Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.678
Filtrar
1.
J R Soc Interface ; 21(214): 20230745, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38745460

RESUMEN

Migratory songbirds may navigate by extracting positional information from the geomagnetic field, potentially with a magnetic-particle-based receptor. Previous studies assessed this hypothesis experimentally by exposing birds to a strong but brief magnetic pulse aimed at remagnetizing the particles and evoking an altered behaviour. Critically, such studies were not ideally designed because they lacked an adequate sham treatment controlling for the induced electric field that is fundamentally associated with a magnetic pulse. Consequently, we designed a sham-controlled magnetic-pulse experiment, with sham and treatment pulse producing a similar induced electric field, while limiting the sham magnetic field to a value that is deemed insufficient to remagnetize particles. We tested this novel approach by pulsing more than 250 wild, migrating European robins (Erithacus rubecula) during two autumn seasons. After pulsing them, five traits of free-flight migratory behaviour were observed, but no effect of the pulse could be found. Notably, one of the traits, the migratory motivation of adults, was significantly affected in only one of the two study years. Considering the problem of reproducing experiments with wild animals, we recommend a multi-year approach encompassing large sample size, blinded design and built-in sham control to obtain future insights into the role of magnetic-particle-based magnetoreception in bird navigation.


Asunto(s)
Migración Animal , Pájaros Cantores , Animales , Pájaros Cantores/fisiología , Migración Animal/fisiología , Campos Magnéticos , Vuelo Animal/fisiología
2.
Mol Biol Rep ; 51(1): 625, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38717527

RESUMEN

BACKGROUND: The currently known homing pigeon is a result of a sharp one-sided selection for flight characteristics focused on speed, endurance, and spatial orientation. This has led to extremely well-adapted athletic phenotypes in racing birds. METHODS: Here, we identify genes and pathways contributing to exercise adaptation in sport pigeons by applying next-generation transcriptome sequencing of m.pectoralis muscle samples, collected before and after a 300 km competition flight. RESULTS: The analysis of differentially expressed genes pictured the central role of pathways involved in fuel selection and muscle maintenance during flight, with a set of genes, in which variations may therefore be exploited for genetic improvement of the racing pigeon population towards specific categories of competition flights. CONCLUSIONS: The presented results are a background to understanding the genetic processes in the muscles of birds during flight and also are the starting point of further selection of genetic markers associated with racing performance in carrier pigeons.


Asunto(s)
Columbidae , Vuelo Animal , Transcriptoma , Animales , Columbidae/genética , Columbidae/fisiología , Vuelo Animal/fisiología , Transcriptoma/genética , Perfilación de la Expresión Génica/métodos , Músculos Pectorales/metabolismo , Músculos Pectorales/fisiología , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiología
3.
Proc Natl Acad Sci U S A ; 121(23): e2312851121, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38771864

RESUMEN

The way goal-oriented birds adjust their travel direction and route in response to wind significantly affects their travel costs. This is expected to be particularly pronounced in pelagic seabirds, which utilize a wind-dependent flight style called dynamic soaring. Dynamic soaring seabirds in situations without a definite goal, e.g. searching for prey, are known to preferentially fly with crosswinds or quartering-tailwinds to increase the speed and search area, and reduce travel costs. However, little is known about their reaction to wind when heading to a definite goal, such as homing. Homing tracks of wandering albatrosses (Diomedea exulans) vary from beelines to zigzags, which are similar to those of sailboats. Here, given that both albatrosses and sailboats travel slower in headwinds and tailwinds, we tested whether the time-minimizing strategies used by yacht racers can be compared to the locomotion patterns of wandering albatrosses. We predicted that when the goal is located upwind or downwind, albatrosses should deviate their travel directions from the goal on the mesoscale and increase the number of turns on the macroscale. Both hypotheses were supported by track data from albatrosses and racing yachts in the Southern Ocean confirming that albatrosses qualitatively employ the same strategy as yacht racers. Nevertheless, albatrosses did not strictly minimize their travel time, likely making their flight robust against wind fluctuations to reduce flight costs. Our study provides empirical evidence of tacking in albatrosses and demonstrates that man-made movement strategies provide a new perspective on the laws underlying wildlife movement.


Asunto(s)
Aves , Vuelo Animal , Viento , Animales , Vuelo Animal/fisiología , Aves/fisiología , Orientación/fisiología , Fenómenos de Retorno al Lugar Habitual/fisiología , Orientación Espacial/fisiología , Migración Animal/fisiología
5.
Bioinspir Biomim ; 19(4)2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38722361

RESUMEN

Aiming at the blade flutter of large horizontal-axis wind turbines, a method by utilizing biomimetic corrugation to suppress blade flutter is first proposed. By extracting the dragonfly wing corrugation, the biomimetic corrugation airfoil is constructed, finding that mapping corrugation to the airfoil pressure side has better aerodynamic performance. The influence of corrugation type, amplitudeλ, and intensity on airfoil flutter is analyzed using orthogonal experiment, which determines that theλhas the greatest influence on airfoil flutter. Based on the fluctuation range of the moment coefficient ΔCm, the optimal airfoil flutter suppression effect is obtained when the type is III,λ= 0.6, and intensity is denser (n= 13). The effective corrugation layout area in the chord direction is determined to be the leading edge, and the ΔCmof corrugation airfoil is reduced by 7.405%, compared to the original airfoil. The application of this corrugation to NREL 15 MW wind turbine 3D blades is studied, and the influence of corrugation layout length in the blade span direction on the suppressive effect is analyzed by fluid-structure interaction. It is found that when the layout length is 0.85 R, the safety marginSfreaches a maximum value of 0.3431 Hz, which is increased 2.940%. The results show that the biomimetic corrugated structure proposed in this paper can not only improve the aerodynamic performance by changing the local flow field on the surface of the blade, but also increase the structural stiffness of the blade itself, and achieve the effect of flutter suppression.


Asunto(s)
Biomimética , Diseño de Equipo , Viento , Alas de Animales , Animales , Alas de Animales/fisiología , Biomimética/métodos , Odonata/fisiología , Materiales Biomiméticos/química , Vuelo Animal/fisiología , Centrales Eléctricas
6.
Philos Trans R Soc Lond B Biol Sci ; 379(1904): 20230114, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38705173

RESUMEN

The amount of energy available in a system constrains large-scale patterns of abundance. Here, we test the role of temperature and net primary productivity as drivers of flying insect abundance using a novel continental-scale data source: weather surveillance radar. We use the United States NEXRAD weather radar network to generate a near-daily dataset of insect flight activity across a gradient of temperature and productivity. Insect flight activity was positively correlated with mean annual temperature, explaining 38% of variation across sites. By contrast, net primary productivity did not explain additional variation. Grassland, forest and arid-xeric shrubland biomes differed in their insect flight activity, with the greatest abundance in subtropical and temperate grasslands. The relationship between insect flight abundance and temperature varied across biome types. In arid-xeric shrublands and in forest biomes the temperature-abundance relationship was indirectly (through net primary productivity) or directly (in the form of precipitation) mediated by water availability. These results suggest that temperature constraints on metabolism, development, or flight activity shape macroecological patterns in ectotherm abundance. Assessing the drivers of continental-scale patterns in insect abundance and their variation across biomes is particularly important to predict insect community response to warming conditions. This article is part of the theme issue 'Towards a toolkit for global insect biodiversity monitoring'.


Asunto(s)
Vuelo Animal , Insectos , Temperatura , Animales , Insectos/fisiología , Vuelo Animal/fisiología , Estados Unidos , Ecosistema , Bosques
7.
Philos Trans R Soc Lond B Biol Sci ; 379(1904): 20230115, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38705175

RESUMEN

Radar networks hold great promise for monitoring population trends of migrating insects. However, it is important to elucidate the nature of responses to environmental cues. We use data from a mini-network of vertical-looking entomological radars in the southern UK to investigate changes in nightly abundance, flight altitude and behaviour of insect migrants, in relation to meteorological and celestial conditions. Abundance of migrants showed positive relationships with air temperature, indicating that this is the single most important variable influencing the decision to initiate migration. In addition, there was a small but significant effect of moonlight illumination, with more insects migrating on full moon nights. While the effect of nocturnal illumination levels on abundance was relatively minor, there was a stronger effect on the insects' ability to orientate close to downwind: flight headings were more tightly clustered on nights when the moon was bright and when cloud cover was sparse. This indicates that nocturnal illumination is important for the navigational mechanisms used by nocturnal insect migrants. Further, our results clearly show that environmental conditions such as air temperature and light levels must be considered if long-term radar datasets are to be used to assess changing population trends of migrants. This article is part of the theme issue 'Towards a toolkit for global insect biodiversity monitoring'.


Asunto(s)
Migración Animal , Vuelo Animal , Insectos , Animales , Insectos/fisiología , Iluminación , Radar , Luna , Temperatura
8.
Philos Trans R Soc Lond B Biol Sci ; 379(1904): 20230111, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38705186

RESUMEN

Global pollinator decline urgently requires effective methods to assess their trends, distribution and behaviour. Passive acoustics is a non-invasive and cost-efficient monitoring tool increasingly employed for monitoring animal communities. However, insect sounds remain highly unexplored, hindering the application of this technique for pollinators. To overcome this shortfall and support future developments, we recorded and characterized wingbeat sounds of a variety of Iberian domestic and wild bees and tested their relationship with taxonomic, morphological, behavioural and environmental traits at inter- and intra-specific levels. Using directional microphones and machine learning, we shed light on the acoustic signature of bee wingbeat sounds and their potential to be used for species identification and monitoring. Our results revealed that frequency of wingbeat sounds is negatively related with body size and environmental temperature (between-species analysis), while it is positively related with experimentally induced stress conditions (within-individual analysis). We also found a characteristic acoustic signature in the European honeybee that supported automated classification of this bee from a pool of wild bees, paving the way for passive acoustic monitoring of pollinators. Overall, these findings confirm that insect sounds during flight activity can provide insights on individual and species traits, and hence suggest novel and promising applications for this endangered animal group. This article is part of the theme issue 'Towards a toolkit for global insect biodiversity monitoring'.


Asunto(s)
Acústica , Alas de Animales , Animales , Abejas/fisiología , Alas de Animales/fisiología , Vuelo Animal/fisiología , Vocalización Animal/fisiología , Polinización , Sonido
9.
Philos Trans R Soc Lond B Biol Sci ; 379(1904): 20230113, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38705181

RESUMEN

In the current biodiversity crisis, populations of many species have alarmingly declined, and insects are no exception to this general trend. Biodiversity monitoring has become an essential asset to detect biodiversity change but remains patchy and challenging for organisms that are small, inconspicuous or make (nocturnal) long-distance movements. Radars are powerful remote-sensing tools that can provide detailed information on intensity, timing, altitude and spatial scale of aerial movements and might therefore be particularly suited for monitoring aerial insects and their movements. Importantly, they can contribute to several essential biodiversity variables (EBVs) within a harmonized observation system. We review existing research using small-scale biological and weather surveillance radars for insect monitoring and outline how the derived measures and quantities can contribute to the EBVs 'species population', 'species traits', 'community composition' and 'ecosystem function'. Furthermore, we synthesize how ongoing and future methodological, analytical and technological advancements will greatly expand the use of radar for insect biodiversity monitoring and beyond. Owing to their long-term and regional-to-large-scale deployment, radar-based approaches can be a powerful asset in the biodiversity monitoring toolbox whose potential has yet to be fully tapped. This article is part of the theme issue 'Towards a toolkit for global insect biodiversity monitoring'.


Asunto(s)
Biodiversidad , Insectos , Radar , Insectos/fisiología , Animales , Tecnología de Sensores Remotos/métodos , Tecnología de Sensores Remotos/instrumentación , Monitoreo Biológico/métodos , Vuelo Animal
10.
Philos Trans R Soc Lond B Biol Sci ; 379(1904): 20230116, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38705191

RESUMEN

Many insects depend on high-altitude, migratory movements during part of their life cycle. The daily timing of these migratory movements is not random, e.g. many insect species show peak migratory flight activity at dawn, noon or dusk. These insects provide essential ecosystem services such as pollination but also contribute to crop damage. Quantifying the diel timing of their migratory flight and its geographical and seasonal variation, are hence key towards effective conservation and pest management. Vertical-looking radars provide continuous and automated measurements of insect migration, but large-scale application has not been possible because of limited availability of suitable devices. Here, we quantify patterns in diel flight periodicity of migratory insects between 50 and 500 m above ground level during March-October 2021 using a network of 17 vertical-looking radars across Europe. Independent of the overall daily migratory movements and location, peak migratory movements occur around noon, during crepuscular evening and occasionally the morning. Relative daily proportions of insect migration intensity and traffic during the diel phases of crepuscular-morning, day, crepuscular-evening and night remain largely equal throughout May-September and across Europe. These findings highlight, extend, and generalize previous regional-scale findings on diel migratory insect movement patterns to the whole of temperate Europe. This article is part of the theme issue 'Towards a toolkit for global insect biodiversity monitoring'.


Asunto(s)
Altitud , Migración Animal , Vuelo Animal , Insectos , Animales , Vuelo Animal/fisiología , Europa (Continente) , Insectos/fisiología , Estaciones del Año
11.
Sci Rep ; 14(1): 10435, 2024 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714737

RESUMEN

During takeoff and landing, birds bounce and grab with their legs and feet. In this paper,the lower limb structure of the bionic bird is designed with reference to the function of jumping and grasping, and the PID algorithm based on the development module of stm32 development board is used to speed control the lower limb driving element, so that the motor and the bishaft steering gear move with the rate change of sine wave. According to the speed of grasping response time and the size of grasping force, the structure of the bionic bird paw is designed. Based on the photosensitive sensor fixed in the geometric center of the foot, the grasping action of the lower limb mechanism is intelligently controlled. Finally, the kinematic verification of the lower limb structure is carried out by ADAMS. Experiments show that the foot structure with four toes and three toes is more conducive to maintaining the stability of the body while realizing the fast grasping function. In addition, it can effectively improve the push-lift ratio of the bionic ornithopter by adjusting the sinusoidal waveform rate of the motor speed.


Asunto(s)
Biónica , Aves , Animales , Aves/fisiología , Fenómenos Biomecánicos , Algoritmos , Diseño de Equipo , Vuelo Animal/fisiología
12.
Naturwissenschaften ; 111(3): 29, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38713269

RESUMEN

The vast majority of pterosaurs are characterized by relatively large, elongate heads that are often adorned with large, elaborate crests. Projecting out in front of the body, these large heads and any crests must have had an aerodynamic effect. The working hypothesis of the present study is that these oversized heads were used to control the left-right motions of the body during flight. Using digital models of eight non-pterodactyloids ("rhamphorhyncoids") and ten pterodactyloids, the turning moments associated with the head + neck show a close and consistent correspondence with the rotational inertia of the whole body about a vertical axis in both groups, supporting the idea of a functional relationship. Turning moments come from calculating the lateral area of the head (plus any crests) and determining the associated lift (aerodynamic force) as a function of flight speed, with flight speeds being based on body mass. Rotational inertias were calculated from the three-dimensional mass distribution of the axial body, the limbs, and the flight membranes. The close correlation between turning moment and rotational inertia was used to revise the life restorations of two pterosaurs and to infer relatively lower flight speeds in another two.


Asunto(s)
Cabeza , Cráneo , Animales , Fenómenos Biomecánicos/fisiología , Cráneo/anatomía & histología , Cráneo/fisiología , Cabeza/anatomía & histología , Cabeza/fisiología , Vuelo Animal/fisiología , Dinosaurios/fisiología , Dinosaurios/anatomía & histología , Fósiles
13.
Nat Commun ; 15(1): 4337, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773081

RESUMEN

As natural predators, owls fly with astonishing stealth due to the serrated feather morphology that produces advantageous flow characteristics. Traditionally, these serrations are tailored for airfoil edges with simple two-dimensional patterns, limiting their effect on noise reduction while negotiating tradeoffs in aerodynamic performance. Conversely, the intricately structured wings of cicadas have evolved for effective flapping, presenting a potential blueprint for alleviating these aerodynamic limitations. In this study, we formulate a synergistic design strategy that harmonizes noise suppression with aerodynamic efficiency by integrating the geometrical attributes of owl feathers and cicada forewings, culminating in a three-dimensional sinusoidal serration propeller topology that facilitates both silent and efficient flight. Experimental results show that our design yields a reduction in overall sound pressure levels by up to 5.5 dB and an increase in propulsive efficiency by over 20% compared to the current industry benchmark. Computational fluid dynamics simulations validate the efficacy of the bioinspired design in augmenting surface vorticity and suppressing noise generation across various flow regimes. This topology can advance the multifunctionality of aerodynamic surfaces for the development of quieter and more energy-saving aerial vehicles.


Asunto(s)
Plumas , Vuelo Animal , Hemípteros , Estrigiformes , Alas de Animales , Animales , Vuelo Animal/fisiología , Alas de Animales/anatomía & histología , Alas de Animales/fisiología , Hemípteros/fisiología , Hemípteros/anatomía & histología , Estrigiformes/fisiología , Estrigiformes/anatomía & histología , Hidrodinámica , Simulación por Computador , Fenómenos Biomecánicos
14.
Bioinspir Biomim ; 19(3)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38569525

RESUMEN

The silent flight of barn owls is associated with wing and feather specialisations. Three special features are known: a serrated leading edge that is formed by free-standing barb tips which appears as a comb-like structure, a soft dorsal surface, and a fringed trailing edge. We used a model of the leading edge comb with 3D-curved serrations that was designed based on 3D micro-scans of rows of barbs from selected barn-owl feathers. The interaction of the flow with the serrations was measured with Particle-Image-Velocimetry in a flow channel at uniform steady inflow and was compared to the situation of inflow with freestream turbulence, generated from the turbulent wake of a cylinder placed upstream. In steady uniform flow, the serrations caused regular velocity streaks and a flow turning effect. When vortices of different size impacted the serrations, the serrations reduced the flow fluctuations downstream in each case, exemplified by a decreased root-mean-square value of the fluctuations in the wake of the serrations. This attenuation effect was stronger for the spanwise velocity component, leading to an overall flow homogenization. Our findings suggest that the serrations of the barn owl provide a passive flow control leading to reduced leading-edge noise when flying in turbulent environments.


Asunto(s)
Estrigiformes , Animales , Vuelo Animal , Plumas , Alas de Animales , Ruido
15.
J Exp Biol ; 227(9)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38632979

RESUMEN

Birds remodel their flight muscle metabolism prior to migration to meet the physiological demands of migratory flight, including increases in both oxidative capacity and defence against reactive oxygen species. The degree of plasticity mediated by changes in these mitochondrial properties is poorly understood but may be explained by two non-mutually exclusive hypotheses: variation in mitochondrial quantity or in individual mitochondrial function. We tested these hypotheses using yellow-rumped warblers (Setophaga coronata), a Nearctic songbird which biannually migrates 2000-5000 km. We predicted higher flight muscle mitochondrial abundance and substrate oxidative capacity, and decreased reactive oxygen species emission in migratory warblers captured during autumn migration compared with a short-day photoperiod-induced non-migratory phenotype. We assessed mitochondrial abundance via citrate synthase activity and assessed isolated mitochondrial function using high-resolution fluororespirometry. We found 60% higher tissue citrate synthase activity in the migratory phenotype, indicating higher mitochondrial abundance. We also found 70% higher State 3 respiration (expressed per unit citrate synthase) in mitochondria from migratory warblers when oxidizing palmitoylcarnitine, but similar H2O2 emission rates between phenotypes. By contrast, non-phosphorylating respiration was higher and H2O2 emission rates were lower in the migratory phenotype. However, flux through electron transport system complexes I-IV, II-IV and IV was similar between phenotypes. In support of our hypotheses, these data suggest that flight muscle mitochondrial abundance and function are seasonally remodelled in migratory songbirds to increase tissue oxidative capacity without increasing reactive oxygen species formation.


Asunto(s)
Migración Animal , Especies Reactivas de Oxígeno , Pájaros Cantores , Animales , Pájaros Cantores/metabolismo , Pájaros Cantores/fisiología , Especies Reactivas de Oxígeno/metabolismo , Migración Animal/fisiología , Citrato (si)-Sintasa/metabolismo , Mitocondrias Musculares/metabolismo , Mitocondrias/metabolismo , Oxidación-Reducción , Vuelo Animal/fisiología
16.
Bioinspir Biomim ; 19(4)2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38663419

RESUMEN

Recent experiments with gliding raptors reveal a perplexing dichotomy: remarkably resilient gust rejection, but, at the same time, an exceptionally high degree of longitudinal instability. To resolve this incompatibility, a multiple degree of freedom model is developed with minimal requisite complexity to examine the hypothesis that the bird shoulder joint may embed essential stabilizing and preflexive mechanisms for rejecting rapid perturbations while simplifying and reducing control effort. Thus, the formulation herein is centrally premised upon distinct wing pitch and body pitch angles coupled via a Kelvin-Voigt viscoelastic shoulder joint. The model accurately exhibits empirical gust response of an unstable gliding raptor, generates biologically plausible equilibrium configurations, and the viscoelastic shoulder coupling is shown to drastically alleviate the high degree of instability predicted by conventional linear flight dynamics models. In fact, stability analysis of the model predicts a critical system timescale (the time to double amplitude of a pitch divergence mode) that is commensurate within vivomeasured latency of barn owls (Tyto alba). Active gust mitigation is studied by presupposing the owl behaves as an optimal controller. The system is under-actuated and the feedback control law is resolved in the controllable subspace using a Kalman decomposition. Importantly, control-theoretic analysis precisely identifies what discrete gust frequencies may be rapidly and passively rejected versus disturbances requiring feedback control intervention.


Asunto(s)
Vuelo Animal , Modelos Biológicos , Animales , Vuelo Animal/fisiología , Fenómenos Biomecánicos , Alas de Animales/fisiología , Viscosidad , Rapaces/fisiología , Elasticidad , Biomimética/métodos , Simulación por Computador , Estrigiformes/fisiología , Articulación del Hombro/fisiología , Articulación del Hombro/fisiopatología
17.
PLoS Biol ; 22(4): e3002575, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38683844

RESUMEN

Muscles undergo developmental transitions in gene expression and alternative splicing that are necessary to refine sarcomere structure and contractility. CUG-BP and ETR-3-like (CELF) family RNA-binding proteins are important regulators of RNA processing during myogenesis that are misregulated in diseases such as Myotonic Dystrophy Type I (DM1). Here, we report a conserved function for Bruno 1 (Bru1, Arrest), a CELF1/2 family homolog in Drosophila, during early muscle myogenesis. Loss of Bru1 in flight muscles results in disorganization of the actin cytoskeleton leading to aberrant myofiber compaction and defects in pre-myofibril formation. Temporally restricted rescue and RNAi knockdown demonstrate that early cytoskeletal defects interfere with subsequent steps in sarcomere growth and maturation. Early defects are distinct from a later requirement for bru1 to regulate sarcomere assembly dynamics during myofiber maturation. We identify an imbalance in growth in sarcomere length and width during later stages of development as the mechanism driving abnormal radial growth, myofibril fusion, and the formation of hollow myofibrils in bru1 mutant muscle. Molecularly, we characterize a genome-wide transition from immature to mature sarcomere gene isoform expression in flight muscle development that is blocked in bru1 mutants. We further demonstrate that temporally restricted Bru1 rescue can partially alleviate hypercontraction in late pupal and adult stages, but it cannot restore myofiber function or correct structural deficits. Our results reveal the conserved nature of CELF function in regulating cytoskeletal dynamics in muscle development and demonstrate that defective RNA processing due to misexpression of CELF proteins causes wide-reaching structural defects and progressive malfunction of affected muscles that cannot be rescued by late-stage gene replacement.


Asunto(s)
Citoesqueleto , Proteínas de Drosophila , Drosophila melanogaster , Desarrollo de Músculos , Proteínas de Unión al ARN , Sarcómeros , Animales , Sarcómeros/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Desarrollo de Músculos/genética , Citoesqueleto/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Empalme del ARN/genética , Miofibrillas/metabolismo , Vuelo Animal/fisiología , Empalme Alternativo/genética , Regulación del Desarrollo de la Expresión Génica , Músculos/metabolismo
18.
J Exp Biol ; 227(10)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38680114

RESUMEN

Animals exhibit an abundant diversity of forms, and this diversity is even more evident when considering animals that can change shape on demand. The evolution of flexibility contributes to aspects of performance from propulsive efficiency to environmental navigation. It is, however, challenging to quantify and compare body parts that, by their nature, dynamically vary in shape over many time scales. Commonly, body configurations are tracked by labelled markers and quantified parametrically through conventional measures of size and shape (descriptor approach) or non-parametrically through data-driven analyses that broadly capture spatiotemporal deformation patterns (shape variable approach). We developed a weightless marker tracking technique and combined these analytic approaches to study wing morphological flexibility in hoverfeeding Anna's hummingbirds (Calypte anna). Four shape variables explained >95% of typical stroke cycle wing shape variation and were broadly correlated with specific conventional descriptors such as wing twist and area. Moreover, shape variables decomposed wing deformations into pairs of in-plane and out-of-plane components at integer multiples of the stroke frequency. This property allowed us to identify spatiotemporal deformation profiles characteristic of hoverfeeding with experimentally imposed kinematic constraints, including through shape variables explaining <10% of typical shape variation. Hoverfeeding in front of a visual barrier restricted stroke amplitude and elicited increased stroke frequencies together with in-plane and out-of-plane deformations throughout the stroke cycle. Lifting submaximal loads increased stroke amplitudes at similar stroke frequencies together with prominent in-plane deformations during the upstroke and pronation. Our study highlights how spatially and temporally distinct changes in wing shape can contribute to agile fluidic locomotion.


Asunto(s)
Aves , Vuelo Animal , Alas de Animales , Animales , Alas de Animales/anatomía & histología , Alas de Animales/fisiología , Aves/fisiología , Aves/anatomía & histología , Fenómenos Biomecánicos , Vuelo Animal/fisiología
19.
PLoS One ; 19(4): e0301999, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38635686

RESUMEN

To study how the nervous system processes visual information, experimenters must record neural activity while delivering visual stimuli in a controlled fashion. In animals with a nearly panoramic field of view, such as flies, precise stimulation of the entire visual field is challenging. We describe a projector-based device for stimulation of the insect visual system under a microscope. The device is based on a bowl-shaped screen that provides a wide and nearly distortion-free field of view. It is compact, cheap, easy to assemble, and easy to operate using the included open-source software for stimulus generation. We validate the virtual reality system technically and demonstrate its capabilities in a series of experiments at two levels: the cellular, by measuring the membrane potential responses of visual interneurons; and the organismal, by recording optomotor and fixation behavior of Drosophila melanogaster in tethered flight. Our experiments reveal the importance of stimulating the visual system of an insect with a wide field of view, and we provide a simple solution to do so.


Asunto(s)
Drosophila melanogaster , Campos Visuales , Animales , Drosophila melanogaster/fisiología , Estimulación Luminosa , Programas Informáticos , Interneuronas , Vuelo Animal/fisiología , Percepción Visual/fisiología
20.
J R Soc Interface ; 21(213): 20230734, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38654630

RESUMEN

Avian wing morphing allows dynamic, active control of complex flight manoeuvres. Previous linear time-invariant (LTI) models have quantified the effect of varying fixed wing configurations but the time-dependent effects of morphing between different configurations is not well understood. To fill this gap, I implemented a linear parameter-varying (LPV) model for morphing wing gull flight. This approach models the wing joint angles as scheduled parameters and accounts for nonlinear kinematic and gravitational effects while interpolating between LTI models at discrete trim points. With the resulting model, I investigated the longitudinal response associated with various joint extension trajectories. By optimizing the extension trajectory for four independent objectives (speed and pitch angle overshoot, speed rise time and pitch angle settling time), I found that the extension trajectory inherent to the gull wing does not guarantee an optimal response but may provide a sufficient response with a simpler mechanical implementation. Furthermore, the results indicated that gulls likely require extension speed feedback. This morphing LPV model provides insights into underlying control mechanisms, which may allow for avian-like flight in future highly manoeuvrable uncrewed aerial vehicles.


Asunto(s)
Vuelo Animal , Modelos Biológicos , Alas de Animales , Vuelo Animal/fisiología , Animales , Alas de Animales/fisiología , Alas de Animales/anatomía & histología , Fenómenos Biomecánicos , Charadriiformes/fisiología , Charadriiformes/anatomía & histología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA