Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.779
Filtrar
1.
Int J Mol Sci ; 25(9)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38732168

RESUMEN

Antimicrobial resistance (AMR) poses an emanating threat to humanity's future. The effectiveness of commonly used antibiotics against microbial infections is declining at an alarming rate. As a result, morbidity and mortality rates are soaring, particularly among immunocompromised populations. Exploring alternative solutions, such as medicinal plants and iodine, shows promise in combating resistant pathogens. Such antimicrobials could effectively inhibit microbial proliferation through synergistic combinations. In our study, we prepared a formulation consisting of Aloe barbadensis Miller (AV), Thymol, iodine (I2), and polyvinylpyrrolidone (PVP). Various analytical methods including SEM/EDS, UV-vis, Raman, FTIR, and XRD were carried out to verify the purity, composition, and morphology of AV-PVP-Thymol-I2. We evaluated the inhibitory effects of this formulation against 10 selected reference strains using impregnated sterile discs, surgical sutures, gauze bandages, surgical face masks, and KN95 masks. The antimicrobial properties of AV-PVP-Thymol-I2 were assessed through disc diffusion methods against 10 reference strains in comparison with two common antibiotics. The 25-month-old formulation exhibited slightly lower inhibitory zones, indicating changes in the sustained-iodine-release reservoir. Our findings confirm AV-PVP-Thymol-I2 as a potent antifungal and antibacterial agent against the reference strains, demonstrating particularly strong inhibitory action on surgical sutures, cotton bandages, and face masks. These results enable the potential use of the formulation AV-PVP-Thymol-I2 as a promising antimicrobial agent against wound infections and as a spray-on contact-killing agent.


Asunto(s)
Pruebas de Sensibilidad Microbiana , Timol , Timol/farmacología , Timol/química , Yodo/química , Yodo/farmacología , Antiinfecciosos/farmacología , Antiinfecciosos/química , Aloe/química , Antibacterianos/farmacología , Antibacterianos/química , Humanos , Composición de Medicamentos/métodos
2.
J Environ Sci (China) ; 144: 67-75, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38802239

RESUMEN

Freeze-induced acceleration of I- oxidation and the consequent iodination of dissolved organic matter (DOM) contribute to the formation of organoiodine compounds (OICs) in cold regions. The formed OICs may be a potentially important source of risk and are very closely with the environment and human health. Herein, we investigated the acceleration effects of the freeze process on I- oxidation and the formation of OICs. In comparison to reactive iodine species (RIS) formed in aqueous solutions, I- oxidation and RIS formation were greatly enhanced in frozen solution and were affected by pH, and the content of I- and O2. Freeze-thaw process further promoted I- oxidation and the concentration of RIS reached 45.7 µmol/L after 6 freeze-thaw cycles. The consequent products of DOM iodination were greatly promoted in terms of both concentration and number. The total content of OICs ranged from 0.02 to 2.83 µmol/L under various conditions. About 183-1197 OICs were detected by Fourier transform ion cyclotron resonance mass spectrometry, and more than 96.2% contained one or two iodine atoms. Most OICs had aromatic structures and were formed via substitution and addition reactions. Our findings reveal an important formation pathway for OICs and shed light on the biogeochemical cycling of iodine in the natural aquatic environment.


Asunto(s)
Congelación , Yoduros , Oxidación-Reducción , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/análisis , Yoduros/química , Halogenación , Yodo/química
3.
Environ Sci Technol ; 58(22): 9840-9849, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38775339

RESUMEN

The biogeochemical processes of iodine are typically coupled with organic matter (OM) and the dynamic transformation of iron (Fe) minerals in aquifer systems, which are further regulated by the association of OM with Fe minerals. However, the roles of OM in the mobility of iodine on Fe-OM associations remain poorly understood. Based on batch adsorption experiments and subsequent solid-phase characterization, we delved into the immobilization and transformation of iodate and iodide on Fe-OM associations with different C/Fe ratios under anaerobic conditions. The results indicated that the Fe-OM associations with a higher C/Fe ratio (=1) exhibited greater capacity for immobilizing iodine (∼60-80% for iodate), which was attributed to the higher affinity of iodine to OM and the significantly decreased extent of Fe(II)-catalyzed transformation caused by associated OM. The organic compounds abundant in oxygen with high unsaturation were more preferentially associated with ferrihydrite than those with poor oxygen and low unsaturation; thus, the associated OM was capable of binding with 28.1-45.4% of reactive iodine. At comparable C/Fe ratios, the mobilization of iodine and aromatic organic compounds was more susceptible in the adsorption complexes compared to the coprecipitates. These new findings contribute to a deeper understanding of iodine cycling that is controlled by Fe-OM associations in anaerobic environments.


Asunto(s)
Yodo , Hierro , Yodo/química , Hierro/química , Adsorción , Agua Subterránea/química , Minerales/química
4.
Int J Biol Macromol ; 270(Pt 1): 132091, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38718990

RESUMEN

Here, lignin and nano-clay were used to prepare novel composite adsorbents by one-step carbonization without adding activators for radioactive iodine capture. Specially, 1D nano-clay such as halloysite (Hal), palygorskite (Pal) and sepiolite (Sep) were selected as skeleton components, respectively, enzymatic hydrolysis lignin (EHL) as carbon source, lignin based porous carbon/nano-clay composites (ELC-X) were prepared through ultrasonic impregnation, freeze drying, and carbonization. Characterization results indicated lignin based porous carbon (ELC) well coated on the surface of nano-clay, and made its surface areas increase to 252 m2/g. These composites appeared the micro-mesoporous hierarchical structure, considerable N doping and good chemical stability. Results of adsorption experiments showed that the introduction of ELC could well promote iodine vapor uptake of nano-clay, and up to 435.0 mg/g. Meanwhile, the synergistic effect between lignin based carbon and nano-clay was very significant for the adsorption of iodine/n-hexane and iodine ions, their capacity were far exceed those of a single material, respectively. The relevant adsorption kinetic and thermodynamics, and mechanism of ELC-X composites were clarified. This work provided a class of low-cost and environmentally friendly adsorbents for radioactive iodine capture, and opened up ideas for the comprehensive utilization of waste lignin and natural clay minerals.


Asunto(s)
Carbono , Arcilla , Yodo , Lignina , Lignina/química , Arcilla/química , Carbono/química , Adsorción , Porosidad , Yodo/química , Cinética , Nanocompuestos/química , Termodinámica
5.
Top Curr Chem (Cham) ; 382(2): 12, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589598

RESUMEN

Organoselenium compounds have been the subject of extensive research since the discovery of the biologically active compound ebselen. Ebselen has recently been found to show activity against the main protease of the virus responsible for COVID-19. Other organoselenium compounds are also well-known for their diverse biological activities, with such compounds exhibiting interesting physical properties relevant to the fields of electronics, materials, and polymer chemistry. In addition, the incorporation of selenium into various organic molecules has garnered significant attention due to the potential of selenium to enhance the biological activity of these molecules, particularly in conjunction with bioactive heterocycles. Iodine and iodine-based reagents play a prominent role in the synthesis of organoselenium compounds, being valued for their cost-effectiveness, non-toxicity, and ease of handling. These reagents efficiently selenylate a broad range of organic substrates, encompassing alkenes, alkynes, and cyclic, aromatic, and heterocyclic molecules. They serve as catalysts, additives, inducers, and oxidizing agents, facilitating the introduction of different functional groups at alternate positions in the molecules, thereby allowing for regioselective and stereoselective approaches. Specific iodine reagents and their combinations can be tailored to follow the desired reaction pathways. Here, we present a comprehensive review of the progress in the selenylation of organic molecules using iodine reagents over the past decade, with a focus on reaction patterns, solvent effects, heating, microwave, and ultrasonic conditions. Detailed discussions on mechanistic aspects, such as electrophilic, nucleophilic, radical, electrochemical, and ring expansion reactions via selenylation, multiselenylation, and difunctionalization, are included. The review also highlights the formation of various cyclic, heterocyclic, and heteroarenes resulting from the in situ generation of selenium intermediates, encompassing cyclic ketones, cyclic ethers, cyclic lactones, selenophenes, chromones, pyrazolines, pyrrolidines, piperidines, indolines, oxazolines, isooxazolines, lactones, dihydrofurans, and isoxazolidines. To enhance the reader's interest, the review is structured into different sections covering the selenylation of aliphatic sp2/sp carbon and cyclic sp2 carbon, and then is further subdivided into various heterocyclic molecules.


Asunto(s)
Yodo , Isoindoles , Compuestos de Organoselenio , Selenio , Yodo/química , Indicadores y Reactivos , Compuestos de Organoselenio/química , Lactonas/química , Carbono
6.
Langmuir ; 40(17): 9197-9204, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38639710

RESUMEN

Waterborne coatings with intrinsic antibacterial attributes have attracted significant attention due to their potential in mitigating microbial contamination while simultaneously addressing the environmental drawbacks of their solvent-based counterparts. Typically, antimicrobial coatings are designed to resist and eliminate microbial threats, encompassing challenges such as biofilm formation, fungal contamination, and proliferation of black mold. Iodine, when solubilized using ethylene glycol and incorporated as a complex into waterborne latex dispersions, has shown remarkable antimicrobial activity. Here, we demonstrate the effect of the film formation process of these iodinated latex dispersions on their antimicrobial properties. The effect of iodine on the surface morphology and mechanical, adhesion, and antimicrobial properties of the generated films was investigated. Complete integration and uniform distribution of iodine in the films were confirmed through UV-vis spectrophotometry and a laser Raman imaging system (LRIS). In terms of properties, iodinated films showed improved mechanical strength and adhesion compared with blank films. Further, the presence of iodine rendered the films rougher, making them susceptible to bacterial adhesion, but interestingly provided enhanced antibiofilm activity. Moreover, thicker films had a lower surface roughness and reduced biofilm growth. These observations are elucidated through the complex interplay among film thickness, surface morphology, and iodine properties. The insights into the interlink between the film formation process and antimicrobial properties of iodinated latex dispersions will facilitate their enhanced application as sustainable alternatives to solvent-based coatings.


Asunto(s)
Biopelículas , Yodo , Látex , Látex/química , Látex/farmacología , Yodo/química , Yodo/farmacología , Biopelículas/efectos de los fármacos , Propiedades de Superficie , Antiinfecciosos/química , Antiinfecciosos/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Adhesión Bacteriana/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Halogenación
7.
Environ Sci Technol ; 58(17): 7314-7324, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38626432

RESUMEN

New particle formation via the ion-mediated sulfuric acid and ammonia molecular clustering mechanism remains the most widely observed and experimentally verified pathway. Recent laboratory and molecular level observations indicate iodine-driven nucleation as a potentially important source of new particles, especially in coastal areas. In this study, we assess the role of iodine species in particle formation using the best available molecular thermochemistry data and coupled to a detailed 1-d column model which is run along air mass trajectories over the Southern Ocean and the coast of Antarctica. In the air masses traversing the open ocean, ion-mediated SA-NH3 clustering appears insufficient to explain the observed particle size distribution, wherein the simulated Aitken mode is lacking. Including the iodine-assisted particle formation improves the modeled Aitken mode representation with an increase in the number of freshly formed particles. This implies that more particles survive and grow to Aitken mode sizes via condensation of gaseous precursors and heterogeneous reactions. Under certain meteorological conditions, iodine-assisted particle formation can increase cloud condensation nuclei concentrations by 20%-100%.


Asunto(s)
Aerosoles , Yodo , Regiones Antárticas , Yodo/química , Tamaño de la Partícula , Contaminantes Atmosféricos , Material Particulado
8.
ACS Appl Mater Interfaces ; 16(19): 24235-24247, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38688002

RESUMEN

The spread of upper respiratory tract (URT) infections harms people's health and causes social burdens. Developing targeted treatment strategies for URT infections that exhibit good biocompatibility, stability, and strong antimicrobial effects remains challenging. The dual antimicrobial and antiviral effects of iodine (I2) in combination with the cooling sensation of l-menthol in the respiratory tract can simultaneously alleviate URT inflammation symptoms. However, as both I2 and l-menthol are volatile, addressing stability issues is crucial. In this study, a potassium iodide ß-cyclodextrin metal-organic framework [ß-CD-POF(I)] with appropriate particle size was used to coload and deliver I2 and l-menthol. Primarily, ß-CD-POF(I) was employed as the most efficient carrier to significantly enhance the stability of I2, surpassing any other known protection strategies in the pharmaceutical field (CD complexations, PVP conjugations, and cadexomer iodine). The mechanism underlying the improvement in stability of I2 by ß-CD-POF(I) was investigated through scanning electron microscopy with energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, and molecular docking. The results revealed that the key processes involved in improving stability were the inclusion of I2 by ß-CD cavities in ß-CD-POF(I) and the formation of polyiodide anion between iodine ions and I2. Furthermore, the potential of ß-CD-POF(I) to load and deliver drugs was validated, and coloading of l-menthol and I2 demonstrated reliable stability. ß-CD-POF(I) achieved a rate of URT deposition ≥95% in vitro, and the combined antibacterial effects of coloaded I2 and l-menthol was better than I2 or PVP-I alone, with no irritation noted following URT administration in rabbits. Therefore, the stable coloading of drugs by ß-CD-POF(I), leading to enhanced antimicrobial effects, provides a new strategy for treating URT infections.


Asunto(s)
Antibacterianos , Yodo , Estructuras Metalorgánicas , beta-Ciclodextrinas , Yodo/química , Yodo/farmacología , Estructuras Metalorgánicas/química , Estructuras Metalorgánicas/farmacología , beta-Ciclodextrinas/química , Antibacterianos/química , Antibacterianos/farmacología , Animales , Pruebas de Sensibilidad Microbiana , Conejos , Portadores de Fármacos/química , Staphylococcus aureus/efectos de los fármacos , Simulación del Acoplamiento Molecular
9.
Radiol Phys Technol ; 17(2): 441-450, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38630390

RESUMEN

This research aimed to compare the quantitative imaging attributes of synthesized hafnium oxide nanoparticles (NPs) derived from UiO-66-NH2(Hf) and two gadolinium- and iodine-based clinical contrast agents (CAs) using cylindrical phantom. Aqueous solutions of the studied CAs, containing 2.5, 5, and 10 mg/mL of HfO2NPs, gadolinium, and iodine, were prepared. Constructed within a cylindrical phantom, 15 cc small tubes were filled with CAs. Maintaining constant mAs, the phantom underwent scanning at tube voltage variations from 80 to 140 kVp. The CT numbers were quantified in Hounsfield units (HU), and the contrast-to-noise ratios (CNR) were calculated within delineated regions of interest (ROI) for all CAs. The HfO2NPs at 140 kVp and concentration of 2.5 mg/ml exhibited 2.3- and 1.3-times higher CT numbers than iodine and gadolinium, respectively. Notably, gadolinium consistently displayed higher CT numbers than iodine across all exposure techniques and concentrations. At the highest tube potential, the maximum amount of the CAs CT numbers was attained, and at 140 kVp and concentration of 2.5 mg/ml of HfO2NPs the CNR surpassed iodine by 114%, and gadolinium by 30%, respectively. HfO2NPs, as a contrast agent, demonstrated superior image quality in terms of contrast and noise in comparison to iodine- and gadolinium-based contrast media, particularly at higher energies of X-ray in computed tomography. Thus, its utilization is highly recommended in CT.


Asunto(s)
Medios de Contraste , Hafnio , Nanopartículas , Óxidos , Fantasmas de Imagen , Tomografía Computarizada por Rayos X , Medios de Contraste/química , Óxidos/química , Hafnio/química , Nanopartículas/química , Gadolinio/química , Yodo/química , Relación Señal-Ruido
10.
Spectrochim Acta A Mol Biomol Spectrosc ; 313: 124098, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38460232

RESUMEN

L-Acetylcarnitine (ALC), a versatile compound, has demonstrated beneficial effects in depression, Alzheimer's disease, cognitive impairment, and other conditions. This study focuses on its antithyroid activity. The precursor molecule, L-carnitine, inhibited the uptake of triiodothyronine (T3) and thyroxine (T4), and it is possible that ALC may reduce the iodination process of T3 and T4. Currently, antithyroid drugs are used to control the excessive production of thyroid hormones (TH) through various mechanisms: (i) forming electron donor-acceptor complexes with molecular iodine, (ii) eliminating hydrogen peroxide, and (iii) inhibiting the enzyme thyroid peroxidase. To understand the pharmacological properties of ALC, we investigated its plausible mechanisms of action. ALC demonstrated the ability to capture iodine (Kc = 8.07 ± 0.32 x 105 M-1), inhibit the enzyme lactoperoxidase (LPO) (IC50 = 17.60 ± 0.76 µM), and scavenge H2O2 (39.82 ± 0.67 mM). A comprehensive physicochemical characterization of ALC was performed using FTIR, Raman, and UV-Vis spectroscopy, along with theoretical DFT calculations. The inhibition process was assessed through fluorescence spectroscopy and vibrational analysis. Docking and molecular dynamics simulations were carried out to predict the binding mode of ALC to LPO and to gain a better understanding into the inhibition process. Furthermore, albumin binding experiments were also conducted. These findings highlight the potential of ALC as a therapeutic agent, providing valuable insights for further investigating its role in the treatment of thyroid disorders.


Asunto(s)
Yodo , Glándula Tiroides , Lactoperoxidasa/metabolismo , Lactoperoxidasa/farmacología , Acetilcarnitina/metabolismo , Acetilcarnitina/farmacología , Peróxido de Hidrógeno/farmacología , Yodo/química , Modelos Teóricos
11.
Environ Res ; 251(Pt 1): 118569, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38431069

RESUMEN

Topography of a place has a significant impact on soil characteristics that ultimately influence soil iodine levels. Lower Himalayan region (LHR) in Pakistan has a wide range of climatic and geological variations. Hence, an investigation was conducted to analyze the iodine concentration and other physicochemical properties of soils in two LHR districts, Haripur and Mansehra. Spatial analysis indicated a decrease in iodine levels in the mountainous regions in comparison to the flat portions of LHR. Soil samples obtained from different locations across Haripur had a stronger affinity for iodine due to variations in solubility and adsorption of iodine to soil clay components, which can be attributed to lower pH, higher organic matter, and a higher cation exchange capacity (CEC). In contrast to the plains of Haripur, elevated locations in the Mansehra district had decreased levels of iodine, along with a higher soil pH and reduced soil organic matter. The soil erosion and depletion of soil micronutrients in the hilly region of Mansehra may be attributed to the unfavorable soil conditions and excessive precipitation. Presence of clay, iron (Fe), and aluminum (Al) in the soil led to a rise in iodine levels. Iodine concentrations exhibited an inverse relationship with soil acidity. Study revealed a direct correlation between soil iodine levels and their cation exchange capacity (CEC) and clay content. This study aims to gather fundamental data for the chosen regions of LHR to address illnesses caused by iodine deficiency.


Asunto(s)
Yodo , Suelo , Suelo/química , Yodo/análisis , Yodo/química , Pakistán , Concentración de Iones de Hidrógeno
12.
Small ; 20(23): e2309894, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38308168

RESUMEN

Real-time biodistribution monitoring and enhancing the therapeutic efficacy of platinum(II)-based anticancer drugs are urgently required to elevate their clinical performance. Herein, a tetraphenylethene derivative (TP) with aggregation-induced emission (AIE) properties and an iodine atom are selected as ligands to endow platinum (II) complex TP-Pt-I with real-time in vivo self-tracking ability by fluorescence (FL) and computerized tomography (CT) imaging, and improved anticancer efficacy by the combination of chemotherapy and photodynamic therapy. Especially, benefiting from the formation of a donor-acceptor-donor structure between the AIE photosensitizer TP and Pt-I moiety, the heavy atom effects of Pt and I, and the presence of I, TP-Pt-I displayed red-shifted absorption and emission wavelengths, enhanced ROS generation efficiency, and improved CT imaging capacity compared with the pristine TP and the control agent TP-Pt-Cl. As a result, the enhanced intratumoral accumulation of TP-Pt-I loaded nanoparticles is readily revealed by dual-modal FL and CT imaging with high contrast. Meanwhile, the TP-Pt-I nanoparticles show significantly improved tumor growth-inhibiting effects on an MCF-7 xenograft murine model by combining the chemotherapeutic effects of platinum(II) and the photodynamic effects of TP. This self-tracking therapeutic complex thus provides a new strategy for improving the therapeutic outcomes of platinum(II)-based anticancer drugs.


Asunto(s)
Yodo , Fotoquimioterapia , Platino (Metal) , Fotoquimioterapia/métodos , Humanos , Animales , Yodo/química , Platino (Metal)/química , Platino (Metal)/farmacología , Línea Celular Tumoral , Tomografía Computarizada por Rayos X , Ratones , Ratones Desnudos , Nanopartículas/química , Etilenos/química , Etilenos/farmacología , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo , Estilbenos
13.
Chem Pharm Bull (Tokyo) ; 72(2): 234-239, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38417869

RESUMEN

The first lactam-type 2-iodobenzamide catalysts, 8-iodoisoquinolinones 8 (IB-lactam) and 9 (MeO-IB-lactam), were developed. These catalysts have a conformationally rigid 6/6 bicyclic lactam structure and are more reactive than the previously reported catalysts 2-iodobenzamides 4 (IBamide) and 5 (MeO-IBamide) for the oxidation of alcohols. The lactam structure could form an efficient intramolecular I---O interaction, depending on the size of the lactam ring.


Asunto(s)
Yodo , Alcoholes/química , Catálisis , Yodo/química , Lactamas , Oxidación-Reducción , Benzamidas/química
14.
Electrophoresis ; 45(7-8): 639-650, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38227365

RESUMEN

In this work, we proposed a double moving redox boundary (MROB) model to realize the colorless analyte electrophoresis titration (ET) by the two steps of the redox reaction. Single MROB has been proposed for the development of ET sensing (Analyst, 2013, 138, 1137. ACS Sensor, 2019, 4, 126.), and faces great challenges in detecting the analyte without color change during redox reaction. Herein, a novel model of double-MROB electrophoresis, including its mechanisms, equations, and procedures, was developed for titration by using ascorbic acid as a model analyte. The first MROB was created with ferric iron (Fe3+) and iodide ion (I-) in which Fe3+ was reduced as Fe2+ and I- was oxidized as molecular iodine (I2) used as an indicator of visible MROB due to blue starch-iodine complex. The second boundary was then formed between the molecular iodine and model analyte of ascorbic acid. Under given conditions, there was a quantitative relationship between velocity of MROB (VMROB(ii)) and ascorbic acid concentration (CVit C) in the double-MROB system (1/VMROB(ii) = 0.6502CVit C + 4.5165, and R = 0.9939). The relevant relative standard deviation values of intraday and inter-day were less than ∼5.55% and ∼6.64%, respectively. Finally, the titration of ascorbic acid in chewable vitamin C tablets was performed by the developed method, the titration results agreed with those via the classic iodometric titration. All the results briefly demonstrated the validity of the double MROB model, in which Vit C was used as a model analyte. The developed method had potential use in quantitative analysis of redox-active species in biomedical samples.


Asunto(s)
Ácido Ascórbico , Oxidación-Reducción , Ácido Ascórbico/análisis , Ácido Ascórbico/química , Límite de Detección , Reproducibilidad de los Resultados , Modelos Químicos , Yodo/química , Yodo/análisis , Modelos Lineales , Electroforesis/métodos
15.
Carbohydr Polym ; 328: 121698, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38220321

RESUMEN

Iodine is a vital microelement and a powerful antiseptic with a rapid and broad spectrum of action. The development of iodophor compounds to improve the solubility and stability of iodine is still challenging. Here, we report the synthesis of a novel cationic ß-cyclodextrin bearing a choline-like pendant (ß-CD-Chol) designed to complex and deliver iodine to bacterial cells. The characterization of ß-CD-Chol and the investigation of the inclusion complex with iodine were performed by NMR spectroscopy, mass spectrometry, UV-vis spectrophotometry, isothermal titration calorimetry, and dynamic light scattering. The functionalization with the positively charged unit conferred improved water-solubility, mucoadhesivity, and iodine complexation efficiency to the ß-CD scaffold. The water-soluble ß-CD-Chol/iodine complex efficiently formed both in solution and by solid-vapor reaction. The solid complex exhibited a significant stability for months. Iodine release from the inclusion complex was satisfactory and the bactericidal activity was proved against a Staphylococcus epidermidis strain. The absence of cytotoxicity tested on human keratinocytes and the improved mucoadhesivity make ß-CD-Chol a promising drug delivery system and an appealing iodophor candidate for iodine-based antisepsis including mucosa disinfection.


Asunto(s)
Yodo , beta-Ciclodextrinas , Humanos , Colina , beta-Ciclodextrinas/química , Yodo/farmacología , Yodo/química , Solubilidad , Antibacterianos/farmacología , Yodóforos , Agua/química , Rastreo Diferencial de Calorimetría , 2-Hidroxipropil-beta-Ciclodextrina/química
16.
J Environ Manage ; 351: 119931, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38154220

RESUMEN

Iodinated contrast media (ICM), one of the pharmaceutical and personal care products (PPCPs), are frequently detected in various water bodies due to the strong biochemical stability and recalcitrance to conventional water treatment. Additionally, ICM pose a risk of forming iodinated by-products that can be detrimental to the aquatic ecosystem. Consequently, effectively removing ICM from aqueous environments is a significant concern for environmental researchers. This article provides a comprehensive review of the structural characteristics of ICM, their primary source (e.g., domestic and hospital wastewater), detected concentrations in water environments, and ecological health hazards associated with them. The current wastewater treatment technologies for ICM control are also reviewed in detail with the aim of providing a reference for future research. Prior researches have demonstrated that traditional treatment processes (such as physical adsorption, biochemical method and chemical oxidation method) have inadequate efficiencies in the removal of ICM. Currently, the application of advanced oxidation processes to remove ICM has become extensive, but there are some issues like poor deiodination efficiency and the risk of forming toxic intermediates or iodinated by-products. Conversely, reduction technologies have a high deiodination rate, enabling the targeted removal of ICM. But the subsequent treatment issues related to iodine (such as I- and OI-) are often underestimated, potentially generating iodinated by-products during the subsequent treatment processes. Hence, we proposed using combined reduction-oxidation technologies to remove ICM and achieved synchronous control of iodinated by-products. In the future, it is recommended to study the degradation efficiency of ICM and the control efficiency of iodinated by-products by combining different reduction and oxidation processes.


Asunto(s)
Yodo , Contaminantes Químicos del Agua , Purificación del Agua , Medios de Contraste/química , Ecosistema , Contaminantes Químicos del Agua/química , Yodo/química , Aguas Residuales , Purificación del Agua/métodos
17.
Environ Sci Technol ; 57(48): 20272-20281, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37943152

RESUMEN

Iodate is a stable form of iodine species in the natural environment. This work found that the abiotic photosensitized reduction of iodate by fulvic acid (FA) is highly enhanced in frozen solution compared to that in aqueous solution. The freezing-induced removal of iodate by FA at an initial pH of 3.0 in 24 h was lower than 10% in the dark but enhanced under UV (77.7%) or visible light (31.6%) irradiation. This process was accompanied by the production of iodide, reactive iodine (RI), and organoiodine compounds (OICs). The photoreduction of iodate in ice increased with lowering pH (pH 3-7 range) or increasing FA concentration (1-10 mg/L range). It was also observed that coexisting iodide or chloride ions enhanced the photoreduction of iodate in ice. Fourier transform ion cyclotron resonance mass spectrometric analysis showed that 129 and 403 species of OICs (mainly highly unsaturated and phenolic compounds) were newly produced in frozen UV/iodate/FA and UV/iodate/FA/Cl- solution, respectively. In the frozen UV/iodate/FA/Cl- solution, approximately 97% of generated organochlorine compounds (98 species) were identified as typical chlorinated disinfection byproducts. These results call for further studies of the fate of iodate, especially in the presence of chloride, which may be overlooked in frozen environments.


Asunto(s)
Yodatos , Yodo , Yodatos/análisis , Yodatos/química , Yoduros/análisis , Yoduros/química , Congelación , Cloruros , Hielo , Yodo/química
18.
Environ Sci Technol ; 57(41): 15580-15587, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37804225

RESUMEN

We present experimental evidence that atomic and molecular iodine, I and I2, are produced spontaneously in the dark at the air-water interface of iodide-containing droplets without any added catalysts, oxidants, or irradiation. Specifically, we observe I3- formation within droplets, and I2 emission into the gas phase from NaI-containing droplets over a range of droplet sizes. The formation of both products is enhanced in the presence of electron scavengers, either in the gas phase or in solution, and it clearly follows a Langmuir-Hinshelwood mechanism, suggesting an interfacial process. These observations are consistent with iodide oxidation at the interface, possibly initiated by the strong intrinsic electric field present there, followed by well-known solution-phase reactions of the iodine atom. This interfacial chemistry could be important in many contexts, including atmospheric aerosols.


Asunto(s)
Yodo , Agua , Agua/química , Yoduros/química , Yodo/química
19.
ACS Biomater Sci Eng ; 9(11): 6094-6102, 2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37856790

RESUMEN

A polymer with high contents of ester bonds and iodine atoms was synthesized, exhibiting sufficient biodegradability and radioactivity for biomedical applications. The iodine moieties of the synthesized polyester can generate halogen bonding between molecules, which may develop additional functional properties through the bonding. In this study, poly(glycerol adipate) (PGA) was selected and synthesized as a polyester, which was then adequately conjugated with three different types of iodine compounds via the hydroxy groups of PGA. It was found that the iodine compounds could effectively work as donors of halogen bonding. The thermal analysis by differential scanning calorimetry (DSC) revealed that the glass transition temperature increased with the increase in the strength of interactions caused by π-π stacking and halogen bonding, eventually reaching 49.6 °C for PGA with triiodobenzoic groups. An elastomeric PGA with monoiodobenzoic groups was also obtained, exhibiting a high self-healing ability at room temperature because of the reconstruction of halogen bonding. Such multifaceted performance of the synthesized polyester with controllable thermal/mechanical properties was realized by halogen bonding, leading to a promising biomaterial with multifunctionality.


Asunto(s)
Compuestos de Yodo , Yodo , Halógenos/química , Polímeros/química , Yodo/química , Poliésteres/química , Elasticidad
20.
Chemistry ; 29(70): e202302689, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-37712523

RESUMEN

Peptide and protein bioconjugation sees ever-growing applications in the pharmaceutical sector. Novel strategies and reagents that can address the chemo- and regioselectivity issues inherent to these biomolecules, while delivering stable and functionalizable conjugates, are therefore needed. Herein, we introduce the crosslinking ethynylbenziodazolone (EBZ) reagent JW-AM-005 for the conjugation of peptides and proteins through the selective linkage of cysteine residues. This easily accessed compound gives access to peptide dimers or stapled peptides under mild and tuneable conditions. Applied to the antibody fragment of antigen binding (Fab) species, JW-AM-005 delivered rebridged proteins in a one-pot three-reaction process with high regioselectivity, outperforming the standard reagents commonly used for this transformation.


Asunto(s)
Cisteína , Yodo , Cisteína/química , Reactivos de Enlaces Cruzados/química , Yodo/química , Proteínas/química , Péptidos , Indicadores y Reactivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA