Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 259
Filtrar
1.
Front Cell Infect Microbiol ; 14: 1394713, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38836054

RESUMEN

The rabies virus enters the nervous system by interacting with several molecular targets on host cells to modify behavior and trigger receptor-mediated endocytosis of the virion by poorly understood mechanisms. The rabies virus glycoprotein (RVG) interacts with the muscle acetylcholine receptor and the neuronal α4ß2 subtype of the nicotinic acetylcholine receptor (nAChR) family by the putative neurotoxin-like motif. Given that the neurotoxin-like motif is highly homologous to the α7 nAChR subtype selective snake toxin α-bungarotoxin (αBTX), other nAChR subtypes are likely involved. The purpose of this study is to determine the activity of the RVG neurotoxin-like motif on nAChR subtypes that are expressed in brain regions involved in rabid animal behavior. nAChRs were expressed in Xenopus laevis oocytes, and two-electrode voltage clamp electrophysiology was used to collect concentration-response data to measure the functional effects. The RVG peptide preferentially and completely inhibits α7 nAChR ACh-induced currents by a competitive antagonist mechanism. Tested heteromeric nAChRs are also inhibited, but to a lesser extent than the α7 subtype. Residues of the RVG peptide with high sequence homology to αBTX and other neurotoxins were substituted with alanine. Altered RVG neurotoxin-like peptides showed that residues phenylalanine 192, arginine 196, and arginine 199 are important determinants of RVG peptide apparent potency on α7 nAChRs, while serine 195 is not. The evaluation of the rabies ectodomain reaffirmed the observations made with the RVG peptide, illustrating a significant inhibitory impact on α7 nAChR with potency in the nanomolar range. In a mammalian cell culture model of neurons, we confirm that the RVG peptide binds preferentially to cells expressing the α7 nAChR. Defining the activity of the RVG peptide on nAChRs expands our understanding of basic mechanisms in host-pathogen interactions that result in neurological disorders.


Asunto(s)
Glicoproteínas , Virus de la Rabia , Xenopus laevis , Receptor Nicotínico de Acetilcolina alfa 7 , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Animales , Virus de la Rabia/fisiología , Virus de la Rabia/metabolismo , Humanos , Glicoproteínas/metabolismo , Glicoproteínas/genética , Oocitos/metabolismo , Proteínas Virales/metabolismo , Proteínas Virales/genética , Proteínas del Envoltorio Viral/metabolismo , Proteínas del Envoltorio Viral/genética , Interacciones Huésped-Patógeno , Unión Proteica , Rabia/metabolismo , Rabia/virología , Acetilcolina/metabolismo , Acetilcolina/farmacología , Neurotoxinas/metabolismo , Neurotoxinas/farmacología
2.
PLoS Pathog ; 20(2): e1011718, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38408103

RESUMEN

The tripartite motif (TRIM) protein family is the largest subfamily of E3 ubiquitin ligases, playing a crucial role in the antiviral process. In this study, we found that TRIM72, a member of the TRIM protein family, was increased in neuronal cells and mouse brains following rabies lyssavirus (RABV) infection. Over-expression of TRIM72 significantly reduced the viral titer of RABV in neuronal cells and mitigated the pathogenicity of RABV in mice. Furthermore, we found that TRIM72 over-expression effectively prevents the assembly and/or release of RABV. In terms of the mechanism, TRIM72 promotes the K48-linked ubiquitination of RABV Matrix protein (M), leading to the degradation of M through the proteasome pathway. TRIM72 directly interacts with M and the interaction sites were identified and confirmed through TRIM72-M interaction model construction and mutation analysis. Further investigation revealed that the degradation of M induced by TRIM72 was attributed to TRIM72's promotion of ubiquitination at site K195 in M. Importantly, the K195 site was found to be partially conserved among lyssavirus's M proteins, and TRIM72 over-expression induced the degradation of these lyssavirus M proteins. In summary, our study has uncovered a TRIM family protein, TRIM72, that can restrict lyssavirus replication by degrading M, and we have identified a novel ubiquitination site (K195) in lyssavirus M.


Asunto(s)
Rabia , Proteínas de Motivos Tripartitos , Animales , Ratones , Lyssavirus/metabolismo , Lyssavirus/patogenicidad , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas/metabolismo , Proteínas de Motivos Tripartitos/genética , Proteínas de Motivos Tripartitos/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Virus de la Rabia/metabolismo , Virus de la Rabia/patogenicidad , Rabia/genética
3.
BMC Neurosci ; 25(1): 9, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38383317

RESUMEN

BACKGROUND: A pseudotyped modified rabies virus lacking the rabies glycoprotein (G-protein), which is crucial for transsynaptic spread, can be used for monosynaptic retrograde tracing. By coupling the pseudotyped virus with transgene expression of the G-protein and the avian leukosis and sarcoma virus subgroup A receptor (TVA), which is necessary for cell entry of the virus, researchers can investigate specific neuronal populations. Responder mouse lines, like the RΦGT mouse line, carry the genes encoding the G-protein and TVA under Cre-dependent expression. These mouse lines are valuable tools because they reduce the number of viral injections needed compared to when using helper viruses. Since RΦGT mice do not express Cre themselves, introducing the pseudotyped rabies virus into their brain should not result in viral cell entry or spread. RESULTS: We present a straightforward flowchart for adequate controls in tracing experiments, which we employed to demonstrate Cre-independent expression of TVA in RΦGT mice. CONCLUSIONS: Our observations revealed TVA leakage, indicating that RΦGT mice should be used with caution for transgene expression of TVA. Inaccurate tracing outcomes may occur if TVA is expressed in the absence of Cre since background leakage leads to nonspecific cell entry. Moreover, conducting appropriate control experiments can identify the source of potential caveats in virus-based neuronal tracing experiments.


Asunto(s)
Proteínas Aviares , Virus de la Rabia , Ratones , Animales , Diseño de Software , Receptores Virales/genética , Receptores Virales/metabolismo , Proteínas Aviares/metabolismo , Virus de la Rabia/genética , Virus de la Rabia/metabolismo , Proteínas de Unión al GTP/metabolismo
4.
mBio ; 15(3): e0288023, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38349129

RESUMEN

Infection with neurotropic viruses may result in changes in host behavior, which are closely associated with degenerative changes in neurons. The lyssavirus genus comprises highly neurotropic viruses, including the rabies virus (RABV), which has been shown to induce degenerative changes in neurons, marked by the self-destruction of axons. The underlying mechanism by which the RABV degrades neuronal cytoskeletal proteins remains incomplete. In this study, we show that infection with RABV or overexpression of its M protein can disrupt mitochondrial metabolism by binding to Slc25a4. This leads to a reduction in NAD+ production and a subsequent influx of Ca2+ from the endoplasmic reticulum and mitochondria into the cytoplasm of neuronal cell lines, activating Ca2+-dependent proteinase calpains that degrade α-tubulin. We further screened the M proteins of different lyssaviruses and discovered that the M protein of the dog-derived RABV strain (DRV) does not degrade α-tubulin. Sequence analysis of the DRV M protein and that of the lab-attenuated RABV strain CVS revealed that the 57th amino acid is vital for M-induced microtubule degradation. We generated a recombinant RABV with a mutation at the 57th amino acid position in its M protein and showed that this mutation reduces α-tubulin degradation in vitro and axonal degeneration in vivo. This study elucidates the mechanism by which lyssavirus induces neuron degeneration.IMPORTANCEPrevious studies have suggested that RABV (rabies virus, the representative of lyssavirus) infection induces structural abnormalities in neurons. But there are few articles on the mechanism of lyssavirus' effect on neurons, and the mechanism of how RABV infection induces neurological dysfunction remains incomplete. The M protein of lyssavirus can downregulate cellular ATP levels by interacting with Slc25a4, and this decrease in ATP leads to a decrease in the level of NAD+ in the cytosol, which results in the release of Ca2+ from the intracellular calcium pool, the endoplasmic reticulum, and mitochondria. The presence of large amounts of Ca2+ in the cytoplasm activates Ca2+-dependent proteases and degrades microtubule proteins. The amino acid 57 of M protein is the key site determining its disruption of mitochondrial metabolism and subsequent neuron degeneration.


Asunto(s)
Lyssavirus , Virus de la Rabia , Rabia , Animales , Perros , Lyssavirus/genética , Tubulina (Proteína)/metabolismo , NAD/metabolismo , Virus de la Rabia/genética , Virus de la Rabia/metabolismo , Rabia/metabolismo , Neuronas , Microtúbulos/metabolismo , Mitocondrias/metabolismo , Aminoácidos/metabolismo , Degeneración Nerviosa/metabolismo , Adenosina Trifosfato/metabolismo
5.
Int J Mol Sci ; 24(13)2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37446070

RESUMEN

Rabies, a highly fatal zoonotic disease, is a significant global public health threat. Currently, the pathogenic mechanism of rabies has not been fully elucidated, and no effective treatment for rabies is available. Increasing evidence shows that the tripartite-motif protein (TRIM) family of proteins participates in the host's regulation of viral replication. Studies have demonstrated the upregulated expression of tripartite-motif protein 21 (TRIM21) in the brain tissue of mice infected with the rabies virus. Related studies have shown that TRIM21 knockdown inhibits RABV replication, while overexpression of TRIM21 exerted the opposite effect. Knockdown of interferon-alpha and interferon-beta modulates the inhibition of RABV replication caused by TRIM21 knockdown and promotes the replication of the virus. Furthermore, our previous study revealed that TRIM21 regulates the secretion of type I interferon during RABV infection by targeting interferon regulatory factor 7 (IRF7). IRF7 knockdown reduced the inhibition of RABV replication caused by the knockdown of TRIM21 and promoted viral replication. TRIM21 regulates RABV replication via the IRF7-IFN axis. Our study identified TRIM21 as a novel host factor required by RABV for replication. Thus, TRIM21 is a potential target for rabies treatment or management.


Asunto(s)
Virus de la Rabia , Rabia , Animales , Ratones , Virus de la Rabia/metabolismo , Rabia/genética , Factor 7 Regulador del Interferón/genética , Factor 7 Regulador del Interferón/metabolismo , Proteínas de Motivos Tripartitos/genética , Proteínas de Motivos Tripartitos/metabolismo , Ubiquitinación , Replicación Viral
6.
Proc Natl Acad Sci U S A ; 120(7): e2023481120, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-37053554

RESUMEN

Monosynaptic tracing using rabies virus is an important technique in neuroscience, allowing brain-wide labeling of neurons directly presynaptic to a targeted neuronal population. A 2017 article reported the development of a noncytotoxic version-a major advance-based on attenuating the rabies virus by the addition of a destabilization domain to the C terminus of a viral protein. However, this modification did not appear to hinder the ability of the virus to spread between neurons. We analyzed two viruses provided by the authors and show here that both were mutants that had lost the intended modification, explaining the paper's paradoxical results. We then made a virus that actually did have the intended modification in at least the majority of virions and found that it did not spread efficiently under the conditions described in the original paper, namely, without an exogenous protease being expressed in order to remove the destabilization domain. We found that it did spread when the protease was supplied, although this also appeared to result in the deaths of most source cells by 3 wk postinjection. We conclude that the new approach is not robust but that it could become a viable technique given further optimization and validation.


Asunto(s)
Virus de la Rabia , Rabia , Humanos , Virus de la Rabia/metabolismo , Neuronas/metabolismo , Proteínas Virales/metabolismo , Encéfalo/metabolismo , Péptido Hidrolasas/metabolismo
7.
Microbiol Spectr ; 11(3): e0307922, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37014208

RESUMEN

Bax-interacting factor-1 (Bif-1) is a multifunctional protein involved in apoptosis, autophagy, and mitochondrial morphology. However, the associations between Bif-1 and viruses are poorly understood. As discrete Bif-1 isoforms are selectively expressed and exert corresponding effects, we evaluated the effects of neuron-specific/ubiquitous Bif-1 isoforms on rabies virus (RABV) proliferation. First, infection with the RABV CVS-11 strain significantly altered Bif-1 expression in mouse neuroblastoma (N2a) cells, and Bif-1 knockdown in turn promoted RABV replication. Overexpression of neuron-specific Bif-1 isoforms (Bif-1b/c/e) suppressed RABV replication. Moreover, our study showed that Bif-1c colocalized with LC3 and partially alleviated the incomplete autophagic flux induced by RABV. Taken together, our data reveal that neuron-specific Bif-1 isoforms impair the RABV replication process by abolishing autophagosome accumulation and blocking autophagic flux induced by the RABV CVS-11 strain in N2a cells. IMPORTANCE Autophagy can be triggered by viral infection and replication. Autophagosomes are generated and affect RABV replication, which differs by viral strain and infected cell type. Bax-interacting factor-1 (Bif-1) mainly has a proapoptotic function but is also involved in autophagosome formation. However, the association between Bif-1-involved autophagy and RABV infection remains unclear. In this study, our data reveal that a neuron-specific Bif-1 isoform, Bif-1c, impaired viral replication by unchoking autophagosome accumulation induced by RABV in N2a cells to a certain extent. Our study reveals for the first time that Bif-1 is involved in modulating autophagic flux and plays a crucial role in RABV replication, establishing Bif-1 as a potential therapeutic target for rabies.


Asunto(s)
Virus de la Rabia , Rabia , Animales , Ratones , Virus de la Rabia/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Proteína X Asociada a bcl-2/farmacología , Autofagia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/farmacología , Proliferación Celular
8.
J Virol ; 97(5): e0043823, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37042780

RESUMEN

Viral protein assembly and virion budding are tightly regulated to enable the proper formation of progeny virions. At this late stage in the virus life cycle, some enveloped viruses take advantage of the host endosomal sorting complex required for transport (ESCRT) machinery, which contributes to the physiological functions of membrane modulation and abscission. Bullet-shaped viral particles are unique morphological characteristics of rhabdoviruses; however, the involvement of host factors in rhabdovirus infection and, specifically, the molecular mechanisms underlying virion formation are not fully understood. In the present study, we used a small interfering RNA (siRNA) screening approach and found that the ESCRT-I component TSG101 contributes to the propagation of rabies virus (RABV). We demonstrated that the matrix protein (M) of RABV interacts with TSG101 via the late domain containing the PY and YL motifs, which are conserved in various viral proteins. Loss of the YL motif in the RABV M or the downregulation of host TSG101 expression resulted in the intracellular aggregation of viral proteins and abnormal virus particle formation, indicating a defect in the RABV assembly and budding processes. These results indicate that the interaction of the RABV M and TSG101 is pivotal for not only the efficient budding of progeny RABV from infected cells but also for the bullet-shaped virion morphology. IMPORTANCE Enveloped viruses bud from cells with the host lipid bilayer. Generally, the membrane modulation and abscission are mediated by host ESCRT complexes. Some enveloped viruses utilize their late (L-) domain to interact with ESCRTs, which promotes viral budding. Rhabdoviruses form characteristic bullet-shaped enveloped virions, but the underlying molecular mechanisms involved remain elusive. Here, we showed that TSG101, one of the ESCRT components, supports rabies virus (RABV) budding and proliferation. TSG101 interacted with RABV matrix protein via the L-domain, and the absence of this interaction resulted in intracellular virion accumulation and distortion of the morphology of progeny virions. Our study reveals that virion formation of RABV is highly regulated by TSG101 and the virus matrix protein.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte , Virus de la Rabia , Rabia , Humanos , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Morfogénesis , Rabia/metabolismo , Virus de la Rabia/genética , Virus de la Rabia/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo , Virión/metabolismo , Liberación del Virus , Línea Celular , Animales
9.
J Virol ; 97(2): e0161222, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36779762

RESUMEN

Rabies virus (RABV) is a prototypical neurotropic virus that causes rabies in human and animals with an almost 100% mortality rate. Once RABV enters the central nervous system, no treatment is proven to prevent death. RABV glycoprotein (G) interacts with cell surface receptors and then enters cells via clathrin-mediated endocytosis (CME); however, the key host factors involved remain largely unknown. Here, we identified transferrin receptor 1 (TfR1), a classic receptor that undergoes CME, as an entry factor for RABV. TfR1 interacts with RABV G and is involved in the endocytosis of RABV. An antibody against TfR1 or the TfR1 ectodomain soluble protein significantly blocked RABV infection in HEK293 cells, N2a cells, and mouse primary neuronal cells. We further found that the endocytosis of TfR1 is coupled with the endocytosis of RABV and that TfR1 and RABV are transported to early and late endosomes. Our results suggest that RABV hijacks the transport pathway of TfR1 for entry, thereby deepening our understanding of the entry mechanism of RABV. IMPORTANCE For most viruses, cell entry involves engagement with many distinct plasma membrane components, each of which is essential. After binding to its specific receptor(s), rabies virus (RABV) enters host cells through the process of clathrin-mediated endocytosis. However, whether the receptor-dependent clathrin-mediated endocytosis of RABV requires other plasma membrane components remain largely unknown. Here, we demonstrate that transferrin receptor 1 (TfR1) is a functional entry factor for RABV infection. The endocytosis of RABV is coupled with the endocytosis of TfR1. Our results indicate that RABV hijacks the transport pathway of TfR1 for entry, which deepens our understanding of the entry mechanism of RABV.


Asunto(s)
Virus de la Rabia , Rabia , Receptores de Transferrina , Internalización del Virus , Animales , Humanos , Ratones , Clatrina/metabolismo , Células HEK293 , Rabia/metabolismo , Virus de la Rabia/metabolismo , Receptores de Transferrina/metabolismo , Línea Celular , Endocitosis
10.
PLoS Pathog ; 18(12): e1011022, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36480574

RESUMEN

Rabies virus (RABV) transcription and replication take place within viral factories having liquid properties, called Negri bodies (NBs), that are formed by liquid-liquid phase separation (LLPS). The co-expression of RABV nucleoprotein (N) and phosphoprotein (P) in mammalian cells is sufficient to induce the formation of cytoplasmic biocondensates having properties that are like those of NBs. This cellular minimal system was previously used to identify P domains that are essential for biocondensates formation. Here, we constructed fluorescent versions of N and analyzed by FRAP their dynamics inside the biocondensates formed in this minimal system as well as in NBs of RABV-infected cells using FRAP. The behavior of N appears to be different of P as there was no fluorescence recovery of N proteins after photobleaching. We also identified arginine residues as well as two exposed loops of N involved in condensates formation. Corresponding N mutants exhibited distinct phenotypes in infected cells ranging from co-localization with NBs to exclusion from them associated with a dominant-negative effect on infection. We also demonstrated that in vitro, in crowded environments, purified P as well as purified N0-P complex (in which N is RNA-free) form liquid condensates. We identified P domains required for LLPS in this acellular system. P condensates were shown to associate with liposomes, concentrate RNA, and undergo a liquid-gel transition upon ageing. Conversely, N0-P droplets were disrupted upon incubation with RNA. Taken together, our data emphasize the central role of P in NBs formation and reveal some physicochemical features of P and N0-P droplets relevant for explaining NBs properties such as their envelopment by cellular membranes at late stages of infection and nucleocapsids ejections from the viral factories.


Asunto(s)
Virus de la Rabia , Rabia , Animales , Virus de la Rabia/genética , Virus de la Rabia/metabolismo , Nucleoproteínas/genética , Rabia/metabolismo , Nucleocápside/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Replicación Viral , Mamíferos
11.
Biomolecules ; 12(10)2022 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-36291645

RESUMEN

Rabies is a neurological disease that causes between 40,000 and 70,000 deaths every year. Once a rabies patient has become symptomatic, there is no effective treatment for the illness, and in unvaccinated individuals, the case-fatality rate of rabies is close to 100%. French scientists Louis Pasteur and Émile Roux developed the first vaccine for rabies in 1885. If administered before the virus reaches the brain, the modern rabies vaccine imparts long-lasting immunity to the virus and saves more than 250,000 people every year. However, the rabies virus can suppress the host's immune response once it has entered the cells of the brain, making death likely. This study aimed to make use of disorder-based proteomics and bioinformatics to determine the potential impact that intrinsically disordered protein regions (IDPRs) in the proteome of the rabies virus might have on the infectivity and lethality of the disease. This study used the proteome of the Rabies lyssavirus (RABV) strain Pasteur Vaccins (PV), one of the best-understood strains due to its use in the first rabies vaccine, as a model. The data reported in this study are in line with the hypothesis that high levels of intrinsic disorder in the phosphoprotein (P-protein) and nucleoprotein (N-protein) allow them to participate in the creation of Negri bodies and might help this virus to suppress the antiviral immune response in the host cells. Additionally, the study suggests that there could be a link between disorder in the matrix (M) protein and the modulation of viral transcription. The disordered regions in the M-protein might have a possible role in initiating viral budding within the cell. Furthermore, we checked the prevalence of functional disorder in a set of 37 host proteins directly involved in the interaction with the RABV proteins. The hope is that these new insights will aid in the development of treatments for rabies that are effective after infection.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Vacunas Antirrábicas , Virus de la Rabia , Rabia , Humanos , Virus de la Rabia/metabolismo , Rabia/prevención & control , Vacunas Antirrábicas/metabolismo , Biología Computacional , Proteoma/metabolismo , Proteínas Intrínsecamente Desordenadas/metabolismo , Fosfoproteínas/metabolismo , Antivirales/metabolismo , Nucleoproteínas/metabolismo
12.
Int J Mol Sci ; 23(13)2022 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-35805948

RESUMEN

Mononegavirales is an order of viruses with a genome in the form of a non-segmented negative-strand RNA that encodes several proteins. The functional polymerase complex of these viruses is composed of two proteins: a large protein (L) and a phosphoprotein (P). The replication of viruses from this order depends on Hsp90 chaperone activity. Previous studies have demonstrated that Hsp90 inhibition results in the degradation of mononegaviruses L protein, with exception of the rabies virus, for which the degradation of P protein was observed. Here, we demonstrated that Hsp90 inhibition does not affect the expression of rabies L and P proteins, but it inhibits binding of the P protein and L protein into functional viral polymerase. Rabies and the vesicular stomatitis virus, but not the measles virus, L proteins can be expressed independently of the presence of a P protein and in the presence of an Hsp90 inhibitor. Our results suggest that the interaction of L proteins with P proteins and Hsp90 in the process of polymerase maturation may be a process specific to particular viruses.


Asunto(s)
Proteínas HSP90 de Choque Térmico , Virus de la Rabia , Rabia , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Nucleotidiltransferasas/metabolismo , ARN Polimerasa Dependiente del ARN/metabolismo , Rabia/virología , Virus de la Rabia/metabolismo , Replicación Viral/genética
13.
Brain Res Bull ; 185: 107-116, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35537567

RESUMEN

Rabies is a lethal infectious disease caused by rabies virus (RABV). Fear and anxiety are the distinguished symptoms in rabies patients. Fusion of RABV envelope glycoprotein (RVG) to host cell membrane initiates rabies pathogenesis via interacting with PDZ domain of signaling proteins. We assessed the anxiety-like behaviors, and hypothalamic-pituitary-adrenal axis (HPA) response to RVG infection. Contribution of PDZ binding motif (PBM) of RVG to the observed effects was also examined using a mutant form of RVG, ΔRVG, with deleted last four amino acids at PBM C-terminus. Lentiviral vectors containing RVG and/or ΔRVG genes were injected into the rat brain areas involved in anxiety including hypothalamus, dorsal hippocampus, and amygdala. RVG/ΔRVG neural expression was examined by fluorescent microscopy. Anxiety-like behaviors were assessed by elevated plus maze (EPM) and open field (OF) tasks. HPA response was evaluated via measuring corticosterone serum level by ELISA technique. RVG/ΔRVG were successfully expressed in neurons of the injected areas. RVG, but not ΔRVG, infection of hypothalamus and amygdala increased the time spent in EPM open arms, and OF total distance moved and velocity. RVG, but not ΔRVG, infection of hypothalamus and dorsal hippocampus increased corticosterone level. The anxiety-like behaviors and exploratory/locomotor activities of rats with RVG infection in hypothalamus, and amygdala are mediated by PBM of RVG. The HPA response to RVG infection of hypothalamus and dorsal hippocampus is dependent to PBM of RVG. Triggering anxiety-related signaling by PBM of RVG seems to be one of the mechanisms involved in anxiety behaviors seen in patients with rabies.


Asunto(s)
Virus de la Rabia , Rabia , Animales , Ansiedad , Corticosterona/metabolismo , Glicoproteínas , Humanos , Sistema Hipotálamo-Hipofisario/metabolismo , Sistema Hipófiso-Suprarrenal/metabolismo , Virus de la Rabia/genética , Virus de la Rabia/metabolismo , Ratas
14.
PLoS Pathog ; 18(5): e1010533, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35576230

RESUMEN

Antagonism of the interferon (IFN)-mediated antiviral state is critical to infection by rabies virus (RABV) and other viruses, and involves interference in the IFN induction and signaling pathways in infected cells, as well as deactivation of the antiviral state in cells previously activated by IFN. The latter is required for viral spread in the host, but the precise mechanisms involved and roles in RABV pathogenesis are poorly defined. Here, we examined the capacity of attenuated and pathogenic strains of RABV that differ only in the IFN-antagonist P protein to overcome an established antiviral state. Importantly, P protein selectively targets IFN-activated phosphorylated STAT1 (pY-STAT1), providing a molecular tool to elucidate specific roles of pY-STAT1. We find that the extended antiviral state is dependent on a low level of pY-STAT1 that appears to persist at a steady state through ongoing phosphorylation/dephosphorylation cycles, following an initial IFN-induced peak. P protein of pathogenic RABV binds and progressively accumulates pY-STAT1 in inactive cytoplasmic complexes, enabling recovery of efficient viral replication over time. Thus, P protein-pY-STAT1 interaction contributes to 'disarming' of the antiviral state. P protein of the attenuated RABV is defective in this respect, such that replication remains suppressed over extended periods in cells pre-activated by IFN. These data provide new insights into the nature of the antiviral state, indicating key roles for residual pY-STAT1 signaling. They also elucidate mechanisms of viral deactivation of antiviral responses, including specialized functions of P protein in selective targeting and accumulation of pY-STAT1.


Asunto(s)
Antivirales , Virus de la Rabia , Antivirales/farmacología , Interferones/metabolismo , Fosforilación , Virus de la Rabia/metabolismo , Factor de Transcripción STAT1/metabolismo , Replicación Viral
15.
J Virol ; 96(9): e0011122, 2022 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-35404083

RESUMEN

The rabies virus (RABV) phosphoprotein (P protein) is expressed as several isoforms, which differ in nucleocytoplasmic localization and microtubule (MT) association, mediated by several sequences, including nuclear localization (NLS) and export (NES) sequences. This appears to underpin a functional diversity enabling multiple functions in viral replication and modulation of host biology. Mechanisms regulating trafficking are poorly defined, but phosphorylation by protein kinase C (PKC) in the P protein C-terminal domain (PCTD) regulates nuclear trafficking, mediated by PCTD-localized NLS/NES sequences, indicating that phosphorylation contributes to functional diversity. The molecular mechanism underlying the effects of PKC, and potential roles in regulating other host-cell interactions are unresolved. Here, we assess effects of phosphorylation on the P3 isoform, which differs from longer isoforms through an ability to localize to the nucleus and associate with MTs, which are associated with antagonism of interferon (IFN) signaling. We find that phosphomimetic mutation of the PKC site S210 inhibits nuclear accumulation and MT association/bundling. Structural analysis indicated that phosphomimetic mutation induces no significant structural change to the NLS/NES but results in the side chain of N226 switching its interactions from E228, within the NES, to E210. Intriguingly, N226 is the sole substituted residue between the PCTD of the pathogenic IFN-resistant RABV strain Nishigahara and a derivative attenuated IFN-sensitive strain Ni-CE, inhibiting P3 nuclear localization and MT association. Thus, S210 phosphorylation appears to impact on N226/E228 to regulate P protein localization, with N226 mutation in Ni-CE mimicking a constitutively phosphorylated state resulting in IFN sensitivity and attenuation. IMPORTANCE Rabies virus P protein is a multifunctional protein with critical roles in replication and manipulation of host-cell processes, including subversion of immunity. This functional diversity involves interactions of several P protein isoforms with the cell nucleus and microtubules. Previous studies showed that phosphorylation of the P protein C-terminal domain (PCTD) at S210, near nuclear trafficking sequences, regulates nucleocytoplasmic localization, indicating key roles in functional diversity. The molecular mechanisms of this regulation have remained unknown. Here, we show that phosphomimetic mutation of S210 regulates nuclear localization and MT association. This regulation does not appear to result from disrupted PCTD structure, but rather from a switch of specific side chain interactions of N226. Intriguingly, N226 was previously implicated in P protein nuclear localization/MT association, immune evasion, and RABV pathogenesis, through undefined mechanisms. Our data indicate that the S210-N226 interface is a key regulator of virus-host interactions, which is significant for pathogenesis.


Asunto(s)
Chaperonas Moleculares , Virus de la Rabia , Proteínas Estructurales Virales , Animales , Núcleo Celular/metabolismo , Fosforilación , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Virus de la Rabia/genética , Virus de la Rabia/metabolismo
16.
Monoclon Antib Immunodiagn Immunother ; 41(1): 27-31, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35225659

RESUMEN

Rabies is a highly neurotropic disease caused by rabies lyssavirus (RABV). Human rabies vaccines exist for pre- and postexposure prophylaxis; however, after clinical symptoms appear, the disease has an ∼100% mortality rate with no effective treatments available. In our previous study, mouse neuroblastoma cells transfected with a plasmid coding one clone of a single-chain variable fragment (scFv), scFv-P19, against RABV phosphoprotein (RABV-P) derived from an scFv phage-display library, before infection, exhibited reduced viral propagation after infection with the RABV-fixed strain, CVS11. In this study, we conducted epitope mapping of scFv-P19 through indirect fluorescent assay and Western blotting analysis against full-length and N- or C-terminal truncated RABV-P. Our results suggest that scFv-P19 targets a portion containing amino acids 47-52 at the N-terminus, which partially overlaps with the N-terminal nuclear export sequences. This provides insights into the underlying mechanism associated with inhibition of RABV by scFv-P19, while allowing for the design of additional scFv-based therapeutic studies for RABV by integrating appropriate delivery and application systems. Furthermore, the results of this study suggest that scFv-P19 may serve as an effective tool for investigating nuclear trafficking of RABV-P to explore the roles of RABV-P isoforms in rabies pathogenesis.


Asunto(s)
Virus de la Rabia , Rabia , Anticuerpos de Cadena Única , Animales , Anticuerpos Monoclonales/farmacología , Mapeo Epitopo , Ratones , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosfoproteínas/farmacología , Virus de la Rabia/metabolismo , Anticuerpos de Cadena Única/genética
17.
Clin Transl Med ; 12(1): e700, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35051311

RESUMEN

BACKGROUND: Neurotropic virus infection can cause serious damage to the central nervous system (CNS) in both humans and animals. The complexity of the CNS poses unique challenges to investigate the infection of these viruses in the brain using traditional techniques. METHODS: In this study, we explore the use of fluorescence micro-optical sectioning tomography (fMOST) and single-cell RNA sequencing (scRNA-seq) to map the spatial and cellular distribution of a representative neurotropic virus, rabies virus (RABV), in the whole brain. Mice were inoculated with a lethal dose of a recombinant RABV encoding enhanced green fluorescent protein (EGFP) under different infection routes, and a three-dimensional (3D) view of RABV distribution in the whole mouse brain was obtained using fMOST. Meanwhile, we pinpointed the cellular distribution of RABV by utilizing scRNA-seq. RESULTS: Our fMOST data provided the 3D view of a neurotropic virus in the whole mouse brain, which indicated that the spatial distribution of RABV in the brain was influenced by the infection route. Interestingly, we provided evidence that RABV could infect multiple nuclei related to fear independent of different infection routes. More surprisingly, our scRNA-seq data revealed that besides neurons RABV could infect macrophages and the infiltrating macrophages played at least three different antiviral roles during RABV infection. CONCLUSION: This study draws a comprehensively spatial and cellular map of typical neurotropic virus infection in the mouse brain, providing a novel and insightful strategy to investigate the pathogenesis of RABV and other neurotropic viruses.


Asunto(s)
Encéfalo/citología , Virus de la Rabia/patogenicidad , Rabia/complicaciones , Animales , Encéfalo/anomalías , Modelos Animales de Enfermedad , Ratones , Rabia/fisiopatología , Virus de la Rabia/metabolismo , Análisis de la Célula Individual/métodos , Análisis de la Célula Individual/estadística & datos numéricos , Tomografía Óptica/métodos , Tomografía Óptica/estadística & datos numéricos
18.
Cell Mol Neurobiol ; 42(5): 1429-1440, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33462779

RESUMEN

Rabies virus (RABV) is a neurotropic virus exclusively infecting neurons in the central nervous system. RABV encodes five proteins. Among them, the viral glycoprotein (RVG) plays a key role in viral entry into neurons and rabies pathogenesis. It was shown that the nature of the C-terminus of the RABV G protein, which possesses a PDZ-binding motif (PBM), modulates the virulence of the RABV strain. The neuronal protein partners recruited by this PBM may alter host cell function. This study was conducted to investigate the effect of RVG on synaptic function in the hippocampal dentate gyrus (DG) of rat. Two µl (108 T.U./ml) of the lentiviral vector containing RVG gene was injected into the DG of rat hippocampus. After 2 weeks, the rat's brain was cross-sectioned and RVG-expressing cells were detected by fluorescent microscopy. Hippocampal synaptic activity of the infected rats was then examined by recording the local field potentials from DG after stimulation of the perforant pathway. Short-term synaptic plasticity was also assessed by double pulse stimulation. Expression of RVG in DG increased long-term potentiation population spikes (LTP-PS), whereas no facilitation of LTP-PS was found in neurons expressing δRVG (deleted PBM). Furthermore, RVG and δRVG strengthened paired-pulse facilitation. Heterosynaptic long-term depression (LTD) in the DG was significantly blocked in RVG-expressing group compared to the control group. This blockade was dependent to PBM motif as rats expressing δRVG in the DG-expressed LTD comparable to the RVG group. Our data demonstrate that RVG expression facilitates both short- and long-term synaptic plasticity in the DG indicating that it may involve both pre- and postsynaptic mechanisms to alter synaptic function. Further studies are needed to elucidate the underlying mechanisms.


Asunto(s)
Virus de la Rabia , Animales , Giro Dentado/metabolismo , Estimulación Eléctrica , Glicoproteínas/genética , Glicoproteínas/metabolismo , Glicoproteínas/farmacología , Hipocampo/metabolismo , Potenciación a Largo Plazo , Plasticidad Neuronal/fisiología , Virus de la Rabia/metabolismo , Ratas
19.
Int J Mol Sci ; 22(21)2021 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-34769416

RESUMEN

Rabies is a deadly viral disease caused by the rabies virus (RABV), transmitted through a bite of an infected host, resulting in irreversible neurological symptoms and a 100% fatality rate in humans. Despite many aspects describing rabies neuropathogenesis, numerous hypotheses remain unanswered and concealed. Observations obtained from infected primary neurons or mouse brain samples are more relevant to human clinical rabies than permissive cell lines; however, limitations regarding the ethical issue and sample accessibility become a hurdle for discovering new insights into virus-host interplays. To better understand RABV pathogenesis in humans, we generated human-induced pluripotent stem cell (hiPSC)-derived neurons to offer the opportunity for an inimitable study of RABV infection at a molecular level in a pathologically relevant cell type. This study describes the characteristics and detailed proteomic changes of hiPSC-derived neurons in response to RABV infection using LC-MS/MS quantitative analysis. Gene ontology (GO) enrichment of differentially expressed proteins (DEPs) reveals temporal changes of proteins related to metabolic process, immune response, neurotransmitter transport/synaptic vesicle cycle, cytoskeleton organization, and cell stress response, demonstrating fundamental underlying mechanisms of neuropathogenesis in a time-course dependence. Lastly, we highlighted plausible functions of heat shock cognate protein 70 (HSC70 or HSPA8) that might play a pivotal role in regulating RABV replication and pathogenesis. Our findings acquired from this hiPSC-derived neuron platform help to define novel cellular mechanisms during RABV infection, which could be applicable to further studies to widen views of RABV-host interaction.


Asunto(s)
Células Madre Pluripotentes Inducidas/metabolismo , Neuronas/metabolismo , Proteoma/metabolismo , Virus de la Rabia/metabolismo , Rabia/virología , Células Cultivadas , Interacciones Huésped-Patógeno , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/virología , Neuronas/citología , Neuronas/virología , Rabia/metabolismo , Virus de la Rabia/aislamiento & purificación , Virus de la Rabia/patogenicidad
20.
Traffic ; 22(12): 482-489, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34622522

RESUMEN

Although the majority of viruses of the family Mononegvirales replicate exclusively in the host cell cytoplasm, many of these viruses encode proteins that traffic between the nucleus and cytoplasm, which is believed to enable accessory functions in modulating the biology of the infected host cell. Among these, the P3 protein of rabies virus localizes to the nucleus through the activity of several specific nuclear localization and nuclear export signals. The major defined functions of P3 are in evasion of interferon (IFN)-mediated antiviral responses, including through inhibition of DNA-binding by IFN-activated STAT1. P3 also localizes to nucleoli and promyelocytic leukemia (PML) nuclear bodies, and interacts with nucleolin and PML protein, indicative of several intranuclear roles. The relationship of P3 nuclear localization with pathogenicity, however, is unresolved. We report that nucleocytoplasmic localization of P3 proteins from a pathogenic RABV strain, Nishigahara (Ni) and a non-pathogenic Ni-derived strain, Ni-CE, differs significantly, with nuclear accumulation defective for Ni-CE-P3. Molecular mapping indicates that altered localization derives from a coordinated effect, including two residue substitutions that independently disable nuclear localization and augment nuclear export signals, collectively promoting nuclear exclusion. Intriguingly, this appears to relate to effects on protein conformation or regulatory mechanisms, rather than direct modification of defined trafficking signal sequences. These data provide new insights into the role of regulated nuclear trafficking of a viral protein in the pathogenicity of a virus that replicates in the cytoplasm.


Asunto(s)
Virus de la Rabia , Núcleo Celular/metabolismo , Señales de Exportación Nuclear , Virus de la Rabia/metabolismo , Proteínas Virales/metabolismo , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...