RESUMEN
Gain-of-function mutations in the KCNT1 gene, which encodes the sodium-activated potassium channel known as SLACK, are associated with the rare but devastating developmental and epileptic encephalopathy known as epilepsy of infancy with migrating focal seizures (EIMFS). The design of small molecule inhibitors of SLACK channels represents a potential therapeutic approach to the treatment of EIMFS, other childhood epilepsies, and developmental disorders. Herein, we describe a hit optimization effort centered on a xanthine SLACK inhibitor (8) discovered via a high-throughput screen. Across three distinct regions of the chemotype, we synthesized 58 new analogs and tested each one in a whole-cell automated patch-clamp assay to develop structure-activity relationships for inhibition of SLACK channels. We further evaluated selected analogs for their selectivity versus a variety of other ion channels and for their activity versus clinically relevant SLACK mutants. Selectivity within the series was quite good, including versus hERG. Analog 80 (VU0948578) was a potent inhibitor of WT, A934T, and G288S SLACK, with IC50 values between 0.59 and 0.71 µM across these variants. VU0948578 represents a useful in vitro tool compound from a chemotype that is distinct from previously reported small molecule inhibitors of SLACK channels.
Asunto(s)
Bloqueadores de los Canales de Potasio , Relación Estructura-Actividad , Humanos , Bloqueadores de los Canales de Potasio/química , Bloqueadores de los Canales de Potasio/farmacología , Canales de potasio activados por Sodio , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Xantina/química , Xantina/farmacología , Técnicas de Placa-Clamp , Células HEK293 , Estructura Molecular , Xantinas/química , Xantinas/farmacologíaRESUMEN
The platelet aggregation inhibitory activity of selected xanthine-based adenosine A2A and A2B receptor antagonists was investigated, and attempts were made to explain the observed effects. The selective A2B receptor antagonist PSB-603 and the A2A receptor antagonist TB-42 inhibited platelet aggregation induced by collagen or ADP. In addition to adenosine receptor blockade, the compounds were found to act as moderately potent non-selective inhibitors of phosphodiesterases (PDEs). TB-42 showed the highest inhibitory activity against PDE3A along with moderate activity against PDE2A and PDE5A. The antiplatelet activity of PSB-603 and TB-42 may be due to inhibition of PDEs, which induces an increase in cAMP and/or cGMP concentrations in platelets. The xanthine-based adenosine receptor antagonists were found to be non-cytotoxic for platelets. Some of the compounds showed anti-oxidative properties reducing lipid peroxidation. These results may provide a basis for the future development of multi-target xanthine derivatives for the treatment of inflammation and atherosclerosis and the prevention of heart infarction and stroke.
Asunto(s)
Aterosclerosis , Plaquetas , Animales , Ratas , Xantina/farmacología , AdenosinaRESUMEN
Multitarget drugs based on a hybrid dopamine-xanthine core were designed as potential drug candidates for the treatment of neurodegenerative diseases. Monoamine oxidase B (MAO-B) inhibitors with significant ancillary A2A adenosine receptor (A2AAR) antagonistic properties were further developed to exhibit additional phosphodiesterase-4 and -10 (PDE4/10) inhibition and/or dopamine D2 receptor (D2R) agonistic activity. While all of the designed compounds showed MAO-B inhibition in the nanomolar range mostly combined with submicromolar A2AAR affinity, significant enhancement of PDE-inhibitory and D2R-agonistic activity was additionally reached for some compounds through various structural modifications. The final multitarget drugs also showed promising antioxidant properties in vitro. In order to evaluate their potential neuroprotective effect, representative ligands were tested in a cellular model of toxin-induced neurotoxicity. As a result, protective effects against oxidative stress in neuroblastoma cells were observed, confirming the utility of the applied strategy. Further evaluation of the newly developed multitarget ligands in preclinical models of Alzheimer's and Parkinson's diseases is warranted.
Asunto(s)
Enfermedades Neurodegenerativas , Humanos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Xantina/farmacología , Xantina/uso terapéutico , Inhibidores de la Monoaminooxidasa/farmacología , Inhibidores de la Monoaminooxidasa/química , Dopamina , Ligandos , Relación Estructura-Actividad , Antagonistas del Receptor de Adenosina A2/farmacología , Antagonistas del Receptor de Adenosina A2/química , Antagonistas del Receptor de Adenosina A2/uso terapéutico , Monoaminooxidasa/metabolismo , Dopaminérgicos/farmacologíaRESUMEN
Xanthine and its derivatives are considered an important class of N-heterocyclic purine compounds that have gained significant importance in medicinal chemistry. N-heterocyclic carbene (NHC) and N-coordinated metal complexes of xanthine and its derivatives have revealed a range of new possibilities for their use as therapeutic agents in addition to their established catalytic behavior. The metal complexes of xanthine and its derivatives have been designed and synthesized for the exploration of their potential therapeutic applications. These metal complexes based on the xanthine scaffold exhibited various potential medicinal applications including anticancer, antibacterial, and antileishmanial activity. The metal complexes of xanthine and its derivatives shall pave the way for the rational design and development of new therapeutic agents. In the present comprehensive review, we highlighted the recent advancements in the synthesis and medicinal applications of metal complexes based on N-heterocyclic carbene (NHC) derived from xanthine scaffolds.
Asunto(s)
Complejos de Coordinación , Compuestos Heterocíclicos , Complejos de Coordinación/química , Xantina/farmacología , Metano/química , Antibacterianos/química , Compuestos Heterocíclicos/químicaRESUMEN
The prevalence of mental disorders such as depression and anxiety is high and often comorbid with other diseases. Chronic stress is a common risk factor for these disorders, but the mechanisms behind their development are not yet fully understood. Metabolomics has revealed a close association between purine and pyrimidine metabolism and depression and anxiety, with increased levels of serum xanthine observed in both humans and mice. Xanthine is known as purine metabolism, and this compound shows several biological activities, but the impact of xanthine on our brain function is still unclear. The hippocampus, which plays a crucial role in memory and learning, is also implicated in the pathophysiology of depression and anxiety. Here, we investigated the effects of xanthine intraperitoneal administration on spatial memory and anxiety-like behavior in mice. The findings indicated that xanthine administration induced a deficit of hippocampus-dependent spatial memory and a tendency to anxiety-like behavior in mice. RNA-seq analysis showed that xanthine administration upregulated hemoglobin (Hb) genes involved in oxygen transport in the hippocampus. The upregulated Hb genes occurred in the neuronal cells, and in vitro experiments revealed that both Hba-a1 derived from mice and HBA2 derived from humans were upregulated by xanthine treatment. These observations suggest that the xanthine-induced Hb in the hippocampus could be related to spatial memory deficit and anxiety. This study sheds light on the direct effects of xanthine on the brain and its potential role in the development of depression and anxiety symptoms caused by chronic stress.
Asunto(s)
Trastornos de Ansiedad , Ansiedad , Humanos , Ratones , Animales , Xantina/metabolismo , Xantina/farmacología , Ansiedad/metabolismo , Trastornos de Ansiedad/metabolismo , Memoria Espacial , Conducta Animal/fisiología , Hipocampo/metabolismoRESUMEN
Tryptophan hydroxylases catalyze the first and rate-limiting step in the synthesis of serotonin. Serotonin is a key neurotransmitter in the central nervous system and, in the periphery, functions as a local hormone with multiple physiological functions. Studies in genetically altered mouse models have shown that dysregulation of peripheral serotonin levels leads to metabolic, inflammatory, and fibrotic diseases. Overproduction of serotonin by tumor cells causes severe symptoms typical for the carcinoid syndrome, and tryptophan hydroxylase inhibitors are already in clinical use for patients suffering from this disease. Here, we describe a novel class of potent tryptophan hydroxylase inhibitors, characterized by spanning all active binding sites important for catalysis, specifically those of the cosubstrate pterin, the substrate tryptophan as well as directly chelating the catalytic iron ion. The inhibitors were designed to efficiently reduce serotonin in the periphery while not passing the blood-brain barrier, thus preserving serotonin levels in the brain.
Asunto(s)
Bencimidazoles , Serotonina , Triptófano Hidroxilasa , Xantina , Animales , Bencimidazoles/química , Bencimidazoles/farmacología , Ratones , Triptófano Hidroxilasa/antagonistas & inhibidores , Xantina/química , Xantina/farmacologíaRESUMEN
BACKGROUND: The design and discovery of novel pesticidal agents according to bioactive natural products is an important aspect of agrochemical innovation. New xanthine derivatives derived from natural xanthine or methylxanthines are rich resources that possess great potential to afford new active pesticidal molecules. Herein novel xanthine derivatives were designed through a strategy of combining the methylxanthine caffeine skeleton with the acrylamide or acrylate motif of cinnamic acid derivatives. RESULTS: A series of novel (E)-3-(1,3,7-trimethyl-2,6-dioxo-2,3,6,7-tetrahydro-1H-purin-8-yl)acrylic acid derivatives, caffeine-(E)-acrylamides and caffeine-(E)-acrylates, were synthesized and confirmed via melting points, 1 H NMR, 13 C NMR and high-resolution mass spectrometry. A single crystal of compound I12 was obtained to illustrate the trans-configuration of the vinyl double bond. Preliminary insecticidal evaluations showed that some of the compounds had favorable insecticidal potentials against Mythimna separata Walker at 200 mg L-1 . Some of the compounds exhibited excellent insecticidal activity against Plutella xylostella L. at low test concentrations, e.g. I18 and I24 with LC50 values of 0.0435 and 0.0133 mg L-1 , respectively, were found to be more potent than the insecticide control triflumuron. The structure-activity relationship (SAR) analysis is also given in detail. CONCLUSION: Compounds I12, I18, I24 and I26 generated from the integration of natural methylxanthine (caffeine) and acrylate moieties could be novel insecticidal leading compounds for further structural optimization. The SAR analysis may bring a new inspiration to the extensive and deep investigations on new xanthine derivatives in the agrochemical area.
Asunto(s)
Insecticidas , Mariposas Nocturnas , Plaguicidas , Acrilamidas , Animales , Cafeína , Insecticidas/química , Larva , Estructura Molecular , Relación Estructura-Actividad , Xantina/farmacologíaRESUMEN
Meso-Xanthin (Meso-Xanthin F199™) is a highly active antiaging injection drug of the latest generation. The main acting compound is fucoxanthin, supplemented with several growth factors, vitamins, and hyaluronic acid. Previous examination of fucoxanthin on melanocytes showed its ability to inhibit skin pigmentation through different signaling pathways focused on suppression of melanogenic-stimulating receptors. In turn, the anticancer property of fucoxanthin is realized through MAPK and PI3K pathways. We aimed to evaluate the effect of fucoxanthin and supplemented growth factors on melanocyte growth and transformation at a proteomic level. The effect of fucoxanthin on melanocytes cultivated in three-dimensional (3D) condition was examined using high-throughput proteomic and system biology approaches to disclose key molecular events of the targeted action. Our results demonstrated significant inhibition of cell differentiation and ubiquitination processes. We found that the negative regulation of PSME1 and PTGIS largely determines the inhibition of NF-κB and MAPK2. Besides, fucoxanthin selectively inhibits cell differentiation via negative regulation of Raf signaling and the upstream activation of IL-1 signaling. It is assumed that inhibition of Raf influences the Notch-4 signaling and switches off the MAPK/MAPK2 cascade. Blockage of MAPK/MAPK2 is feasible due to suppression of Ras and NF-κB by the addressed action of IKKB, IKK2, and TRAF6. Suggestively, Meso-Xanthin F199™ can manage processes of proliferative activity and inhibition of apoptosis due to composition of fucoxanthin and growth-stimulating factors, which may increase the risk of skin cancer development under certain condition.
Asunto(s)
Apoptosis/efectos de los fármacos , Técnicas de Cultivo de Célula , Sistema de Señalización de MAP Quinasas , Melanocitos/citología , Melanocitos/metabolismo , Receptores Notch/metabolismo , Xantina/farmacología , Proliferación Celular/efectos de los fármacos , Forma de la Célula/efectos de los fármacos , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Melanocitos/efectos de los fármacos , Mapas de Interacción de Proteínas/efectos de los fármacos , Proteoma/metabolismoRESUMEN
Methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) plays an important role in one-carbon metabolism. The MTHFD2 gene is upregulated in various cancers but very low or undetectable in normal proliferating cells, and therefore a potential target for cancer treatment. In this study, we present the structure of MTHFD2 in complex with xanthine derivative 15, which allosterically binds to MTHFD2 and coexists with the substrate analogue. A kinetic study demonstrated the uncompetitive inhibition of MTHFD2 by 15. Allosteric inhibitors often provide good selectivity and, indeed, xanthine derivatives are highly selective for MTHFD2. Moreover, several conformational changes were observed upon the binding of 15, which impeded the binding of the cofactor and phosphate to MTHFD2. To the best of our knowledge, this is the first study to identify allosteric inhibitors targeting the MTHFD family and our results would provide insights on the inhibition mechanism of MTHFD proteins and the development of novel inhibitors.
Asunto(s)
Aminohidrolasas/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Metilenotetrahidrofolato Deshidrogenasa (NADP)/antagonistas & inhibidores , Enzimas Multifuncionales/antagonistas & inhibidores , Xantina/farmacología , Sitio Alostérico/efectos de los fármacos , Aminohidrolasas/metabolismo , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Humanos , Metilenotetrahidrofolato Deshidrogenasa (NADP)/metabolismo , Modelos Moleculares , Estructura Molecular , Enzimas Multifuncionales/metabolismo , Relación Estructura-Actividad , Xantina/síntesis química , Xantina/químicaRESUMEN
BACKGROUND: Soil salinity is a critical threat to global agriculture. In plants, the accumulation of xanthine activates xanthine dehydrogenase (XDH), which catalyses the oxidation/conversion of xanthine to uric acid to remove excess reactive oxygen species (ROS). The nucleobase-ascorbate transporter (NAT) family is also known as the nucleobase-cation symporter (NCS) or AzgA-like family. NAT is known to transport xanthine and uric acid in plants. The expression of MdNAT is influenced by salinity stress in apple. RESULTS: In this study, we discovered that exogenous application of xanthine and uric acid enhanced the resistance of apple plants to salinity stress. In addition, MdNAT7 overexpression transgenic apple plants showed enhanced xanthine and uric acid concentrations and improved tolerance to salinity stress compared with nontransgenic plants, while opposite phenotypes were observed for MdNAT7 RNAi plants. These differences were probably due to the enhancement or impairment of ROS scavenging and ion homeostasis abilities. CONCLUSION: Our results demonstrate that xanthine and uric acid have potential uses in salt stress alleviation, and MdNAT7 can be utilized as a candidate gene to engineer resistance to salt stress in plants.
Asunto(s)
Malus/fisiología , Proteínas de Plantas/genética , Tolerancia a la Sal/fisiología , Ácido Úrico/farmacología , Xantina/farmacología , Antioxidantes/análisis , Antioxidantes/metabolismo , Regulación de la Expresión Génica de las Plantas , Homeostasis , Peróxido de Hidrógeno/metabolismo , Malus/efectos de los fármacos , Malus/genética , Proteínas de Transporte de Nucleobases/genética , Proteínas de Transporte de Nucleobases/metabolismo , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Potasio/análisis , Tolerancia a la Sal/efectos de los fármacos , Sodio/análisis , Ácido Úrico/análisis , Xantina/análisisRESUMEN
As an alternative pathway of controlled cell death, necroptosis can be triggered by tumor necrosis factor via the kinases RIPK1/RIPK3 and the effector protein mixed-lineage kinase domain-like protein (MLKL). Upon activation, MLKL oligomerizes and integrates into the plasma membrane via its executioner domain. Here, we present the X-ray and NMR costructures of the human MLKL executioner domain covalently bound via Cys86 to a xanthine class inhibitor. The structures reveal that the compound stabilizes the interaction between the auto-inhibitory brace helix α6 and the four-helix bundle by stacking to Phe148. An NMR-based functional assay observing the conformation of this helix showed that the F148A mutant is unresponsive to the compound, providing further evidence for the importance of this interaction. Real-time and diffusion NMR studies demonstrate that xanthine derivatives inhibit MLKL oligomerization. Finally, we show that the other well-known MLKL inhibitor Necrosulfonamide, which also covalently modifies Cys86, must employ a different mode of action.
Asunto(s)
Necroptosis , Proteínas Quinasas/metabolismo , Humanos , Concentración 50 Inhibidora , Células Jurkat , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Dominios Proteicos , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Quinasas/química , Multimerización de Proteína , Células U937 , Xantina/farmacologíaRESUMEN
Ethyl 5-arylpyridopyrimidine-6-carboxylates 3a-d were prepared as a one pot three component reaction via the condensation of different aromatic aldehydes and ethyl acetoacetate with 6-amino-1-benzyluracil 1a under reflux condition in ethanol. Additionally, condensation of ethyl 2-(2-hydroxybenzylidene) acetoacetate with 6-amino-1-benzyluracil in DMF afforded 6-acetylpyridopyrimidine-7-one 3e; a facile, operationally, simple and efficient one-pot synthesis of 8-arylxanthines 6a-f is reported by refluxing 5,6-diaminouracil 4 with aromatic aldehydes in DMF. Moreover, 6-aryllumazines 7a-d was obtained via the reaction of 5,6-diaminouracil with the appropriate aromatic aldehydes in triethyl orthoformate under reflux condition. The synthesized compounds were characterized by spectral (1H-NMR, 13C-NMR, IR and mass spectra) and elemental analyses. The newly synthesized compounds were screened for their anticancer activity against lung cancer A549 cell line. Furthermore, a molecular-docking study was employed to determine the possible mode of action of the synthesized compounds against a group of proteins highly implicated in cancer progression, especially lung cancer. Docking results showed that compounds 3b, 6c, 6d, 6e, 7c and 7d were the best potential docked compounds against most of the tested proteins, especially CDK2, Jak2, and DHFR proteins. These results are in agreement with cytotoxicity results, which shed a light on the promising activity of these novel six heterocyclic derivatives for further investigation as potential chemotherapeutics.
Asunto(s)
Antineoplásicos/síntesis química , Neoplasias/tratamiento farmacológico , Pteridinas/síntesis química , Piridinas/síntesis química , Pirimidinas/síntesis química , Xantina/síntesis química , Células A549 , Antineoplásicos/farmacología , Sitios de Unión , Técnicas de Química Sintética , Quinasa 2 Dependiente de la Ciclina/química , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Ácido Fólico/química , Humanos , Concentración 50 Inhibidora , Janus Quinasa 2/química , Células MCF-7 , Simulación del Acoplamiento Molecular , Proteínas Proto-Oncogénicas c-bcl-2/química , Proteínas Proto-Oncogénicas c-mdm2/química , Pteridinas/farmacología , Piridinas/farmacología , Pirimidinas/farmacología , Tetrahidrofolato Deshidrogenasa/química , Proteína p53 Supresora de Tumor/química , Xantina/farmacologíaRESUMEN
The Mediterranean Diet (MD), UNESCO Intangible Cultural Heritage of Humanity, has become a scientific topic of high interest due to its health benefits. The aim of this review is to pick up selected studies that report nutrigenomic or nutrigenetic data and recapitulate some of the biochemical/genomic/genetic aspects involved in the positive health effects of the MD. These include (i) the antioxidative potential of its constituents with protective effects against several diseases; (ii) the epigenetic and epigenomic effects exerted by food components, such as Indacaxanthin, Sulforaphane, and 3-Hydroxytyrosol among others, and their involvement in the modulation of miRNA expression; (iii) the existence of predisposing or protective human genotypes due to allelic diversities and the impact of the MD on disease risk. A part of the review is dedicated to the nutrigenomic effects of the main cooking methods used in the MD and also to a comparative analysis of the nutrigenomic properties of the MD and other diet regimens and non-MD-related aliments. Taking all the data into account, the traditional MD emerges as a diet with a high antioxidant and nutrigenomic modulation power, which is an example of the "Environment-Livings-Environment" relationship and an excellent patchwork of interconnected biological actions working toward human health.
Asunto(s)
Dieta Saludable , Dieta Mediterránea , Ingestión de Alimentos/fisiología , Epigenómica , Estado de Salud , Nutrigenómica , Antioxidantes/análisis , Antioxidantes/farmacología , Femenino , Análisis de los Alimentos , Expresión Génica/efectos de los fármacos , Humanos , Isotiocianatos/análisis , Isotiocianatos/farmacología , Masculino , MicroARNs/genética , MicroARNs/metabolismo , Alcohol Feniletílico/análogos & derivados , Alcohol Feniletílico/análisis , Alcohol Feniletílico/farmacología , Sulfóxidos , Xantina/análisis , Xantina/farmacologíaRESUMEN
DNA damage and oxidative stress play a critical role in photoageing. Seborrhoeic keratosis (SK) affects sunlight-exposed sites in aged individuals. This study examined the mechanism of photoageing in SK. The guanine deaminase gene, which is involved in purine metabolism, was upregulated with uric acid levels and p21 in SK. Guanine deaminase was detectable in keratinocytes. Repeated exposure to ultraviolet (UV) increased levels of guanine deaminase, together with DNA damage, such as γ-H2AX and cyclobutane pyrimidine dimer formation, generation of reactive oxygen species, and keratinocyte senescence, which were reversed by guanine deaminase knockdown. However, guanine deaminase overexpression and H2O2 formed γ-H2AX, but not cyclobutane pyrimidine dimer. Loss-of-function guanine deaminase mutants reduced the metabolic end-product uric acid, which was increased by exposure to exogenous xanthine. Repeated exposure to UV increased levels of uric acid. Exogenous uric acid increased cellular senescence, reactive oxygen species, and γ-H2AX, similar to guanine deaminase. Overall, guanine deaminase upregulation increased UV-induced keratinocyte senescence in SK, via uric acid mediated by reactive oxygen species followed by DNA damage.
Asunto(s)
Senescencia Celular , Guanina Desaminasa/genética , Guanina/metabolismo , Queratinocitos/fisiología , Queratosis Seborreica/enzimología , Rayos Ultravioleta , Adulto , Anciano , Células Cultivadas , Senescencia Celular/efectos de los fármacos , Senescencia Celular/efectos de la radiación , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Daño del ADN/efectos de la radiación , Femenino , Guanina Desaminasa/metabolismo , Histonas/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Dímeros de Pirimidina/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Envejecimiento de la Piel/fisiología , Regulación hacia Arriba , Ácido Úrico/metabolismo , Ácido Úrico/farmacología , Xantina/farmacologíaRESUMEN
A series of xanthine compounds derived from the previous hit 20i with modification on the terminal side chain was discovered through ring formation strategy. Systematic optimization of the compounds with rigid heterocycles in the hydrophobic side chain led to the new lead compound HBK001 (21h) with the improved DPP-IV inhibition and moderate GPR119 agonism activity in vitro. As a continuing work to further study the PK and PD profiles, 21h and its hydrochloride (22) were synthesized on grams scale and evaluated on the ADME/T and oral glucose tolerance test (OGTT) in ICR mice. Compound 22 showed the improved bioavailability and blood glucose-lowering effect in vivo compared to its free base 21h probably attributed to its improved solubility and permeability. The preliminary toxicity studies on compound 22 exhibited that the result of mini-Ames was negative and the preliminary acute toxicity LD50 in mice was above 1.5 g/kg, while it showed moderate inhibition on hERG channel with IC50 4.9 µM maybe due to its high lipophilicity. These findings will be useful for the future drug design for more potent and safer dual ligand targeting DPP-IV and GPR119 for the treatment of diabetes.
Asunto(s)
Dipeptidil Peptidasa 4/metabolismo , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Hipoglucemiantes/farmacología , Piperidinas/farmacología , Receptores Acoplados a Proteínas G/agonistas , Xantina/farmacología , Animales , Inhibidores de la Dipeptidil-Peptidasa IV/síntesis química , Inhibidores de la Dipeptidil-Peptidasa IV/química , Relación Dosis-Respuesta a Droga , Prueba de Tolerancia a la Glucosa , Humanos , Hipoglucemiantes/síntesis química , Hipoglucemiantes/química , Ratones , Ratones Endogámicos ICR , Microsomas Hepáticos/química , Microsomas Hepáticos/metabolismo , Estructura Molecular , Piperidinas/síntesis química , Piperidinas/química , Receptores Acoplados a Proteínas G/metabolismo , Relación Estructura-Actividad , Xantina/síntesis química , Xantina/químicaRESUMEN
Losing weight has significant impact on chronic disease management. Orlistat, a lipase inhibitor, has alternative effect for weight controlling. To find more candidates, we conducted a review of chalcone and xanthine derivatives regarding their anti-lipase activity. Eight databases were searched including PubMed, Scopus, Web of Science (ISI), Virtual Health Library (VHL), System for Information on Grey Literature in Europe (SIGLE), Global Health Library (GHL), EMBASE, and Google Scholar in August 2018. We found chalcone scaffold was more effective on lipase inhibition than xanthine scaffold. Among 19 investigated chalcones, only isoliquiritigenin and licuroside demonstrated an effect on preventing weight gain and increase in the total cholesterol and total triglycerides aside apart from their high activity on inhibiting lipase. Effect and type of inhibition of individual chalcones differed depending on their structure. In addition, very few studies investigated xanthine compounds and their activities were inconsistent. We suggest more studies investigate the ability of chalcones and modifying their structure to find out other compounds with higher efficacy.
Asunto(s)
Chalcona/farmacología , Inhibidores Enzimáticos/farmacología , Lipasa/antagonistas & inhibidores , Xantina/farmacología , Chalcona/química , Inhibidores Enzimáticos/química , Xantina/químicaRESUMEN
Background: Xanthine derivatives have been used to treat a variety of medical conditions including respiratory disease and neural degeneration. However, few studies have reported their effects on bone regeneration. Therefore, we investigated the effects of KPR-A148, a synthetic xanthine derivative on osteoblast differentiation in vitro and bone regeneration in vivo. Methods: The cytotoxicity of KPR-A148 was evaluated using MC3T3-E1 cells by the 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltertrazolium bromide assay. The effects of KPR-A148 on osteoblast differentiation were examined by alkaline phosphatase staining, Alizarin red S staining, and real-time PCR of osteoblast differentiation marker genes. To investigate the effects of KPR-A148 on in vivo bone regeneration, a KPR-A148-containing collagen sponge was implanted into a mouse calvarial defect and KPR-A148 was injected twice, weekly. Bone regeneration was evaluated quantitatively by micro-CT and qualitatively by hematoxylin and eosin, as well as Masson's Trichrome staining. Results: KPR-A148 did not show toxicity in the MC3T3-E1 cells and promoted osteoblast differentiation in a concentration-dependent manner. 10 µM of KPR-A148 showed the most significant effect on alkaline phospatase staining and matrix mineralization. KPR-A148 increased the expression of osteoblast marker genes in both the early and late stages of differentiation. In addition, KPR-A148 significantly induced new bone formation in the calvarial defect model. Conclusion: These results demonstrate that KPR-A148 strongly induces osteoblast differentiation and new bone formation. Therefore, it could be used as a potential therapeutic agent for regenerating bone following its destruction by disease or trauma.
Asunto(s)
Regeneración Ósea/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Osteoblastos/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Xantina/farmacología , Fosfatasa Alcalina/metabolismo , Animales , Biomarcadores/metabolismo , Línea Celular , Colágeno/metabolismo , Ratones , Osteoblastos/metabolismoRESUMEN
A series of novel xanthine derivatives 2a-l incorporating benzoic acid moieties were rapidly generated by using strategy of scaffold-hopping from our previously reported scaffold uracil to xanthine, a scaffold of approved drug linagliptin. After systematic structure-activity relationship (SAR) study around benzoic acid moieties, 5 novel DPP-4 inhibitors with low picomolar potency range (IC50â¯<â¯1â¯nM) and excellent selectivity against various DPP-4 homologues were identified, in which the best one, compound 2f, with the IC50 value of 0.1â¯nM for DPP-4, showed 22-fold improvement in inhibitory activity compared to lead compound uracil 1, its activity was 45-fold more potent than alogliptin. 2e, 2f, 2i and 2k were selected for pharmacokinetic evaluation, and 2f and 2i showed the better pharmacokinetic profiles after iv administration, but poor oral bioavailability. To improve the oral pharmacokinetic profile, prodrug design approach was performed around 2f and 2i. Esters of 2f and 2i were synthesized and evaluated for stability, toxicity and pharmacokinetics. Compound 3e, the methyl ester of compound 2f, was identified to demonstrate good stability, low toxicity and improved oral bioavailability, with 3-fold higher blood concentration compared to 2f in rats. The following in vivo evaluations revealed 3e provided a sustained pharmacodynamics effect for 48h, and robustly improved glucose tolerance in normal ICR and db/db mice in dose-dependent manner. Chronic treatments investigations demonstrated that 3e achieved more beneficial effects on fasting blood glucose levels and glucose tolerance than alogliptin in type 2 diabetic db/db mice. The overall results have shown that compound 3e has the potential to efficacious, safety and long-acting treatment for T2DM.
Asunto(s)
Ácido Benzoico/farmacología , Dipeptidil Peptidasa 4/metabolismo , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Hipoglucemiantes/farmacología , Profármacos/farmacología , Xantina/farmacología , Animales , Ácido Benzoico/química , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Inhibidores de la Dipeptidil-Peptidasa IV/síntesis química , Inhibidores de la Dipeptidil-Peptidasa IV/química , Relación Dosis-Respuesta a Droga , Humanos , Hipoglucemiantes/síntesis química , Hipoglucemiantes/química , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Modelos Moleculares , Estructura Molecular , Profármacos/síntesis química , Profármacos/química , Relación Estructura-Actividad , Xantina/síntesis química , Xantina/químicaRESUMEN
Quercetin is an abundant flavonoid in nature and is used in several dietary supplements. Although quercetin is extensively metabolized by human enzymes and the colonic microflora, we have only few data regarding the pharmacokinetic interactions of its metabolites. Therefore, we investigated the interaction of human and microbial metabolites of quercetin with the xanthine oxidase enzyme. Inhibitory effects of five conjugates and 23 microbial metabolites were examined with 6-mercaptopurine and xanthine substrates (both at 5 µM), employing allopurinol as a positive control. Quercetin-3'-sulfate, isorhamnetin, tamarixetin, and pyrogallol proved to be strong inhibitors of xanthine oxidase. Sulfate and methyl conjugates were similarly strong inhibitors of both 6-mercaptopurine and xanthine oxidations (IC50 = 0.2-0.7 µM); however, pyrogallol inhibited xanthine oxidation (IC50 = 1.8 µM) with higher potency vs. 6-MP oxidation (IC50 = 10.1 µM). Sulfate and methyl conjugates were approximately ten-fold stronger inhibitors (IC50 = 0.2-0.6 µM) of 6-mercaptopurine oxidation than allopurinol (IC50 = 7.0 µM), and induced more potent inhibition compared to quercetin (IC50 = 1.4 µM). These observations highlight that some quercetin metabolites can exert similar or even a stronger inhibitory effect on xanthine oxidase than the parent compound, which may lead to the development of quercetin-drug interactions (e.g., with 6-mercaptopurin or azathioprine).
Asunto(s)
Quercetina/análogos & derivados , Quercetina/farmacología , Xantina Oxidasa/antagonistas & inhibidores , Alopurinol/química , Alopurinol/farmacología , Catálisis , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacología , Humanos , Modelos Moleculares , Conformación Molecular , Estructura Molecular , Oxidación-Reducción , Unión Proteica , Quercetina/química , Quercetina/metabolismo , Relación Estructura-Actividad , Xantina/química , Xantina/farmacologíaRESUMEN
One of the helpful ways to improve the effectiveness of anticancer agents and weaken drug resistance is to use hybrid molecules. therefore, the current study intended to introduce 20 novel xanthine/chalcone hybrids 9-28 of promising anticancer activity. Compounds 10, 11, 13, 14, 16, 20 and 23 exhibited potent inhibition of cancer cells growth with IC50 ranging from 1.0⯱â¯0.1 to 3.5⯱â¯0.4⯵M compared to doxorubicin with IC50 ranging from 0.90⯱â¯0.62 to 1.41⯱â¯0.58⯵M and that compounds 11 and 16 were the best. To verify the mechanism of their anticancer activity, compounds 10, 11, 13, 14, 16, 20 and 23 were evaluated for their EGFR inhibitory effect. The study results revealed that compound 11 showed IC50â¯=â¯0.3⯵M on the target enzyme which is more potent than staurosporine reference drug (IC50â¯=â¯0.4⯵M). Accordingly, the apoptotic effect of the most potent compounds 11 was extensively investigated and showed a marked increase in Bax level up to 29 folds, and down-regulation in Bcl2 to 0.28 fold, in comparison to the control. Furthermore, the effect of compound 11 on Caspases 3 and 8 was evaluated and was found to increase their levels by 8 and 14 folds, respectively. Also, the effect of compound 11 on the cell cycle and its cytotoxic effect were examined. Moreover, a molecular docking study was adopted to confirm mechanism of action.