutic agents to combat ASFV infection by simultaneously inhibiting viral replication and reducing virus-induced cytokine production.


Asunto(s)
Virus de la Fiebre Porcina Africana , Antiinflamatorios , Antivirales , Animales , Virus de la Fiebre Porcina Africana/efectos de los fármacos , Virus de la Fiebre Porcina Africana/fisiología , Antivirales/farmacología , Porcinos , Antiinflamatorios/farmacología , Chlorocebus aethiops , Células Vero , Macrófagos/efectos de los fármacos , Macrófagos/virología , Macrófagos/inmunología , Fiebre Porcina Africana/virología , Replicación Viral/efectos de los fármacos , Productos Biológicos/farmacología , Evaluación Preclínica de Medicamentos , Efecto Citopatogénico Viral/efectos de los fármacos , Citocinas/metabolismo , Internalización del Virus/efectos de los fármacos
10.
Viruses ; 16(4)2024 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-38675978

RESUMEN

African swine fever (ASF) is a disease that is a growing threat to the global swine industry. Regulations and restrictions are placed on swine movement to limit the spread of the virus. However, these are costly and time-consuming. Therefore, this study aimed to determine if high-pressure processing (HPP) sanitization techniques would be effective against the ASF virus. Here, it was hypothesized that HPP could inactivate or reduce ASF virus infectivity in tissue homogenates. To test this hypothesis, 30 aliquots of each homogenate (spleen, kidney, loin) were challenge-infected with the Turin/83 strain of ASF, at a 10 7.20 median hemadsorption dose (HAD)50/mL. Subsequently, eight aliquots of each homogenate were treated with 600 millipascal (600 MPa) HPP for 3, 5, and 7 min. Six untreated aliquots were used as the controls. Virological results showed a reduction in the viral titer of more than 7-log. These results support the validity of the study hypothesis since HPP treatment was effective in inactivating ASFV in artificially prepared samples. Overall, this study suggests the need for further investigation of other ASFV-contaminated meat products.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Animales , Virus de la Fiebre Porcina Africana/fisiología , Porcinos , Fiebre Porcina Africana/virología , Presión , Riñón/virología , Carga Viral , Inactivación de Virus , Bazo/virología
11.
Emerg Microbes Infect ; 13(1): 2333381, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38501350

RESUMEN

African swine fever (ASF) is a highly contagious, often fatal viral disease caused by African swine fever virus (ASFV), which imposes a substantial economic burden on the global pig industry. When screening for the virus replication-regulating genes in the left variable region of the ASFV genome, we observed a notable reduction in ASFV replication following the deletion of the MGF300-4L gene. However, the role of MGF300-4L in ASFV infection remains unexplored. In this study, we found that MGF300-4L could effectively inhibit the production of proinflammatory cytokines IL-1ß and TNF-α, which are regulated by the NF-κB signaling pathway. Mechanistically, we demonstrated that MGF300-4L interacts with IKKß and promotes its lysosomal degradation via the chaperone-mediated autophagy. Meanwhile, the interaction between MGF300-4L and IκBα competitively inhibits the binding of the E3 ligase ß-TrCP to IκBα, thereby inhibiting the ubiquitination-dependent degradation of IκBα. Remarkably, although ASFV encodes other inhibitors of NF-κB, the MGF300-4L gene-deleted ASFV (Del4L) showed reduced virulence in pigs, indicating that MGF300-4L plays a critical role in ASFV pathogenicity. Importantly, the attenuation of Del4L was associated with a significant increase in the production of IL-1ß and TNF-α early in the infection of pigs. Our findings provide insights into the functions of MGF300-4L in ASFV pathogenicity, suggesting that MGF300-4L could be a promising target for developing novel strategies and live attenuated vaccines against ASF.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Quinasa I-kappa B , Inhibidor NF-kappaB alfa , Animales , Virus de la Fiebre Porcina Africana/fisiología , Quinasa I-kappa B/genética , Quinasa I-kappa B/farmacología , FN-kappa B/genética , Inhibidor NF-kappaB alfa/genética , Inhibidor NF-kappaB alfa/farmacología , Porcinos , Factor de Necrosis Tumoral alfa/genética , Virulencia
12.
Vet Q ; 44(1): 1-13, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38533618

RESUMEN

Despite the great interest in the development of a vaccine against African swine fever (ASF) in wild boar, the immunological mechanisms that induce animal protection are still unknown. For this purpose, tertiary lymphoid organs (TLOs) of wild boar were characterised and compared with mucosa-associated lymphoid tissues (MALTs) by histopathology, histomorphometry and immunohistochemistry (CD3, CD79, PAX5, LYVE1, fibronectin). In addition, real-time polymerase chain reaction (qPCR) and immunohistochemistry (p72) were used to evaluate the presence of ASF virus (ASFV) in blood and tissues samples, respectively. TLOs were observed in animals infected with a low-virulent ASFV isolate (LVI), animals co-infected with low and high-virulent ASFV isolates (LVI-HVI) and animals infected only with the high virulence isolate (HVI). TLOs in LVI and LVI-HVI groups were located adjacent to the mucosa and presented a similar structure to MALT. Immunoexpresion of p72 observed in the inflammatory cells adjacent to TLOs/MALTs confirmed its development and reactivity generated by ASF attenuated isolates. Immunohistochemical evaluation, based on cellular composition (T and B lymphocytes), and histomorphometrical study revealed a more pronounced maturation of TLOs/MALTs in the LVI-HVI group. It is currently unclear whether these formations play a protective role by contributing to local immunity in chronic inflammatory diseases. However, the structural similarities between TLOs and MALTs and the location of TLOs close to the mucosa suggest that they may perform a similar function, facilitating a local protective response. Nevertheless, further investigations are warranted to assess the cellular and humoral dynamics of these lymphoid organs induced by attenuated isolates.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Enfermedades de los Porcinos , Porcinos , Animales , Sus scrofa , Virus de la Fiebre Porcina Africana/fisiología , Fiebre Porcina Africana/prevención & control , Virulencia
13.
Proc Natl Acad Sci U S A ; 121(10): e2312150121, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38412127

RESUMEN

African swine fever, one of the major viral diseases of swine, poses an imminent threat to the global pig industry. The high-efficient replication of the causative agent African swine fever virus (ASFV) in various organs in pigs greatly contributes to the disease. However, how ASFV manipulates the cell population to drive high-efficient replication of the virus in vivo remains unclear. Here, we found that the spleen reveals the most severe pathological manifestation with the highest viral loads among various organs in pigs during ASFV infection. By using single-cell-RNA-sequencing technology and multiple methods, we determined that macrophages and monocytes are the major cell types infected by ASFV in the spleen, showing high viral-load heterogeneity. A rare subpopulation of immature monocytes represents the major population infected at late infection stage. ASFV causes massive death of macrophages, but shifts its infection into these monocytes which significantly arise after the infection. The apoptosis, interferon response, and antigen-presentation capacity are inhibited in these monocytes which benefits prolonged infection of ASFV in vivo. Until now, the role of immature monocytes as an important target by ASFV has been overlooked due to that they do not express classical monocyte marker CD14. The present study indicates that the shift of viral infection from macrophages to the immature monocytes is critical for maintaining prolonged ASFV infection in vivo. This study sheds light on ASFV tropism, replication, and infection dynamics, and elicited immune response, which may instruct future research on antiviral strategies.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Porcinos , Animales , Virus de la Fiebre Porcina Africana/fisiología , Bazo/patología , Replicación Viral , Macrófagos/patología
14.
Virus Res ; 339: 199258, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-37923171

RESUMEN

African Swine Fever Virus (ASFV) infection causes an acute and highly contagious disease in swine, resulting in significant economic losses and societal harm worldwide. Currently, there are no effective vaccines or antiviral drugs available for ASFV. Tetrandrine (TET) is extracted from the traditional Chinese herb Stephania tetrandrae, possesses diverse biological functions such as anti-inflammatory, anti-tumor, and antiviral activities. The study comprehensively evaluated the anti-ASFV effect of TET and validated it through biological assays. The dose-dependent inhibition of TET against ASFV was confirmed and a novel mechanism of TET's anti-ASFV activity was elucidated. TET effectively inhibits ASFV during internalization by blocking macropinocytosis through the inhibition of the PI3K/Akt pathway. The specific inhibitor LY294002, targeting the PI3K/Akt pathway, exhibits similar antiviral activity against ASFV as TET. Furthermore, the inhibitory effect of TET against other viruses such as Lumpy Skin Disease Virus (LSDV) and Porcine Epidemic Diarrhea Virus (PEDV) was also identified. Our findings suggest that TET effectively inhibits ASFV and reveal the potential for broad-spectrum antiviral drugs targeting the PI3K/Akt pathway.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Bencilisoquinolinas , Internalización del Virus , Animales , Virus de la Fiebre Porcina Africana/efectos de los fármacos , Virus de la Fiebre Porcina Africana/fisiología , Antivirales/farmacología , Antivirales/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Porcinos , Bencilisoquinolinas/farmacología , Internalización del Virus/efectos de los fármacos
15.
Proc Natl Acad Sci U S A ; 120(48): e2309506120, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-37983498

RESUMEN

African swine fever virus (ASFV), a devastating pathogen to the worldwide swine industry, mainly targets macrophage/monocyte lineage, but how the virus enters host cells has remained unclear. Here, we report that ASFV utilizes apoptotic bodies (ApoBDs) for infection and cell-cell transmission. We show that ASFV induces cell apoptosis of primary porcine alveolar macrophages (PAMs) at the late stage of infection to productively shed ApoBDs that are subsequently swallowed by neighboring PAMs to initiate a secondary infection as evidenced by electron microscopy and live-cell imaging. Interestingly, the virions loaded within ApoBDs are exclusively single-enveloped particles that are devoid of the outer layer of membrane and represent a predominant form produced during late infection. The in vitro purified ApoBD vesicles are capable of mediating virus infection of naive PAMs, but the transmission can be significantly inhibited by blocking the "eat-me" signal phosphatidyserine on the surface of ApoBDs via Annexin V or the efferocytosis receptor TIM4 on the recipient PAMs via anti-TIM4 antibody, whereas overexpression of TIM4 enhances virus infection. The same treatment however did not affect the infection by intracellular viruses. Importantly, the swine sera to ASFV exert no effect on the ApoBD-mediated transmission but can partially act on the virions lacking the outer layer of membrane. Thus, ASFV has evolved to hijack a normal cellular pathway for cell-cell spread to evade host responses.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Vesículas Extracelulares , Porcinos , Animales , Virus de la Fiebre Porcina Africana/fisiología , Macrófagos/metabolismo , Monocitos/metabolismo , Vesículas Extracelulares/metabolismo
16.
Emerg Microbes Infect ; 12(2): 2265661, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37781934

RESUMEN

African swine fever virus is a complex DNA virus that causes high fatality in pigs and wild boar and has a great socio-economic impact. An attenuated genotype II strain was constructed by replacing the gene for wildtype CD2v protein with versions in which single or double amino acid substitutions were introduced to reduce or abrogate the binding to red blood cells and reduce virus persistence in blood. The mutant CD2v proteins were expressed at similar levels to the wildtype protein on the surface of infected cells. Three recombinant viruses also had K145R, EP153R, and in one virus DP148R genes deleted. Following immunization of pigs, the virus with a single amino acid substitution in CD2v, Q96R, induced moderate levels of replication, and 100% protection against virulent ASFV. Two additional recombinant viruses had two amino acid substitutions in CD2v, Q96R, and K108D, and induced no binding to red blood cells in vitro. In immunized pigs, reduced levels of virus in blood and strong early ASFV-specific antibody and cellular responses were detected. After challenge low to moderate replication of challenge virus was observed. Reduced clinical signs post-challenge were observed in pigs immunized with the virus from which DP148R gene was deleted. Protection levels of 83-100% were maintained across a range of doses. Further experiments with virus GeorgiaΔDP148RΔK145RΔEP153R-CD2v_mutantQ96R/K108D showed low levels of virus dissemination in tissue and transient clinical signs at high doses. The results support further evaluation of GeorgiaΔDP148RΔK145RΔEP153R-CD2v_mutantQ96R/K108D as a vaccine candidate.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Vacunas Virales , Porcinos , Animales , Virus de la Fiebre Porcina Africana/fisiología , Fiebre Porcina Africana/prevención & control , Proteínas Virales/genética , Genotipo , Anticuerpos Antivirales
17.
Virus Res ; 338: 199238, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37827302

RESUMEN

African swine fever (ASF) is a virulent infectious diseases of pigs caused by the African swine fever virus (ASFV) that can spread widely and cause high fatality rates. Currently, there is no effective way to treat the disease, and there is no effective vaccine to prevent it. Rhein, an anthraquinone compound extracted from many traditional Chinese medicines, exhibits anti-inflammatory, anti-tumor, and anti-viral activities. However, the anti-viral effects of rhein on ASFV remain unclear. Therefore, this study aimed to investigate the anti-ASFV activity of rhein in porcine alveolar macrophages (PAMs) and the underlying mechanisms. In this study, we confirmed that rhein inhibits ASFV replication significantly in a dose-dependent manner in vitro. Moreover, rhein could alter the susceptibility of PAMs to ASFV and promoted the production of superoxide in the mitochondria, which induced the loss of mitochondrial membrane potential, leading to the activation of caspase-9, caspase-3, and apoptosis. Mito-TEMPO, a mitochondria-targeted antioxidant, blocked rhein-induced mitochondrial superoxide generation and loss of mitochondrial membrane potential, prevented caspase-9 and caspase-3 activation, alleviated apoptosis, and suppressed the anti-ASFV activity of rhein. Altogether, our results suggested that rhein could play an anti-ASFV role by inducing apoptosis through the activation of the caspase-dependent mitochondrial apoptotic pathway and may provide a novel compound for developing anti-ASFV drugs.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Porcinos , Animales , Virus de la Fiebre Porcina Africana/fisiología , Caspasa 3/metabolismo , Caspasa 3/farmacología , Caspasa 9/genética , Superóxidos/metabolismo , Superóxidos/farmacología , Antraquinonas/farmacología , Antraquinonas/metabolismo , Antivirales/farmacología , Antivirales/metabolismo , Apoptosis , Replicación Viral
18.
J Virol ; 97(10): e0121723, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37815352

RESUMEN

IMPORTANCE: African swine fever virus (ASFV) completes the replication process by resisting host antiviral response via inhibiting interferon (IFN) secretion and interferon-stimulated genes (ISGs) function. 2', 5'-Oligoadenylate synthetase gene 1 (OAS1) has been reported to inhibit the replication of various RNA and some DNA viruses. However, the regulatory mechanisms involved in the ASFV-induced IFN-related pathway still need to be fully elucidated. Here, we found that OAS1, as a critical host factor, inhibits ASFV replication in an RNaseL-dependent manner. Furthermore, overexpression of OAS1 can promote the activation of the JAK-STAT pathway promoting innate immune responses. In addition, OAS1 plays a new function, which could interact with ASFV P72 protein to suppress ASFV infection. Mechanistically, OAS1 enhances the proteasomal degradation of P72 by promoting TRIM21-mediated ubiquitination. Meanwhile, P72 inhibits the production of avSG and affects the interaction between OAS1 and DDX6. Our findings demonstrated OAS1 as an important target against ASFV replication and revealed the mechanisms and intrinsic regulatory relationships during ASFV infection.


Asunto(s)
2',5'-Oligoadenilato Sintetasa , Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Proteínas de Motivos Tripartitos , Replicación Viral , Animales , Virus de la Fiebre Porcina Africana/fisiología , Proteínas de la Cápside/metabolismo , Interferones/metabolismo , Quinasas Janus/metabolismo , Transducción de Señal , Factores de Transcripción STAT/metabolismo , Porcinos , Proteínas de Motivos Tripartitos/metabolismo , 2',5'-Oligoadenilato Sintetasa/metabolismo
19.
J Virol ; 97(8): e0058623, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37582206

RESUMEN

African swine fever (ASF) is a devastating disease caused by the African swine fever virus (ASFV) that adversely affects the pig industry. The spleen is the main target organ of ASFV; however, the function of metabolites in the spleen during ASFV infection is yet to be investigated. To define the metabolic changes in the spleen after ASFV infection, untargeted and targeted metabolomics analyses of spleens from ASFV-infected pigs were conducted. Untargeted metabolomics analysis revealed 540 metabolites with significant differential levels. Kyoto Encyclopedia of Genes and Genomes pathway analysis showed that these metabolites were mainly enriched in metabolic pathways, including nucleotide metabolism, purine metabolism, arginine biosynthesis, and neuroactive ligand-receptor interaction. Moreover, 134 of 540 metabolites quantified by targeted metabolomics analysis had differential levels and were enriched in metabolic pathways such as the biosynthesis of cofactors, ABC transporters, and biosynthesis of amino acids. Furthermore, coalition analysis of untargeted and targeted metabolomics data revealed that the levels of acylcarnitines, which are intermediates of fatty acid ß-oxidation, were significantly increased in ASFV-infected spleens compared with those in the uninfected spleens. Moreover, inhibiting fatty acid ß-oxidation significantly reduced ASFV replication, indicating that fatty acid ß-oxidation is essential for this process. To our knowledge, this is the first report presenting the metabolite profiles of ASFV-infected pigs. This study revealed a new mechanism of ASFV-mediated regulation of host metabolism. These findings provide new insights into the pathogenic mechanisms of ASFV, which will benefit the development of target drugs for ASFV replication. IMPORTANCE African swine fever virus, the only member of the Asfarviridae family, relies on hijacking host metabolism to meet the demand for self-replication. However, the change in host metabolism after African swine fever virus (ASFV) infection remains unknown. Here, we analyzed the metabolic changes in the pig spleen after ASFV infection for the first time. ASFV infection increased the levels of acylcarnitines. Inhibition of the production and metabolism of acylcarnitines inhibited ASFV replication. Acylcarnitines are the vital intermediates of fatty acid ß-oxidation. This study highlights the critical role of fatty acid ß-oxidation in ASFV infection, which may help identify target drugs to control African swine fever disease.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Carnitina , Bazo , Replicación Viral , Animales , Virus de la Fiebre Porcina Africana/fisiología , Ácidos Grasos/metabolismo , Metabolómica , Bazo/metabolismo , Porcinos , Carnitina/análisis
20.
Viruses ; 15(7)2023 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-37515164

RESUMEN

African swine fever (ASF) is a highly contagious disease that affects wild and domestic swine. Currently, the disease is present as a pandemic affecting pork production in Eurasia and the Caribbean region. The etiological agent of ASF is a large, highly complex structural virus (ASFV) harboring a double-stranded genome encoding for more than 160 proteins whose functions, in most cases, have not been experimentally characterized. We show here that deletion of the ASFV gene H240R from the genome of the highly virulent ASFV-Georgia2010 (ASFV-G) isolate partially decreases virus virulence when experimentally inoculated in domestic swine. ASFV-G-∆H240R, a recombinant virus harboring the deletion of the H240R gene, was produced to evaluate the function of the gene in the development of disease in pigs. While all animals intramuscularly inoculated with 102 HAD50 of ASFV-G developed a fatal form of the disease, forty percent of pigs receiving a similar dose of ASFV-G-∆H240R survived the infection, remaining healthy during the 28-day observational period, and the remaining sixty percent developed a protracted but fatal form of the disease compared to that induced by ASFV-G. Additionally, all animals inoculated with ASFV-G-∆H240R presented protracted viremias with reduced virus titers when compared with those found in animals inoculated with ASFV-G. Animals surviving infection with ASFV-G-∆H240R developed a strong virus-specific antibody response and were protected against the challenge of the virulent parental ASFV-G.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Porcinos , Animales , Virus de la Fiebre Porcina Africana/fisiología , Virulencia/genética , Eliminación de Gen , Factores de Virulencia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...