Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 300(6): 107331, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38703997

RESUMEN

Mono-O-glycosylation of target proteins by bacterial toxins or effector proteins is a well-known mechanism by which bacteria interfere with essential functions of host cells. The respective glycosyltransferases are important virulence factors such as the Clostridioides difficile toxins A and B. Here, we describe two glycosyltransferases of Yersinia species that have a high sequence identity: YeGT from the zoonotic pathogen Yersinia enterocolitica and YkGT from the murine pathogen Yersinia kristensenii. We show that both modify Rho family proteins by attachment of GlcNAc at tyrosine residues (Tyr-34 in RhoA). Notably, the enzymes differed in their target protein specificity. While YeGT modified RhoA, B, and C, YkGT possessed a broader substrate spectrum and glycosylated not only Rho but also Rac and Cdc42 subfamily proteins. Mutagenesis studies indicated that residue 177 is important for this broader target spectrum. We determined the crystal structure of YeGT shortened by 16 residues N terminally (sYeGT) in the ligand-free state and bound to UDP, the product of substrate hydrolysis. The structure assigns sYeGT to the GT-A family. It shares high structural similarity to glycosyltransferase domains from toxins. We also demonstrated that the 16 most N-terminal residues of YeGT and YkGT are important for the mediated translocation into the host cell using the pore-forming protective antigen of anthrax toxin. Mediated introduction into HeLa cells or ectopic expression of YeGT and YkGT caused morphological changes and redistribution of the actin cytoskeleton. The data suggest that YeGT and YkGT are likely bacterial effectors belonging to the family of tyrosine glycosylating bacterial glycosyltransferases.


Asunto(s)
Proteínas Bacterianas , Tirosina , Yersinia , Glicosilación , Humanos , Yersinia/metabolismo , Yersinia/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Tirosina/metabolismo , Tirosina/química , Glicosiltransferasas/metabolismo , Glicosiltransferasas/genética , Glicosiltransferasas/química , Proteína de Unión al GTP rhoA/metabolismo , Yersinia enterocolitica/metabolismo , Yersinia enterocolitica/genética , Animales , Células HeLa , Ratones , Cristalografía por Rayos X , Yersiniosis/metabolismo , Yersiniosis/microbiología
2.
Methods Mol Biol ; 2641: 115-124, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37074645

RESUMEN

Caspase-8 is best known to drive an immunologically silent form of cell death known as apoptosis. However, emerging studies revealed that upon pathogen inhibition of innate immune signalling, such as during Yersinia infection in myeloid cells, caspase-8 associates with RIPK1 and FADD to trigger a proinflammatory death-inducing complex. Under such conditions, caspase-8 cleaves the pore-forming protein gasdermin D (GSDMD) to trigger a lytic form of cell death, known as pyroptosis. Here, we describe our protocol to activate caspase-8-dependent GSDMD cleavage following Yersinia pseudotuberculosis infection in murine bone marrow-derived macrophages (BMDMs). Specifically, we describe protocols on harvesting and plating of BMDM, preparation of type 3 secretion system-inducing Yersinia, macrophage infection, lactate dehydrogenase (LDH) release assay, and Western blot analysis.


Asunto(s)
Apoptosis , Yersiniosis , Ratones , Animales , Caspasa 8/metabolismo , Apoptosis/fisiología , Yersiniosis/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Macrófagos/metabolismo , Caspasa 1/metabolismo , Inflamasomas/metabolismo
3.
PLoS Pathog ; 17(11): e1010074, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34793580

RESUMEN

Various pathogens systematically reprogram gene expression in macrophages, but the underlying mechanisms are largely unknown. We investigated whether the enteropathogen Yersinia enterocolitica alters chromatin states to reprogram gene expression in primary human macrophages. Genome-wide chromatin immunoprecipitation (ChIP) seq analyses showed that pathogen-associated molecular patterns (PAMPs) induced up- or down-regulation of histone modifications (HMod) at approximately 14500 loci in promoters and enhancers. Effectors of Y. enterocolitica reorganized about half of these dynamic HMod, with the effector YopP being responsible for about half of these modulatory activities. The reorganized HMod were associated with genes involved in immune response and metabolism. Remarkably, the altered HMod also associated with 61% of all 534 known Rho GTPase pathway genes, revealing a new level in Rho GTPase regulation and a new aspect of bacterial pathogenicity. Changes in HMod were associated to varying degrees with corresponding gene expression, e. g. depending on chromatin localization and cooperation of the HMod. In summary, infection with Y. enterocolitica remodels HMod in human macrophages to modulate key gene expression programs of the innate immune response.


Asunto(s)
Epigénesis Genética , Código de Histonas , Inmunidad Innata , Macrófagos/microbiología , Yersiniosis/microbiología , Yersinia enterocolitica/patogenicidad , Proteínas de Unión al GTP rho/metabolismo , Humanos , Macrófagos/inmunología , Macrófagos/metabolismo , Yersiniosis/genética , Yersiniosis/inmunología , Yersiniosis/metabolismo , Proteínas de Unión al GTP rho/genética
4.
PLoS Pathog ; 17(10): e1009967, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34648590

RESUMEN

Cell death plays a critical role in inflammatory responses. During pyroptosis, inflammatory caspases cleave Gasdermin D (GSDMD) to release an N-terminal fragment that generates plasma membrane pores that mediate cell lysis and IL-1 cytokine release. Terminal cell lysis and IL-1ß release following caspase activation can be uncoupled in certain cell types or in response to particular stimuli, a state termed hyperactivation. However, the factors and mechanisms that regulate terminal cell lysis downstream of GSDMD cleavage remain poorly understood. In the course of studies to define regulation of pyroptosis during Yersinia infection, we identified a line of Card19-deficient mice (Card19lxcn) whose macrophages were protected from cell lysis and showed reduced apoptosis and pyroptosis, yet had wild-type levels of caspase activation, IL-1 secretion, and GSDMD cleavage. Unexpectedly, CARD19, a mitochondrial CARD-containing protein, was not directly responsible for this, as an independently-generated CRISPR/Cas9 Card19 knockout mouse line (Card19Null) showed no defect in macrophage cell lysis. Notably, Card19 is located on chromosome 13, immediately adjacent to Ninj1, which was recently found to regulate cell lysis downstream of GSDMD activation. RNA-seq and western blotting revealed that Card19lxcn BMDMs have significantly reduced NINJ1 expression, and reconstitution of Ninj1 in Card19lxcn immortalized BMDMs restored their ability to undergo cell lysis in response to caspase-dependent cell death stimuli. Card19lxcn mice exhibited increased susceptibility to Yersinia infection, whereas independently-generated Card19Null mice did not, demonstrating that cell lysis itself plays a key role in protection against bacterial infection, and that the increased infection susceptibility of Card19lxcn mice is attributable to loss of NINJ1. Our findings identify genetic targeting of Card19 being responsible for off-target effects on the adjacent gene Ninj1, disrupting the ability of macrophages to undergo plasma membrane rupture downstream of gasdermin cleavage and impacting host survival and bacterial control during Yersinia infection.


Asunto(s)
Proteínas Adaptadoras de Señalización CARD/metabolismo , Moléculas de Adhesión Celular Neuronal/metabolismo , Macrófagos/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Yersiniosis/patología , Animales , Macrófagos/microbiología , Macrófagos/patología , Ratones , Ratones Noqueados , Piroptosis/fisiología , Yersiniosis/metabolismo
5.
Biotechnol Lett ; 43(9): 1845-1867, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34165641

RESUMEN

OBJECTIVE: Mouse infection models are frequently used to study the host-pathogen interaction studies. However, due to several constraints, there is an urgent need for a simple, rapid, easy to handle, inexpensive, and ethically acceptable in vivo model system for studying the virulence of enteropathogens. Thus, the present study was performed to develop the larvae of Helicoverpa armigera as a rapid-inexpensive in vivo model system to evaluate the effect of Yersinia enterocolitica strain 8081 on its midgut via a label-free proteomic approach. RESULTS: Helicoverpa armigera larvae fed with Yersinia enterocolitica strain 8081 manifested significant reduction in body weight and damage in midgut. On performing label-free proteomic study, secretory systems, putative hemolysin, and two-component system emerged as the main pathogenic proteins. Further, proteome comparison between control and Yersinia added diet-fed (YADF) insects revealed altered cytoskeletal proteins in response to increased melanization (via a prophenoloxidase cascade) and free radical generation. In concurrence, FTIR-spectroscopy, and histopathological and biochemical analysis confirmed gut damage in YADF insects. Finally, the proteome data suggests that the mechanism of infection and the host response in Y. enterocolitica-H. armigera system mimics Yersinia-mammalian gut interactions. CONCLUSIONS: All data from current study collectively suggest that H. armigera larva can be considered as a potential in vivo model system for studying the enteropathogenic infection by Y. enterocolitica strain 8081.


Asunto(s)
Lepidópteros/microbiología , Mapas de Interacción de Proteínas , Yersiniosis/metabolismo , Yersinia enterocolitica/patogenicidad , Animales , Peso Corporal , Modelos Animales de Enfermedad , Proteínas Hemolisinas/metabolismo , Proteínas de Insectos/metabolismo , Larva/microbiología , Proteómica , Espectroscopía Infrarroja por Transformada de Fourier , Yersiniosis/microbiología
6.
Front Immunol ; 12: 775708, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34975864

RESUMEN

Host-pathogen intectarions are complex, involving large dynamic changes in gene expression through the process of infection. These interactions are essential for understanding anti-infective immunity as well as pathogenesis. In this study, the host-pathogen interaction was analyzed using a model of acute infection where channel catfish were infected with Yersinia ruckeri. The infected fish showed signs of body surface hyperemia as well as hyperemia and swelling in the trunk kidney. Double RNA sequencing was performed on trunk kidneys extracted from infected channel catfish and transcriptome data was compared with data from uninfected trunk kidneys. Results revealed that the host-pathogen interaction was dynamically regulated and that the host-pathogen transcriptome fluctuated during infection. More specifically, these data revealed that the expression levels of immune genes involved in Cytokine-cytokine receptor interactions, the NF-kappa B signaling pathway, the JAK-STAT signaling pathway, Toll-like receptor signaling and other immune-related pathways were significantly upregulated. Y. ruckeri mainly promote pathogenesis through the flagellum gene fliC in channel catfish. The weighted gene co-expression network analysis (WGCNA) R package was used to reveal that the infection of catfish is closely related to metabolic pathways. This study contributes to the understanding of the host-pathogen interaction between channel catfish and Y. ruckeri, more specifically how catfish respond to infection through a transcriptional perspective and how this infection leads to enteric red mouth disease (ERM) in these fish.


Asunto(s)
Enfermedades de los Peces/inmunología , Interacciones Microbiota-Huesped , Ictaluridae/microbiología , Riñón/metabolismo , RNA-Seq/métodos , Yersiniosis/veterinaria , Yersinia ruckeri , Animales , Enfermedades de los Peces/metabolismo , Inmunidad Innata , Transcriptoma , Yersiniosis/inmunología , Yersiniosis/metabolismo
7.
Sci Rep ; 10(1): 11840, 2020 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-32678312

RESUMEN

Yersinia ruckeri is an important bacterial pathogen of fish, in particular salmonids, it has been associated with systemic infections worldwide and, like many enteric bacteria, it is a facultative intracellular pathogen. However, the effect of Y. ruckeri's interactions with the host at the cellular level have received little investigation. In the present study, a culture of Chinook Salmon Embryo (CHSE) cell line was exposed to Y. ruckeri. Afterwards, the proteins were investigated and identified by mass spectrometry and compared to the content of unexposed cultures. The results of this comparison showed that 4.7% of the identified proteins were found at significantly altered concentrations following infection. Interestingly, infection with Y. ruckeri was associated with significant changes in the concentration of surface adhesion proteins, including a significantly decreased presence of ß-integrins. These surface adhesion molecules are known to be the target for several adhesion molecules of Yersiniaceae. The concentration of several anti-apoptotic regulators (HSP90 and two DNAj molecules) appeared similarly downregulated. Taken together, these findings suggest that Y. ruckeri affects the proteome of infected cells in a notable manner and our results shed some light on the interaction between this important bacterial pathogen and its host.


Asunto(s)
Enfermedades de los Peces/genética , Proteínas de Peces/genética , Interacciones Huésped-Patógeno/genética , Proteoma/genética , Salmón/genética , Yersiniosis/genética , Yersinia ruckeri/patogenicidad , Animales , Adhesión Bacteriana , Línea Celular , Embrión no Mamífero , Enfermedades de los Peces/metabolismo , Enfermedades de los Peces/microbiología , Proteínas de Peces/clasificación , Proteínas de Peces/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Ontología de Genes , Proteínas del Choque Térmico HSP40/genética , Proteínas del Choque Térmico HSP40/metabolismo , Proteínas HSP90 de Choque Térmico/genética , Proteínas HSP90 de Choque Térmico/metabolismo , Cadenas beta de Integrinas/genética , Cadenas beta de Integrinas/metabolismo , Anotación de Secuencia Molecular , Proteoma/clasificación , Proteoma/metabolismo , Salmón/metabolismo , Salmón/microbiología , Yersiniosis/metabolismo , Yersiniosis/microbiología , Yersinia ruckeri/fisiología
8.
J Immunol ; 204(7): 1859-1868, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32122996

RESUMEN

Dendritic cells (DCs) participate in the pathogenesis of several diseases. We investigated DCs and the connection between mucosa and joints in a murine model of Yersinia enterocolitica O:3-induced reactive arthritis (ReA) in TNFRp55-/- mice. DCs of mesenteric lymph nodes (MLN) and joint regional lymph nodes (RLN) were analyzed in TNFRp55-/- and wild-type mice. On day 14 after Y. enterocolitica infection (arthritis onset), we found that under TNFRp55 deficiency, migratory (MHChighCD11c+) DCs increased significantly in RLN. Within these RLN, resident (MHCintCD11c+) DCs increased on days 14 and 21. Similar changes in both migratory and resident DCs were also detected on day 14 in MLN of TNFRp55-/- mice. In vitro, LPS-stimulated migratory TNFRp55-/- DCs of MLN increased IL-12/23p40 compared with wild-type mice. In addition, TNFRp55-/- bone marrow-derived DCs in a TNFRp55-/- MLN microenvironment exhibited higher expression of CCR7 after Y. enterocolitica infection. The major intestinal DC subsets (CD103+CD11b-, CD103-CD11b+, and CD103+CD11b+) were found in the RLN of Y. enterocolitica-infected TNFRp55-/- mice. Fingolimod (FTY720) treatment of Y. enterocolitica-infected mice reduced the CD11b- subset of migratory DCs in RLN of TNFRp55-/- mice and significantly suppressed the severity of ReA in these mice. This result was associated with decreased articular IL-12/23p40 and IFN-γ levels. In vitro FTY720 treatment downregulated CCR7 on Y. enterocolitica-infected bone marrow-derived DCs and purified MLN DCs, which may explain the mechanism underlying the impairment of DCs in RLN induced by FTY720. Taken together, data indicate the migration of intestinal DCs to RLN and the contribution of these cells in the immunopathogenesis of ReA, which may provide evidence for controlling this disease.


Asunto(s)
Artritis Reactiva/inmunología , Células Dendríticas/inmunología , Ganglios Linfáticos/inmunología , Mesenterio/inmunología , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Receptores Señuelo del Factor de Necrosis Tumoral/metabolismo , Yersiniosis/inmunología , Yersinia enterocolitica/inmunología , Animales , Artritis Reactiva/metabolismo , Células Dendríticas/metabolismo , Ganglios Linfáticos/metabolismo , Masculino , Mesenterio/metabolismo , Ratones , Ratones Endogámicos C57BL , Prohibitinas , Receptores Tipo I de Factores de Necrosis Tumoral/inmunología , Transducción de Señal/inmunología , Receptores Señuelo del Factor de Necrosis Tumoral/inmunología , Yersiniosis/metabolismo
9.
Methods Mol Biol ; 2010: 211-229, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31177441

RESUMEN

Many Gram-negative pathogens produce a type III secretion system capable of intoxicating eukaryotic cells with immune-modulating effector proteins. Fundamental to this injection process is the prior secretion of two translocator proteins destined for injectisome translocon pore assembly within the host cell plasma membrane. It is through this pore that effectors are believed to travel to gain access to the host cell interior. Yersinia species especially pathogenic to humans and animals assemble this translocon pore utilizing two hydrophobic translocator proteins-YopB and YopD. Although a full molecular understanding of the biogenesis, function and regulation of this translocon pore and subsequent effector delivery into host cells remains elusive, some of what we know about these processes can be attributed to studies of bacterial infections of erythrocytes. Herein we describe the methodology of erythrocyte infections by Yersinia, and how analysis of the resultant contact-dependent hemolysis can serve as a relative measurement of YopB- and YopD-dependent translocon pore formation.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Eritrocitos/microbiología , Yersiniosis/patología , Yersinia/fisiología , Animales , Proteínas de la Membrana Bacteriana Externa/análisis , Eritrocitos/patología , Hemólisis , Humanos , Ovinos , Enfermedades de las Ovejas/metabolismo , Enfermedades de las Ovejas/microbiología , Enfermedades de las Ovejas/patología , Sistemas de Secreción Tipo III/análisis , Sistemas de Secreción Tipo III/metabolismo , Yersiniosis/metabolismo , Yersiniosis/microbiología , Yersiniosis/veterinaria , Yersinia pseudotuberculosis/fisiología , Infecciones por Yersinia pseudotuberculosis/metabolismo , Infecciones por Yersinia pseudotuberculosis/microbiología , Infecciones por Yersinia pseudotuberculosis/patología , Infecciones por Yersinia pseudotuberculosis/veterinaria
10.
Proc Natl Acad Sci U S A ; 115(46): E10888-E10897, 2018 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-30381458

RESUMEN

Cell death and inflammation are intimately linked during Yersinia infection. Pathogenic Yersinia inhibits the MAP kinase TGFß-activated kinase 1 (TAK1) via the effector YopJ, thereby silencing cytokine expression while activating caspase-8-mediated cell death. Here, using Yersinia pseudotuberculosis in corroboration with costimulation of lipopolysaccharide and (5Z)-7-Oxozeaenol, a small-molecule inhibitor of TAK1, we show that caspase-8 activation during TAK1 inhibition results in cleavage of both gasdermin D (GSDMD) and gasdermin E (GSDME) in murine macrophages, resulting in pyroptosis. Loss of GsdmD delays membrane rupture, reverting the cell-death morphology to apoptosis. We found that the Yersinia-driven IL-1 response arises from asynchrony of macrophage death during bulk infections in which two cellular populations are required to provide signal 1 and signal 2 for IL-1α/ß release. Furthermore, we found that human macrophages are resistant to YopJ-mediated pyroptosis, with dampened IL-1ß production. Our results uncover a form of caspase-8-mediated pyroptosis and suggest a hypothesis for the increased sensitivity of humans to Yersinia infection compared with the rodent reservoir.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Caspasa 8/metabolismo , Yersiniosis/metabolismo , Animales , Apoptosis/fisiología , Proteínas Bacterianas/metabolismo , Humanos , Interleucina-1/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Lipopolisacáridos/farmacología , Quinasas Quinasa Quinasa PAM/antagonistas & inhibidores , Quinasas Quinasa Quinasa PAM/metabolismo , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteínas de Unión a Fosfato , Piroptosis/fisiología , Yersiniosis/patología , Yersinia pseudotuberculosis/metabolismo
11.
Sci Rep ; 8(1): 13998, 2018 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-30228307

RESUMEN

Yersinia ruckeri is the causative agent of enteric redmouth disease in salmonids. Head kidney and spleen are major lymphoid organs of the teleost fish where antigen presentation and immune defense against microbes take place. We investigated proteome alteration in head kidney and spleen of the rainbow trout following Y. ruckeri strains infection. Organs were analyzed after 3, 9 and 28 days post exposure with a shotgun proteomic approach. GO annotation and protein-protein interaction were predicted using bioinformatic tools. Thirty four proteins from head kidney and 85 proteins from spleen were found to be differentially expressed in rainbow trout during the Y. ruckeri infection process. These included lysosomal, antioxidant, metalloproteinase, cytoskeleton, tetraspanin, cathepsin B and c-type lectin receptor proteins. The findings of this study regarding the immune response at the protein level offer new insight into the systemic response to Y. ruckeri infection in rainbow trout. This proteomic data facilitate a better understanding of host-pathogen interactions and response of fish against Y. ruckeri biotype 1 and 2 strains. Protein-protein interaction analysis predicts carbon metabolism, ribosome and phagosome pathways in spleen of infected fish, which might be useful in understanding biological processes and further studies in the direction of pathways.


Asunto(s)
Enfermedades de los Peces/metabolismo , Riñón Cefálico/metabolismo , Oncorhynchus mykiss/metabolismo , Proteoma/análisis , Bazo/metabolismo , Yersiniosis/veterinaria , Yersinia ruckeri/fisiología , Animales , Enfermedades de los Peces/microbiología , Oncorhynchus mykiss/crecimiento & desarrollo , Oncorhynchus mykiss/microbiología , Yersiniosis/metabolismo , Yersiniosis/microbiología
12.
Sci Rep ; 7(1): 14934, 2017 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-29097778

RESUMEN

The carbon storage regulator A (CsrA) and its homologs play an important role in coordinating the expression of bacterial virulence factors required for successful host infection. In addition, bacterial pathogens with deficiency of CsrA are typically attenuated for virulence. In 2016, the first series of small-molecule inhibitors of CsrA-RNA interaction were identified, which were found to achieve the CsrA-RNA inhibition by binding to the CsrA, without interfering with the RNA. However, the binding mechanism of these inhibitors of CsrA is not known. Herein, we applied molecular docking, molecular dynamics and binding free energy calculations to investigate the binding mode of inhibitors to CsrA. We found that the G11(RNA)-binding site is the most important binding site for CsrA inhibitors. An inhibitor with the proper size range can bind to that site and form a stable complex. We also found that inhibitors with larger size ranges bind to the entire CsrA-RNA interface, but have loose binding. However, this loose binding still resulted in inhibitory activity. The calculated binding free energy from MM/GBSA has a good correlation with the derived experimental binding energy, which might be used as a tool to further select CsrA inhibitors after a first-round of high-throughput virtual screening.


Asunto(s)
Proteínas Bacterianas/metabolismo , Unión Proteica/efectos de los fármacos , Proteínas de Unión al ARN/metabolismo , ARN/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Yersinia enterocolitica/metabolismo , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/química , Sitios de Unión/efectos de los fármacos , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , ARN/química , Proteínas de Unión al ARN/antagonistas & inhibidores , Proteínas de Unión al ARN/química , Bibliotecas de Moléculas Pequeñas/química , Termodinámica , Yersiniosis/tratamiento farmacológico , Yersiniosis/metabolismo , Yersiniosis/microbiología , Yersinia enterocolitica/química , Yersinia enterocolitica/efectos de los fármacos
13.
Curr Top Microbiol Immunol ; 399: 201-220, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27744508

RESUMEN

Pathogenic bacteria of the genus Yersinia include Y. pestis-the agent of plaque-and two enteropathogens, Y. enterocolitica, and Y. pseudotuberculosis. These pathogens have developed an array of virulence factors aimed at manipulating Rho GTP-binding proteins and the actin cytoskeleton in host cells to cross the intestinal barrier and suppress the immune system. Yersinia virulence factors include outer membrane proteins triggering cell invasion by binding to integrins, effector proteins injected into host cells to manipulate Rho protein functions and a Rho protein-activating exotoxin. Here, we present an overview of how Yersinia and host factors are integrated in a regulatory network that orchestrates the subversion of host defense.


Asunto(s)
Actinas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Yersiniosis/enzimología , Yersinia/metabolismo , Quinasas Asociadas a rho/metabolismo , Actinas/genética , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Interacciones Huésped-Patógeno , Humanos , Proteínas Proto-Oncogénicas c-akt/genética , Transducción de Señal , Yersinia/genética , Yersiniosis/metabolismo , Yersiniosis/microbiología , Quinasas Asociadas a rho/genética
14.
Infect Immun ; 84(11): 3172-3181, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27550935

RESUMEN

Yersinia enterocolitica evades the immune response by injecting Yersinia outer proteins (Yops) into the cytosol of host cells. YopH is a tyrosine phosphatase critical for Yersinia virulence. However, the mucosal immune mechanisms subverted by YopH during in vivo orogastric infection with Y. enterocolitica remain elusive. The results of this study revealed neutrophil recruitment to Peyer's patches (PP) after infection with a YopH-deficient mutant strain (Y. enterocolitica ΔyopH). While the Y. enterocolitica wild-type (WT) strain in PP induced the major neutrophil chemoattractant CXCL1 mRNA and protein levels, infection with the Y. enterocolitica ΔyopH mutant strain exhibited a higher expression of the CXCL1 receptor, CXCR2, in blood neutrophils, leading to efficient neutrophil recruitment to the PP. In contrast, migration of neutrophils into PP was impaired upon infection with Y. enterocolitica WT strain. In vitro infection of blood neutrophils revealed the involvement of YopH in CXCR2 expression. Depletion of neutrophils during Y. enterocolitica ΔyopH infection raised the bacterial load in PP. Moreover, the clearance of WT Y. enterocolitica was improved when an equal mixture of Y. enterocolitica WT and Y. enterocolitica ΔyopH strains was used in infecting the mice. This study indicates that Y. enterocolitica prevents early neutrophil recruitment in the intestine and that the effector protein YopH plays an important role in the immune evasion mechanism. The findings highlight the potential use of the Y. enterocolitica YopH-deficient strain as an oral vaccine carrier.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Infiltración Neutrófila/fisiología , Neutrófilos/citología , Ganglios Linfáticos Agregados/citología , Yersiniosis/inmunología , Yersinia enterocolitica/patogenicidad , Animales , Carga Bacteriana , Proteínas de la Membrana Bacteriana Externa/genética , Quimiocinas CXC/metabolismo , Modelos Animales de Enfermedad , Femenino , Ratones , Ratones Endogámicos C57BL , Neutrófilos/inmunología , Neutrófilos/metabolismo , Receptores de Quimiocina/metabolismo , Virulencia/fisiología , Yersiniosis/metabolismo , Yersiniosis/microbiología , Yersinia enterocolitica/inmunología
15.
PLoS Pathog ; 12(6): e1005660, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27300509

RESUMEN

Yersinia outer protein M (YopM) is a crucial immunosuppressive effector of the plaque agent Yersinia pestis and other pathogenic Yersinia species. YopM enters the nucleus of host cells but neither the mechanisms governing its nucleocytoplasmic shuttling nor its intranuclear activities are known. Here we identify the DEAD-box helicase 3 (DDX3) as a novel interaction partner of Y. enterocolitica YopM and present the three-dimensional structure of a YopM:DDX3 complex. Knockdown of DDX3 or inhibition of the exportin chromosomal maintenance 1 (CRM1) increased the nuclear level of YopM suggesting that YopM exploits DDX3 to exit the nucleus via the CRM1 export pathway. Increased nuclear YopM levels caused enhanced phosphorylation of Ribosomal S6 Kinase 1 (RSK1) in the nucleus. In Y. enterocolitica infected primary human macrophages YopM increased the level of Interleukin-10 (IL-10) mRNA and this effect required interaction of YopM with RSK and was enhanced by blocking YopM's nuclear export. We propose that the DDX3/CRM1 mediated nucleocytoplasmic shuttling of YopM determines the extent of phosphorylation of RSK in the nucleus to control transcription of immunosuppressive cytokines.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , ARN Helicasas DEAD-box/metabolismo , Regulación de la Expresión Génica/fisiología , Proteínas Quinasas S6 Ribosómicas 90-kDa/biosíntesis , Yersiniosis/inmunología , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/inmunología , Western Blotting , Línea Celular , Núcleo Celular/metabolismo , Cristalografía por Rayos X , ARN Helicasas DEAD-box/química , ARN Helicasas DEAD-box/inmunología , Técnica del Anticuerpo Fluorescente , Secuenciación de Nucleótidos de Alto Rendimiento , Interacciones Huésped-Parásitos/fisiología , Humanos , Tolerancia Inmunológica/fisiología , Inmunoprecipitación , Macrófagos/microbiología , Espectrometría de Masas , Microscopía Confocal , Reacción en Cadena de la Polimerasa , Transporte de Proteínas/fisiología , Factores de Virulencia/inmunología , Factores de Virulencia/metabolismo , Yersiniosis/metabolismo , Yersinia enterocolitica
16.
PLoS One ; 11(1): e0146103, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26731748

RESUMEN

Yersinia enterocolitica is a major cause of human yersiniosis, with enterocolitis being a typical manifestation. These bacteria can cross the intestinal mucosa, and invade eukaryotic cells by binding to host ß1 integrins, a process mediated by the bacterial effector protein invasin. This study examines the role of hypoxia on the internalization of Y. enterocolitica into intestinal epithelial cells, since the gastrointestinal tract has been shown to be physiologically deficient in oxygen levels (hypoxic), especially in cases of infection and inflammation. We show that hypoxic pre-incubation of Caco-2 cells resulted in significantly decreased bacterial internalization compared to cells grown under normoxia. This phenotype was absent after functionally blocking host ß1 integrins as well as upon infection with an invasin-deficient Y. enterocolitica strain. Furthermore, downstream phosphorylation of the focal adhesion kinase was also reduced under hypoxia after infection. In good correlation to these data, cells grown under hypoxia showed decreased protein levels of ß1 integrins at the apical cell surface whereas the total protein level of the hypoxia inducible factor (HIF-1) alpha was elevated. Furthermore, treatment of cells with the HIF-1 α stabilizer dimethyloxalylglycine (DMOG) also reduced invasion and decreased ß1 integrin protein levels compared to control cells, indicating a potential role for HIF-1α in this process. These results suggest that hypoxia decreases invasin-integrin-mediated internalization of Y. enterocolitica into intestinal epithelial cells by reducing cell surface localization of host ß1 integrins.


Asunto(s)
Adhesinas Bacterianas/metabolismo , Hipoxia/metabolismo , Integrina beta1/metabolismo , Mucosa Intestinal/microbiología , Yersiniosis/metabolismo , Yersinia enterocolitica/fisiología , Células CACO-2 , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Humanos , Hipoxia/microbiología , Mucosa Intestinal/metabolismo , Oxígeno/metabolismo , Yersiniosis/microbiología
17.
J Immunol ; 191(12): 5959-72, 2013 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-24244011

RESUMEN

TNF-α is a cytokine involved in systemic inflammation and regulation of immune cells. It is produced chiefly by activated macrophages as a membrane or secreted form. In rainbow trout, two TNF-α molecules were described previously. In this article, we report a third TNF-α (TNF-α3) that has only low identities to known trout molecules. Phylogenetic tree and synteny analyses of trout and other fish species suggest that two types (named I and II) of TNF-α exist in teleost fish. The fish type-II TNF-α has a short stalk that may impact on its enzymatic release or restrict it to a membrane-bound form. The constitutive expression of trout TNF-α3 was generally lower than the other two genes in tissues and cell lines, with the exception of the macrophage RTS-11 cell line, in which expression was higher. Expression of all three TNF-α isoforms could be modulated by crude LPS, peptidoglycan, polyinosinic:polycytidylic acid, and rIFN-γ in cell lines and primary macrophages, as well as by bacterial and viral infections. TNF-α3 is the most responsive gene at early time points post-LPS stimulation and can be highly induced by the T cell-stimulant PHA, suggesting it is a particularly important TNF-α isoform. rTNF-α3 produced in CHO cells was bioactive in different cell lines and primary macrophages. In the latter, it induced the expression of proinflammatory cytokines (IL-1ß, IL-6, IL-8, IL-17C, and TNF-αs), negative regulators (SOCS1-3, TGF-ß1b), antimicrobial peptides (cathelicidin-1 and hepcidin), and the macrophage growth factor IL-34, verifying its key role in the inflammatory cytokine network and macrophage biology of fish.


Asunto(s)
Macrófagos/metabolismo , Oncorhynchus mykiss/inmunología , Factor de Necrosis Tumoral alfa/clasificación , Secuencia de Aminoácidos , Animales , Péptidos Catiónicos Antimicrobianos/biosíntesis , Péptidos Catiónicos Antimicrobianos/genética , Secuencia de Bases , Línea Celular , Citocinas/biosíntesis , Citocinas/genética , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/metabolismo , Peces/genética , Peces/inmunología , Regulación de la Expresión Génica/efectos de los fármacos , Interferón gamma/farmacología , Lipopolisacáridos/farmacología , Datos de Secuencia Molecular , Novirhabdovirus , Oncorhynchus mykiss/genética , Oncorhynchus mykiss/metabolismo , Especificidad de Órganos , Peptidoglicano/farmacología , Filogenia , Fitohemaglutininas/farmacología , Poli I-C/farmacología , Isoformas de Proteínas/química , Isoformas de Proteínas/aislamiento & purificación , Isoformas de Proteínas/fisiología , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes de Fusión/farmacología , Infecciones por Rhabdoviridae/inmunología , Infecciones por Rhabdoviridae/metabolismo , Infecciones por Rhabdoviridae/veterinaria , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad de la Especie , Factor de Necrosis Tumoral alfa/química , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/aislamiento & purificación , Factor de Necrosis Tumoral alfa/fisiología , Yersiniosis/inmunología , Yersiniosis/metabolismo , Yersiniosis/veterinaria , Yersinia ruckeri
19.
J Biol Chem ; 288(32): 23543-53, 2013 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-23803609

RESUMEN

Pathogenic Yersinia spp. translocate the effectors YopT, YopE, and YopO/YpkA into target cells to inactivate Rho family GTP-binding proteins and block immune responses. Some Yersinia spp. also secrete the Rho protein activator cytotoxic necrotizing factor-Y (CNF-Y), but it has been unclear how the bacteria may benefit from Rho protein activation. We show here that CNF-Y increases Yop translocation in Yersinia enterocolitica-infected cells up to 5-fold. CNF-Y strongly activated RhoA and also delayed in time Rac1 and Cdc42, but when individually expressed, constitutively active mutants of Rac1, but not of RhoA, increased Yop translocation. Consistently, knock-out or knockdown of Rac1 but not of RhoA, -B, or -C inhibited Yersinia effector translocation in CNF-Y-treated and control cells. Activation or knockdown of Cdc42 also affected Yop translocation but much less efficiently than Rac. The increase in Yop translocation induced by CNF-Y was essentially independent of the presence of YopE, YopT, or YopO in the infecting Yersinia strain, indicating that none of the Yops reported to inhibit translocation could reverse the CNF-Y effect. In summary, the CNF-Y activity of Yersinia strongly enhances Yop translocation through activation of Rac.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Toxinas Bacterianas/metabolismo , Neuropéptidos/metabolismo , Yersiniosis/metabolismo , Yersinia enterocolitica/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Animales , Toxinas Bacterianas/genética , Células HeLa , Humanos , Ratones , Ratones Noqueados , Neuropéptidos/genética , Transporte de Proteínas/genética , Yersiniosis/genética , Yersiniosis/patología , Yersinia enterocolitica/genética , Proteína de Unión al GTP cdc42/genética , Proteína de Unión al GTP cdc42/metabolismo , Proteína de Unión al GTP rac1/genética , Proteínas ras/genética , Proteínas ras/metabolismo , Proteínas de Unión al GTP rho/genética , Proteínas de Unión al GTP rho/metabolismo , Proteína de Unión al GTP rhoA/genética , Proteína de Unión al GTP rhoA/metabolismo , Proteína de Unión al GTP rhoB/genética , Proteína de Unión al GTP rhoB/metabolismo , Proteína rhoC de Unión a GTP
20.
J Biol Chem ; 288(21): 14688-97, 2013 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-23572522

RESUMEN

Holomycin and its derivatives belong to a class of broad-spectrum antibacterial natural products containing a rare dithiolopyrrolone heterobicyclic scaffold. The antibacterial mechanism of dithiolopyrrolone compounds has been attributed to the inhibition of bacterial RNA polymerase activities, although the exact mode of action has not been established in vitro. Some dithiopyrrolone derivatives display potent anticancer activities. Recently the biosynthetic gene cluster of holomycin has been identified and characterized in Streptomyces clavuligerus. Here we report that the fish pathogen Yersinia ruckeri is a holomycin producer, as evidenced through genome mining, chemical isolation, and structural elucidation as well as genetic manipulation. We also identified a unique regulatory gene hom15 at one end of the gene cluster encoding a cold-shock-like protein that likely regulates the production of holomycin in low cultivation temperatures. Inactivation of hom15 resulted in a significant loss of holomycin production. Finally, gene disruption of an RNA methyltransferase gene hom12 resulted in the sensitivity of the mutant toward holomycin. A complementation experiment of hom12 restored the resistance against holomycin. Although the wild-type Escherichia coli BL21(DE3) Gold is susceptible to holomycin, the mutant harboring hom12 showed tolerance toward holomycin. High resolution liquid chromatography (LC)-ESI/MS analysis of digested RNA fragments demonstrated that the wild-type Y. ruckeri and E. coli harboring hom12 contain a methylated RNA fragment, whereas the mutated Y. ruckeri and the wild-type E. coli only contain normal non-methylated RNA fragments. Taken together, our results strongly suggest that this putative RNA methyltransferase Hom12 is the self-resistance protein that methylates the RNA of Y. ruckeri to reduce the cytotoxic effect of holomycin during holomycin production.


Asunto(s)
Proteínas Bacterianas/metabolismo , Farmacorresistencia Bacteriana/fisiología , Lactamas/metabolismo , Yersinia ruckeri/metabolismo , ARNt Metiltransferasas/metabolismo , Animales , Proteínas Bacterianas/genética , Farmacorresistencia Bacteriana/efectos de los fármacos , Enfermedades de los Peces/genética , Enfermedades de los Peces/metabolismo , Peces/microbiología , Lactamas/farmacología , Yersiniosis/genética , Yersiniosis/metabolismo , Yersinia ruckeri/genética , ARNt Metiltransferasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...