Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 187
Filtrar
Más filtros












Intervalo de año de publicación
1.
Int J Mol Sci ; 25(6)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38542068

RESUMEN

The genus Neopestalotiopsis consists of obligate parasites that cause ring spot, scab, and leaf blight diseases in higher plant species. We assembled the three complete mitogenomes for the guava fruit ring spot pathogen, Neopestalotiopsis cubana. The mitogenomes are circular, with sizes of 38,666 bp, 33,846 bp, and 32,593 bp. The comparative analyses with Pestalotiopsis fici showed that N. cubana differs greatly from it in the length of the mitogenomes and the number of introns. Moreover, they showed significant differences in the gene content and tRNAs. The two genera showed little difference in gene skewness and codon preference for core protein-coding genes (PCGs). We compared gene sequencing in the mitogenomes of the order Xylariales and found large-scale gene rearrangement events, such as gene translocations and the duplication of tRNAs. N. cubana shows a unique evolutionary position in the phylum Ascomycota constructed in phylogenetic analyses. We also found a more concentrated distribution of evolutionary pressures on the PCGs of Neopestalotiopsis in the phylum Ascomycota and that they are under little selective pressure compared to other species and are subjected to purifying selection. This study explores the evolutionary dynamics of the mitogenomes of Neopestalotiopsis and provides important support for genetic and taxonomic studies.


Asunto(s)
Genoma Mitocondrial , Xylariales , Filogenia , Xylariales/genética , ARN de Transferencia/genética , Intrones
2.
Plant Dis ; 108(7): 1972-1975, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38381962

RESUMEN

Polygonatum cyrtonema Hua is a perennial herb of the Asparagaceae family that is used for both dietary and medicinal purposes in China. In September 2019, a new leaf spot disease on Polygonatum cyrtonema was detected and is currently widespread in Huaihua, Hunan Province, China. Pathogenic fungi were isolated and purified from samples of diseased tissue that were collected for morphological and molecular phylogenetic studies. The pathogen was identified using multilocus (ITS, TEF-1, and TUB2) phylogenies, as well as morphological characters, and was found to be clustered but separately divergent from species of Pestalotiopsis. However, there were significant morphological differences between the pathogen and similar species. The pathogen was finally identified as a new species that was designated Pestalotiopsis xuefengensis. This is the first report of Pestalotiopsis xuefengensis serving as the causal agent of gray leaf spot on Polygonatum cyrtonema. This study will provide useful information for the diagnosis and management of this disease.


Asunto(s)
Filogenia , Enfermedades de las Plantas , Polygonatum , Enfermedades de las Plantas/microbiología , China , Polygonatum/microbiología , Xylariales/genética , Xylariales/clasificación , Xylariales/aislamiento & purificación , Hojas de la Planta/microbiología
3.
Plant Dis ; 107(5): 1544-1549, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36383989

RESUMEN

A new Neopestalotiopsis sp. was recently reported causing outbreaks of leaf spot and fruit rot on strawberry in Florida, Georgia, and South Carolina. In contrast to other Pestalotiopsis pathogens, the new species appears more aggressive and destructive on strawberry. Current chemical options for management are disease suppressive at best, and affected growers have been experiencing major yield losses. In this study, we developed a molecular method based on polymerase chain reaction/restriction fragment length polymorphism (PCR/RFLP) for identification of the new Neopestalotiopsis sp. from strawberry. Isolates of the new Neopestalotiopsis sp. collected in Florida; isolates of N. rosae, N. honoluluana, N. ellipsopora, N. saprophytica, N. samarangensis, and P. rhododendri; and isolates from South Carolina suspected to be the new Neopestalotiopsis sp. were included in this study. This method is based on PCR amplification of a ß-tubulin gene fragment using a previously published set of primers (Bt2a and Bt2b), followed by use of the restriction enzyme BsaWI. The enzyme cuts the PCR product from the new Neopestalotiopsis sp. twice, yielding fragments of 290 base pairs (bp) and 130 and 20 bp in size, whereas fragments from other species are only cut once, yielding fragments of 420 and 20 bp. This method will aid research labs and diagnostic clinics in the accurate and fast identification of the aggressive Neopestalotiopsis sp. variant from strawberry.


Asunto(s)
Fragaria , Xylariales , Fragaria/genética , Polimorfismo de Longitud del Fragmento de Restricción , Xylariales/genética , Reacción en Cadena de la Polimerasa/métodos , Florida
4.
Plant Dis ; 107(7): 2177-2184, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36541878

RESUMEN

Recently, the Florida strawberry industry faced unprecedented outbreaks of an emerging disease caused by the fungus Neopestalotipsis spp. Currently, there are no fungicides labeled to control this disease in the United States and the efficacy of single- and multisite fungicides is unknown. Therefore, this study aimed to determine the in vitro sensitivity of Neopestalotiopsis spp. isolates to fungicides with different modes of action and to evaluate the efficacy of these products on detached fruit and in the field. In preliminary in vitro tests, 30 commercially available fungicides were screened using discriminatory doses. The effective concentration that inhibited mycelial growth by 50% was determined for the most effective single-site fungicides. Four field experiments were conducted during the 2019-20, 2020-21, and 2021-22 seasons to determine product efficacy in managing the disease. The single-site fungicides fludioxonil, fluazinam, and sterol demethylation inhibitors, and the multisite fungicides captan, thiram, and chlorothalonil were the most effective in inhibiting pathogen growth and suppressing disease development. Conversely, products in Fungicide Resistance Action Committee (FRAC) groups 1 (methyl benzimidazole carbamate) and 7 (succinate-dehydrogenase inhibitors), except for benzovindiflupyr, were not effective against Neopestalotiopsis spp. Resistance to fungicides from FRAC group 11 (e.g., azoxystrobin) was confirmed by the presence of the G143A mutation in the cytochrome b gene together with inoculation tests and field trials. Our results provide information to support or discourage the registration of fungicides to manage Neopestalotiopsis fruit rot and leaf spot in strawberry production.


Asunto(s)
Fragaria , Fungicidas Industriales , Xylariales , Fragaria/microbiología , Fungicidas Industriales/farmacología , Captano , Mutación , Xylariales/genética
5.
Mycologia ; 114(1): 175-189, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35073226

RESUMEN

Wulingshen, massive Xylaria sclerotia, was originally reported from Chengdu Plain in western Sichuan of China for medicinal application. Xylaria nigripes is commonly connected to these massive sclerotia produced within abandoned underground macrotermitine termite nests. We sequenced 54 Wulingshen samples procured from traditional Chinese medicine markets in Chengdu Plain and connected them to six different Xylaria species: X. nigripes, X. subescharoidea, two species newly described herein-X. neonigripes and X. rogersionigripes, and two species that are known only as sclerotia thus far. Only teleomorphs of X. subescharoidea and X. rogersionigripes have been collected in Chengdu Plain thus far. In Taiwan, teleomorphs of four of the six species, except for the two only known in sclerotial form, have been collected, and their cultures were obtained; we thus designate the holotypes of X. neonigripes and X. rogersionigripes on the basis of Taiwan specimens. During the collecting activities carried out in Chengdu Plain, a Xylaria species, which is newly described as X. mianyangensis herein, was also collected from termite nests but lacks a known connection to Wulingshen.


Asunto(s)
Isópteros , Xylariales , Animales , Secuencia de Bases , Medicina Tradicional China , Taiwán , Xylariales/genética
6.
Fungal Biol ; 126(2): 174-184, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35078588

RESUMEN

A fungus with biocontrol potential was isolated from the roots of hickory trees. The strain named sj18 was classified as a member of the genus Hypoxylon (Hypoxylaceae) after multigene phylogenetic analysis (beta-tubulin gene, internal transcribed spacer, 28S large subunit ribosomal RNA gene, and RNA polymerase II subunit gene). The strain grew well on a PDA with an optimum temperature range between 32 and 34 °C. The fungus had obvious inhibitory effects on Botryosphaeria dothidea, Colletotrichum gloeosporioides, and Gibberella moniliformis in fumigation experiments on solid agar plates. In an inoculation experiment of Chinese cabbage, the fungus was also found to have an obvious repellent effect on cabbage caterpillars. In vitro experiments on Petri dishes showed that the fermentation broth of the sj18 strain could kill 100% of Bursaphelenchus xylophilus within 8 h even if the fermentation broth was diluted 8 times. The inoculation test of Arabidopsis thaliana showed that the fungus could promote the lateral root formation of plants and significantly increase their aboveground biomass. Through the analysis of solid phase microextraction (SPME), it was found that the main volatile components of the fermentation products were azulene 65.39% (61.77% + 3.62%), caryophyllene 7.41%, and eucalyptol 6.83% according to the peak area ratio. Therefore, sj18 can be used as a candidate for the further research and development of biocontrol agents.


Asunto(s)
Arabidopsis , Xylariales , Filogenia , Raíces de Plantas , ARN Ribosómico 28S , Xylariales/genética
7.
Arch Microbiol ; 203(10): 6119-6129, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34550408

RESUMEN

In the process of studying the diversity of Xylariales in China, three species owning characteristics of Graphostromataceae were observed in China. Morphology of the described species with illustrations and their phylogeny based on regions of internal transcribed spacers (ITS), the second-largest subunit of the RNA polymerase II (RPB2), ß-tubulin (TUB2) and α-actin (ACT) are provided. Two new species and one new record from China are identified. Morphologically, Biscogniauxia glaucae sp. nov. differs from B. atropunctata var. maritima, B. citriformis var. macrospora, B. fuscella and B. mediterranea by its stromata with raised margins, clear outlines, punctate ostioles openings and ascospores which are equilateral with broadly rounded ends, a straight spore-length germ slit on the more concave side, lacking appendages and sheathes. Graphostroma guizhouensis is identified as a new species based on the multi-gene phylogenetic tree. Camillea broomeana with scanning electron microscope description of ascospores is illustrated as a new record from China. Cryptostroma is proposed in Graphostromataceae based on molecular data. Vivantia is accepted in Graphostromataceae based on its morphological characteristics and Nodulisporiurn anamorphs which are similar to those of Biscogniauxia.


Asunto(s)
Xylariales , China , ADN de Hongos/genética , ADN Ribosómico , Filogenia , Análisis de Secuencia de ADN , Xylariales/genética
8.
Mycologia ; 113(2): 326-347, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33555993

RESUMEN

Taproot decline (TRD) is a disease of soybean that has been reported recently from the southern United States (U.S.). Symptoms of TRD include foliar interveinal chlorosis followed by necrosis. Darkened, charcoal-colored areas of thin stromatic tissue are evident on the taproot and lateral roots along with areas of necrosis within the root and white mycelia within the pith. Upright stromata typical of Xylaria can be observed on crop debris and emerging from infested roots in fields where taproot decline is present, but these have not been determined to contain fertile perithecia. Symptomatic plant material was collected across the known range of the disease in the southern U.S., and the causal agent was isolated from roots. Four loci, ⍺-actin (ACT), ß-tubulin (TUB2), the nuclear rDNA internal transcribed spacers (nrITS), and the RNA polymerase subunit II (RPB2), were sequenced from representative isolates. Both maximum likelihood and Bayesian phylogenetic analyses showed consistent clustering of representative TRD isolates in a highly supported clade within the Xylaria arbuscula species complex in the "HY" clade of the family Xylariaceae, distinct from any previously described taxa. In order to understand the origin of this pathogen, we sequenced herbarium specimens previously determined to be "Xylaria arbuscula" based on morphology and xylariaceous endophytes collected in the southern U.S. Some historical specimens from U.S. herbaria collected in the southern region as saprophytes as well as a single specimen from Martinique clustered within the "TRD" clade in phylogenetic analyses, suggesting a possible shift in lifestyle. The remaining specimens that clustered within the family Xylariaceae, but outside of the "TRD" clade, are reported. Both morphological evidence and molecular evidence indicate that the TRD pathogen is a novel species, which is described as Xylaria necrophora.


Asunto(s)
Glycine max/microbiología , Enfermedades de las Plantas/microbiología , Raíces de Plantas/microbiología , Xylariales/genética , Xylariales/patogenicidad , Teorema de Bayes , ADN de Hongos/genética , ADN Ribosómico/genética , Variación Genética , Filogenia , Estados Unidos , Xylariales/clasificación
9.
Sci Rep ; 10(1): 4599, 2020 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-32165688

RESUMEN

Fungal endophytes are sources of novel bioactive compounds but relatively few agriculturally important fruiting plants harboring endophytes have been carefully studied. Previously, we identified a griseofulvin-producing Xylaria species isolated from Vaccinium angustifolium, V. corymbosum, and Pinus strobus. Morphological and genomic analysis determined that it was a new species, described here as Xylaria ellisii. Untargeted high-resolution LC-MS metabolomic analysis of the extracted filtrates and mycelium from 15 blueberry isolates of this endophyte revealed differences in their metabolite profiles. Toxicity screening of the extracts showed that bioactivity was not linked to production of griseofulvin, indicating this species was making additional bioactive compounds. Multivariate statistical analysis of LC-MS data was used to identify key outlier features in the spectra. This allowed potentially new compounds to be targeted for isolation and characterization. This approach resulted in the discovery of eight new proline-containing cyclic nonribosomal peptides, which we have given the trivial names ellisiiamides A-H. Three of these peptides were purified and their structures elucidated by one and two-dimensional nuclear magnetic resonance spectroscopy (1D and 2D NMR) and high-resolution tandem mass spectrometry (HRMS/MS) analysis. The remaining five new compounds were identified and annotated by high-resolution mass spectrometry. Ellisiiamide A demonstrated Gram-negative activity against Escherichia coli BW25113, which is the first reported for this scaffold. Additionally, several known natural products including griseofulvin, dechlorogriseofulvin, epoxy/cytochalasin D, zygosporin E, hirsutatin A, cyclic pentapeptides #1-2 and xylariotide A were also characterized from this species.


Asunto(s)
Arándanos Azules (Planta)/microbiología , Metabolómica , Péptidos Cíclicos/metabolismo , Xylariales/metabolismo , Teorema de Bayes , Cromatografía Liquida , ADN Espaciador Ribosómico , Metabolómica/métodos , Filogenia , Hojas de la Planta/microbiología , Tallos de la Planta/microbiología , Espectrometría de Masas en Tándem , Xylariales/clasificación , Xylariales/genética
10.
Appl Environ Microbiol ; 86(8)2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32060026

RESUMEN

Wood-devastating insects utilize their symbiotic microbes with lignocellulose-degrading abilities to extract energy from recalcitrant woods. It is well known that free-living lignocellulose-degrading fungi secrete various carbohydrate-active enzymes (CAZymes) to degrade plant cell wall components, mainly cellulose, hemicellulose, and lignin. However, CAZymes from insect-symbiotic fungi have not been well documented except for a few examples. In this study, an insect-associated fungus, Daldinia decipiens oita, was isolated as a potential symbiotic fungus of female Xiphydria albopicta captured from Hokkaido forest. This fungus was grown in seven different media containing a single carbon source, glucose, cellulose, xylan, mannan, pectin, poplar, or larch, and the secreted proteins were identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). A total of 128 CAZymes, including domains of 92 glycoside hydrolases, 15 carbohydrate esterases, 5 polysaccharide lyases, 17 auxiliary activities, and 11 carbohydrate-binding modules, were identified, and these are involved in degradation of cellulose and hemicellulose but not lignin. Together with the results of polysaccharide-degrading activity measurements, we concluded that D. decipiens oita tightly regulates the expression of these CAZymes in response to the tested plant cell wall materials. Overall, this study described the detailed proteomic approach of a woodwasp-associated fungus and revealed that the new isolate, D. decipiens oita, secretes diverse CAZymes to efficiently degrade lignocellulose in the symbiotic environment.IMPORTANCE Recent studies show the potential impacts of insect symbiont microbes on biofuel application with regard to their degradation capability of a recalcitrant plant cell wall. In this study, we describe a novel fungal isolate, D. decipiens oita, as a single symbiotic fungus from the Xiphydria woodwasp found in the northern forests of Japan. Our detailed secretome analyses of D. decipiens oita, together with activity measurements, reveal that this insect-associated fungus exhibits high and broad activities for plant cell wall material degradation, suggesting potential applications within the biomass conversion industry for plant mass degradation.


Asunto(s)
Proteínas Fúngicas/genética , Himenópteros/microbiología , Proteoma/genética , Xylariales/genética , Animales , Bosques , Proteínas Fúngicas/metabolismo , Japón , Lignina/metabolismo , Filogenia , Proteoma/metabolismo , Xylariales/clasificación , Xylariales/enzimología
11.
Appl Environ Microbiol ; 86(7)2020 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-31980430

RESUMEN

Unspecific peroxygenases (UPOs) constitute a new family of fungal heme-thiolate enzymes in which there is high biotechnological interest. Although several thousand genes encoding hypothetical UPO-type proteins have been identified in sequenced fungal genomes and other databases, only a few UPO enzymes have been experimentally characterized to date. Therefore, gene screening and heterologous expression from genetic databases are a priority in the search for ad hoc UPOs for oxyfunctionalization reactions of interest. Very recently, Escherichia coli production of a previously described basidiomycete UPO (as a soluble and active enzyme) has been reported. Here, we explored this convenient heterologous expression system to obtain the protein products from available putative UPO genes. In this way, two UPOs from the ascomycetes Collariella virescens (syn., Chaetomium virescens) and Daldinia caldariorum were successfully obtained, purified, and characterized. Comparison of their kinetic constants for oxidation of model substrates revealed 10- to 20-fold-higher catalytic efficiency of the latter enzyme in oxidizing simple aromatic compounds (such as veratryl alcohol, naphthalene, and benzyl alcohol). Homology molecular models of these enzymes showed three conserved and two differing residues in the distal side of the heme (the latter representing two different positions of a phenylalanine residue). Interestingly, replacement of the C. virescens UPO Phe88 by the homologous residue in the D. caldariorum UPO resulted in an F88L variant with 5- to 21-fold-higher efficiency in oxidizing these aromatic compounds.IMPORTANCE UPOs catalyze regio- and stereoselective oxygenations of both aromatic and aliphatic compounds. Similar reactions were previously described for cytochrome P450 monooxygenases, but UPOs have the noteworthy biotechnological advantage of being stable enzymes requiring only H2O2 to be activated. Both characteristics are related to the extracellular nature of UPOs as secreted proteins. In the present study, the limited repertoire of UPO enzymes available for organic synthesis and other applications is expanded with the description of two new ascomycete UPOs obtained by Escherichia coli expression of the corresponding genes as soluble and active enzymes. Moreover, directed mutagenesis in E. coli, together with enzyme molecular modeling, provided relevant structure-function information on aromatic substrate oxidation by these two new biocatalysts.


Asunto(s)
Chaetomium/genética , Escherichia coli/metabolismo , Proteínas Fúngicas/genética , Oxigenasas de Función Mixta/genética , Xylariales/genética , Chaetomium/metabolismo , Escherichia coli/genética , Proteínas Fúngicas/metabolismo , Genes Fúngicos , Microorganismos Modificados Genéticamente/genética , Microorganismos Modificados Genéticamente/metabolismo , Oxigenasas de Función Mixta/metabolismo , Xylariales/metabolismo
12.
Gene ; 725: 144160, 2020 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-31639431

RESUMEN

Bambusapervariabilis × Dendrocalamopsisgrandis, a fast-growing and easily propagated bamboo species, has been extensively planted in the southern China, resulting in huge ecological benefits. In recent years, it was found that the pathogenic fungus Arthrinium phaeospermum caused the death of a large amount of bamboo. In this study, the transcriptome of B. pervariabilis × D. grandis, induced by inactivated protein AP-toxin from A. phaeospermum was sequenced and analyzed, to reveal the resistance mechanism induced by biotic agents of B. pervariabilis × D. grandis against A. phaeospermum at the gene level. Transcriptome sequencing was performed by Illumina HiSeq 2000 in order to analyze the differentially expressed genes (DEGs) of B. pervariabilis × D. grandis in response to different treatment conditions. In total, 201,875,606 clean reads were obtained, and the percentage of Q30 bases in each sample was more than 94.21%. There were 6398 DEGs in the D-J group (inoculation with a pathogenic spore suspension after three days of AP-toxin induction) compared to the S-J group (inoculation with a pathogenic spore suspension after inoculation of sterile water for three days) with 3297 up-regulated and 3101 down-regulated genes. For the D-S group (inoculation with sterile water after inoculation of AP-toxin for three days), there were 2032 DEGs in comparison to the S-S group (inoculation with sterile water only), with 1035 up-regulated genes and 997 down-regulated genes. These identified genes were mainly involved in lignin and phytoprotein synthesis, tetrapyrrole synthesis, redox reactions, photosynthesis, and other processes. The fluorescence quantitative results showed that 22 pairs of primer amplification products were up-regulated and 7 were down-regulated. The rate of similarity between these results and the sequencing results of the transcription group was 100%, which confirmed the authenticity of the transcriptome sequencing results. Redox proteins, phenylalanine ammonia lyase, and S-adenosine-L-methionine synthetase, among others, were highly expressed; these results may indicate the level of disease resistance of the bamboo. These results provide a foundation for the further exploration of resistance genes and their functions.


Asunto(s)
Bambusa/genética , Sasa/genética , Xylariales/genética , China , Resistencia a la Enfermedad , Hongos/patogenicidad , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas/genética , Micosis/genética , Proteínas de Plantas/genética , Toxinas Biológicas , Transcriptoma , Xylariales/metabolismo
13.
BMC Genomics ; 20(1): 1016, 2019 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-31878883

RESUMEN

BACKGROUND: White root rot disease caused by Rosellinia necatrix is one of the most important threats affecting avocado productivity in tropical and subtropical climates. Control of this disease is complex and nowadays, lies in the use of physical and chemical methods, although none have proven to be fully effective. Detailed understanding of the molecular mechanisms underlying white root rot disease has the potential of aiding future developments in disease resistance and management. In this regard, this study used RNA-Seq technology to compare the transcriptomic profiles of R. necatrix during infection of susceptible avocado 'Dusa' roots with that obtained from the fungus cultured in rich medium. RESULTS: The transcriptomes from three biological replicates of R. necatrix colonizing avocado roots (RGA) and R. necatrix growing on potato dextrose agar media (RGPDA) were analyzed using Illumina sequencing. A total of 12,104 transcripts were obtained, among which 1937 were differentially expressed genes (DEG), 137 exclusively expressed in RGA and 160 in RGPDA. During the root infection process, genes involved in the production of fungal toxins, detoxification and transport of toxic compounds, hormone biosynthesis, gene silencing and plant cell wall degradation were overexpressed. Interestingly, 24 out of the 137 contigs expressed only during R. necatrix growth on avocado roots, were predicted as candidate effector proteins (CEP) with a probability above 60%. The PHI (Pathogen Host Interaction) database revealed that three of the R. necatrix CEP showed homology with previously annotated effectors, already proven experimentally via pathogen-host interaction. CONCLUSIONS: The analysis of the full-length transcriptome of R. necatrix during the infection process is suggesting that the success of this fungus to infect roots of diverse crops might be attributed to the production of different compounds which, singly or in combination, interfere with defense or signaling mechanisms shared among distinct plant families. The transcriptome analysis of R. necatrix during the infection process provides useful information and facilitates further research to a more in -depth understanding of the biology and virulence of this emergent pathogen. In turn, this will make possible to evolve novel strategies for white root rot management in avocado.


Asunto(s)
Perfilación de la Expresión Génica , Predisposición Genética a la Enfermedad/genética , Persea/microbiología , Enfermedades de las Plantas/microbiología , Raíces de Plantas/microbiología , Xylariales/genética , Xylariales/fisiología , Anotación de Secuencia Molecular , RNA-Seq
14.
J Microbiol Biotechnol ; 29(10): 1570-1579, 2019 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-31474098

RESUMEN

The fungal products dibenzodioxocinones promise a novel class of inhibitors against cholesterol ester transfer protein (CEPT). Knowledge as to their biosynthesis is scarce. In this report, we characterized four more dibenzodioxocinones, which along with a previously described member pestalotiollide B, delimit the dominant spectrum of secondary metabolites in P. microspora. Through mRNA-seq profiling in gα1Δ, a process that halts the production of the dibenzodioxocinones, a gene cluster harboring 21 genes including a polyketide synthase, designated as pks8, was defined. Disruption of genes in the cluster led to loss of the compounds, concluding the anticipated role in the biosynthesis of the chemicals. The biosynthetic route to dibenzodioxocinones was temporarily speculated. This study reveals the genetic basis underlying the biosynthesis of dibenzodioxocinone in fungi, and may facilitate the practice for yield improvement in the drug development arena.


Asunto(s)
Familia de Multigenes , Policétidos/metabolismo , Xylariales/genética , Vías Biosintéticas , Proteínas de Transferencia de Ésteres de Colesterol/antagonistas & inhibidores , Endófitos , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Perfilación de la Expresión Génica , Familia de Multigenes/genética , Mutación , Paclitaxel/biosíntesis , Sintasas Poliquetidas/genética , Sintasas Poliquetidas/metabolismo , Policétidos/química , Xylariales/química , Xylariales/metabolismo
15.
Mycologia ; 111(5): 832-856, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31460851

RESUMEN

Two new species and a new combination of Hypoxylon from Texas were identified and described based on morphological, multigene phylogenetic (ITS [nuc rDNA internal transcribed spacer region ITS1-5.8S-ITS2], 28S [5' 1200 bp of nuc 28S rDNA], RPB2 [partial second largest subunit of the DNA-directed RNA polymerase II], TUB2 [partial ß-tubulin]), and chemotaxonomic data. Hypoxylon olivaceopigmentum is characterized by its pulvinate to glomerate stromata, olivaceous KOH-extractable pigments, equilateral ascospores, and indehiscent perispore. Hypoxylon texense can be distinguished from morphologically similar species by its rust to dark brick KOH-extractable pigments and the high-performance liquid chromatography (HPLC) profile of its stromatal secondary metabolites. Hypoxylon hinnuleum is proposed as the sexual morph of Nodulisporium hinnuleum, featuring dark vinaceous glomerate stromata with dark brick KOH-extractable pigments composed of cohaerin-type azaphilones and smooth equilateral ascospores with indehiscent perispore. Based on these diagnostic characters, H. hinnuleum forms a complex with H. croceum and H. minicroceum. More than 50 ITS sequences with high identity originating from North American and East Asian environmental isolates formed a well-supported clade with the type of N. hinnuleum, demonstrating the widespread distribution of the species complex. In addition, updated descriptions and comprehensive illustrations with detailed information on the diagnostic features of H. fendleri and H. perforatum are provided. The multilocus phylogenetic reconstruction of Hypoxylon supported the status of the new species and broadened the knowledge about intergeneric relationships.


Asunto(s)
Microbiología Ambiental , Filogenia , Esporas Fúngicas/citología , Xylariales/clasificación , Xylariales/aislamiento & purificación , Análisis por Conglomerados , ADN de Hongos/química , ADN de Hongos/genética , ADN Ribosómico/química , ADN Ribosómico/genética , ADN Espaciador Ribosómico/química , ADN Espaciador Ribosómico/genética , Microscopía , Pigmentos Biológicos/análisis , ARN Polimerasa II/genética , ARN Ribosómico 28S/genética , Análisis de Secuencia de ADN , Texas , Tubulina (Proteína)/genética , Xylariales/genética , Xylariales/fisiología
16.
Chin J Nat Med ; 17(5): 387-393, 2019 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-31171274

RESUMEN

Replacement of the native promoter of theglobal regulator LaeA-like gene of Daldinia eschscholzii by a strong gpdA promoter led to the generation of two novel cyclopentenone metabolites, named dalestones A and B, whose structures were assigned by a combination of spectroscopic analysis, modified Mosher's reaction, and electronic circular dichroism (ECD). Dalestones A and B inhibit the gene expression of TNF-α and IL-6 in LPS-induced RAW264.7 macrophages.


Asunto(s)
Antiinflamatorios/farmacología , Ciclopentanos/farmacología , Proteínas Fúngicas/genética , Regiones Promotoras Genéticas/genética , Factores de Transcripción/genética , Xylariales/química , Animales , Antiinflamatorios/química , Antiinflamatorios/aislamiento & purificación , Antiinflamatorios/metabolismo , Ciclopentanos/química , Ciclopentanos/aislamiento & purificación , Ciclopentanos/metabolismo , Proteínas Fúngicas/metabolismo , Interleucina-6/metabolismo , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Estructura Molecular , Células RAW 264.7 , Factores de Transcripción/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Xylariales/genética , Xylariales/metabolismo
17.
Mol Microbiol ; 112(2): 649-666, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31116900

RESUMEN

Fungal 1,8-dihydroxynaphthalene (DHN) melanin plays important roles in UV protection, oxidative stress and pathogenesis. However, knowledge of the regulatory mechanisms of its biosynthesis is limited. Previous studies showed two transcription factors, PfmaF and PfmaH, located in the DHN melanin biosynthetic gene cluster (Pfma) in Pestalotiopsis fici. In this study, deletion of PfmaH resulted in loss of melanin and affected conidia cell wall integrity. Specifically, PfmaH directly regulates the expression of scytalone dehydratase, which catalyzes the transition of scytalone to T3 HN. However, PfmaF disruption using CRISPR/Cas9 system affected neither DHN melanin distribution nor conidia cell wall integrity in P. fici. Unexpectedly, overexpression of PfmaF leads to heavy pigment accumulation in P. fici hyphae. Transcriptome and qRT-PCR analyses provide insight into the roles of PfmaF and PfmaH in DHN melanin regulation. PfmaH, as a pathway specific regulator, mainly regulates melanin biosynthesis that contributes to cell wall development. Furthermore, PfmaF functions as a broad regulator to stimulate PfmaH expression in melanin production, secondary metabolism as well as fungal development.


Asunto(s)
Proteínas Fúngicas/metabolismo , Melaninas/biosíntesis , Factores de Transcripción/metabolismo , Xylariales/crecimiento & desarrollo , Xylariales/metabolismo , Vías Biosintéticas , Proteínas Fúngicas/genética , Regulación del Desarrollo de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Naftoles , Esporas Fúngicas/genética , Esporas Fúngicas/metabolismo , Factores de Transcripción/genética , Xylariales/genética
18.
Mol Biol Rep ; 46(4): 4123-4137, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31087245

RESUMEN

Resveratrol is an important stilbene which is having a high demand due to its therapeutic, cosmeceutical and nutraceutical activities. The current study mainly focuses on strategies to enhance the fungal potential to produce resveratrol via the activation of the cryptic biosynthetic pathway with their particular interest in the antioxidant application. The endophytic fungus Xylaria psidii was isolated from the surface sterilized leaf of Vitis vinifera. With the help of HPLC analysis it is found that resveratrol concentration was maximum and enhanced in case of treatment with 5 µm SAHA (52.32 µg/mL) and by 10 µm AZA (48.94 µg/mL) followed by 10 µm SAHA (41.10 µg/mL) and 5 µm AZA (37.72 µg/mL). After treatment with different concentration of epigenetic modifiers such as HDAC inhibitors (SAHA) and dMNTs (AZA) inhibitors, a significant increase in antioxidant potential was obtained. In the case of DPPH increase in scavenging potential was found as compared to wild strain. Treatment with 5 µm SAHA and by 10 µm AZA was showing strong antioxidant potential among all the epigenetic variants as compared to wild strain. In the case of TEAC also the same trend as in the case of DPPH was obtained.


Asunto(s)
Epigénesis Genética/efectos de los fármacos , Resveratrol/metabolismo , Xylariales/genética , Azacitidina/farmacología , ADN/metabolismo , Metilación de ADN/efectos de los fármacos , Metilasas de Modificación del ADN/genética , Epigénesis Genética/genética , Epigenómica/métodos , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/genética , Ácidos Hidroxámicos/farmacología , Vorinostat/farmacología
19.
Mycologia ; 111(2): 265-273, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30856060

RESUMEN

A novel species of Microdochium was identified as the causal agent of a leaf blight of Poa pratensis (Kentucky blue grass) and Agrostis stolonifera (Creeping bentgrasses), two cold-season turfgrasses widely grown on golf courses in northern China. This disease first appears as small, water-soaked, and scattered leaf spots. Under conditions of high temperatures and successive days of rain, the infected leaves rapidly lose their integrity and large diseased patches appear. Fungal strains were isolated from blighted leaf spots. A phylogenetic analysis based on the nuc rDNA internal transcribed spacer regions and 5.8S rRNA gene (ITS1-5.8S-ITS2 = ITS) and parts of the ß-tubulin (TUB2) and RNA polymerase II second largest subunit (RPB2) genes strongly supported that these isolates are a distinct evolutionary lineage in Microdochium (Microdochiaceae, Xylariales) that represents a new taxonomic species, herein named as M. poae. Microscopic characters confirmed that these strains were morphologically distinct from known Microdochium species. The pathogenicity of M. poae was confirmed by inoculating spore suspension on both grasses and reisolation of the pathogen from symptomatic tissues. The optimal growth temperature suggests that the occurrence of the new leaf blight disease caused by M. poae was significantly different from the microdochium patch disease caused by M. nivale.


Asunto(s)
Agrostis/microbiología , Enfermedades de las Plantas/microbiología , Poa/microbiología , Xylariales/clasificación , Xylariales/aislamiento & purificación , China , Análisis por Conglomerados , ADN de Hongos/química , ADN de Hongos/genética , ADN Ribosómico/química , ADN Ribosómico/genética , ADN Espaciador Ribosómico/química , ADN Espaciador Ribosómico/genética , ARN Polimerasas Dirigidas por ADN/genética , Kentucky , Microscopía , Filogenia , Hojas de la Planta/microbiología , ARN Ribosómico 5.8S/genética , Análisis de Secuencia de ADN , Tubulina (Proteína)/genética , Xylariales/citología , Xylariales/genética
20.
J Agric Food Chem ; 67(10): 2877-2885, 2019 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-30785752

RESUMEN

Fusarium solani H915 (MCCC3A00957), a fungus originating from mangrove sediment, showed potent inhibitory activity against tea pathogenic fungus Pestalotiopsis theae. Successive chromatographic separation on an ethyl acetate (EtOAc) extract of F. solani H915 resulted in the isolation of five new alkenoic diacid derivatives: fusarilactones A-C (1-3), and fusaridioic acids B (4) and C (5), in addition to seven known compounds (6-12). The chemical structures of these metabolites were elucidated on the basis of UV, IR, HR-ESI-MS, and NMR spectroscopic data. The antifungal activity of the isolated compounds was evaluated. Compounds with a ß-lactone ring (1, 2, and 7) exhibited potent inhibitory activities, while none of the other compounds show activity. The ED50 values of the compounds 1, 2, and 7 were 38.14 ± 1.67, 42.26 ± 1.96, and 18.35 ± 1.27 µg/mL, respectively. In addition, inhibitory activity of these compounds against 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) synthase gene expression was also detected using real-time RT-PCR. Results indicated that compounds 1, 2, and 7 may inhibit the growth of P. theae by interfering with the biosynthesis of ergosterol by down-regulating the expression of HMG-CoA synthase.


Asunto(s)
Camellia sinensis/microbiología , Fungicidas Industriales/farmacología , Fusarium/química , Lactonas/farmacología , Enfermedades de las Plantas/microbiología , Agua de Mar/microbiología , Fungicidas Industriales/química , Fungicidas Industriales/aislamiento & purificación , Fungicidas Industriales/metabolismo , Fusarium/genética , Fusarium/aislamiento & purificación , Fusarium/metabolismo , Lactonas/química , Lactonas/aislamiento & purificación , Lactonas/metabolismo , Estructura Molecular , Xylariales/efectos de los fármacos , Xylariales/genética , Xylariales/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...