Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 462
Filtrar
1.
J Environ Sci (China) ; 149: 500-511, 2025 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-39181662

RESUMEN

Formic and acetic acids are the most abundant gaseous organic acids and play the key role in the atmospheric chemistry. In iodine-adduct chemical ionization mass spectrometry (CIMS), the low utilization efficiency of methyl iodide and humidity interference are two major issues of the vacuum ultraviolet (VUV) lamp initiated CIMS for on-line gaseous formic and acetic acids analysis. In this work, we present a new CIMS based on VUV lamp, and the ion-molecular reactor is separated into photoionization and chemical ionization zones by a reducer electrode. Acetone was added to the photoionization zone, and the VUV photoionization acetone provided low-energy electrons for methyl iodide to generate I-, and the addition of acetone reduced the amount of methyl iodide by 2/3. In the chemical ionization zone, a headspace vial containing ultrapure water was added for humidity calibration, and the vial changes the sensitivity as a function of humidity from ambiguity to well linear correlation (R2 > 0.95). With humidity calibration, the CIMS can quantitatively measure formic and acetic acids in the humidity range of 0%-88% RH. In this mode, limits of detection of 10 and 50 pptv are obtained for formic and acetic acids, respectively. And the relative standard deviation (RSD) of quantitation stability for 6 days were less than 10.5%. This CIMS was successfully used to determine the formic and acetic acids in the underground parking and ambient environment of the Shandong University campus (Qingdao, China). In addition, we developed a simple model based formic acid concentration to assess vehicular emissions.


Asunto(s)
Espectrometría de Masas , Espectrometría de Masas/métodos , Contaminantes Atmosféricos/análisis , Yoduros/análisis , Yoduros/química , Rayos Ultravioleta , Formiatos/análisis , Formiatos/química , Atmósfera/química , Monitoreo del Ambiente/métodos , Procesos Fotoquímicos , Ácido Acético/análisis , Ácido Acético/química , Hidrocarburos Yodados/análisis , Hidrocarburos Yodados/química
2.
Biosens Bioelectron ; 262: 116524, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38971036

RESUMEN

The lateral flow assay (LFA) is an ideal technology for at-home medical diagnostic tests due to its ease of use, cost-effectiveness, and rapid results. Despite these advantages, only few LFAs, such as the pregnancy and COVID-19 tests, have been translated from the laboratory to the homes of patients. To date, the medical applicability of LFAs is limited by the fact that they only provide yes/no answers unless combined with optical readers that are too expensive for at-home applications. Furthermore, LFAs are unable to compete with the state-of-the-art technologies in centralized laboratories in terms of detection limits. To address those shortcomings, we have developed an electrochemical readout procedure to enable quantitative and sensitive LFAs. This technique is based on a voltage-triggered in-situ dissolution of gold nanoparticles, the conventional label used to visualize target-specific signals on the test line in LFAs. Following the dissolution, the amount of gold is measured by electroplating onto an electrode and subsequent electrochemical quantification of the deposited gold. The measured current has a low noise, which achieves superior detection limits compared to optical techniques where background light scattering is limiting the readout performance. In addition, the hardware for the readout was developed to demonstrate translatability towards low-cost electronics.


Asunto(s)
Técnicas Biosensibles , COVID-19 , Técnicas Electroquímicas , Oro , Nanopartículas del Metal , SARS-CoV-2 , Oro/química , Técnicas Biosensibles/métodos , Técnicas Biosensibles/instrumentación , Humanos , Técnicas Electroquímicas/métodos , Nanopartículas del Metal/química , SARS-CoV-2/aislamiento & purificación , COVID-19/diagnóstico , COVID-19/virología , Yoduros/análisis , Yoduros/química , Límite de Detección , Diseño de Equipo
3.
Anal Bioanal Chem ; 416(19): 4409-4415, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38864917

RESUMEN

We present a novel approach for iodide sensing based on the heavy-atom effect to quench the green fluorescent emission of organosilicon nanoparticles (OSiNPs). The fluorescence of OSiNPs was significantly quenched (up to 97.4% quenching efficiency) in the presence of iodide ions (I-) through oxidation by hydrogen peroxide. Therefore, OSiNPs can serve as a fluorescent probe to detect I- with high selectivity and sensitivity. The highly selective response is attributed to the hydrophilic surface enabling good dispersion in aqueous solutions and the lipophilic core allowing the generated liposoluble I2 to approach and quench the fluorescence of OSiNPs. The linear working range for I- was from 0 to 50 µM, with a detection limit of 0.1 µM. We successfully applied this nanosensor to determine iodine content in edible salt. Furthermore, the fluorescent OSiNPs can be utilized for the determination of total antioxidant capacity (TAC). Antioxidants reduce I2 to I-, and the extent of quenching by the remaining I2 on the OSiNPs indicates the TAC level. The responses to ascorbic acid, pyrogallic acid, and glutathione were investigated, and the detection limit for ascorbic acid was as low as 0.03 µM. It was applied to the determination of TAC in ascorbic acid tablets and fruit juices, indicating the potential application of the OSiNP-based I2 sensing technique in the field of food analysis.


Asunto(s)
Antioxidantes , Colorantes Fluorescentes , Yoduros , Límite de Detección , Nanopartículas , Yoduros/análisis , Yoduros/química , Nanopartículas/química , Antioxidantes/análisis , Antioxidantes/química , Colorantes Fluorescentes/química , Compuestos de Organosilicio/química , Espectrometría de Fluorescencia/métodos , Ácido Ascórbico/análisis , Jugos de Frutas y Vegetales/análisis
4.
Talanta ; 275: 125963, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38643712

RESUMEN

This work introduces an innovative gold-leaf flow cell for electrochemical detection in flow injection (FI) analysis. The flow cell incorporates a hammered custom gold leaf electrochemical sensor. Hammered gold leaves consist of pure gold and are readily available in Thailand at affordable prices (approximately $0.085 for a sheet measuring 40 mm × 40 mm). Four sensing devices can be made from a single sheet of this gold leaf, resulting in a production cost of approximately $0.19 per sensor. Each electrochemical sensor has the gold leaf as the working electrode, together with a printed carbon strip, and a printed silver/silver chloride strip as the counter and reference electrodes, respectively. Initial investigations using cyclic voltammetry of a standard 1000 µmol L⁻1 iodide solution in 60 mmol L⁻1 phosphate buffer (PB) solution at pH 5, demonstrated performance comparable to that of a commercial screen-printed gold electrode. The hammered gold leaf electrode was then installed in a commercial flow cell as part of an FI system. A sample or standard iodide solution (100 µL) is injected into the first carrier stream of phosphate buffer (PB) solution, which then merges to mix with the second stream of the same buffer solution before flowing into the flow cell for amperometric detection of iodide. The optimized operating conditions include a fixed potential of +0.39 V (vs Ag/AgCl), and a total flow rate of 3 mL min⁻1. A linear calibration is obtained in the concentration range of 1 to 1000 µmol L⁻1 I- with a typical equation of µA = (0.00299 ± 0.00004) × (µmol L-1 I-) + (0.021 ± 0.020), and R2 = 0.9994. Analysis of iodide using this gold leaf-FI system is rapid with sample throughput of 86 samples h⁻1 and %RSD of a sample of 100 µmol L⁻1 I⁻ of 1.2 (n = 29). The limit of detection, (calculated as 2.78 × SD of regression line/slope), is 27 µmol L⁻1 I-. This method was successfully applied to determine iodide in nuclear emergency tablets.


Asunto(s)
Técnicas Electroquímicas , Electrodos , Oro , Yoduros , Comprimidos , Yoduros/análisis , Oro/química , Comprimidos/análisis , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Análisis de Inyección de Flujo/métodos , Límite de Detección
5.
J Environ Sci (China) ; 142: 226-235, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38527888

RESUMEN

In North China, iodine-rich groundwater has been extensively studied, but few in South China. This study aimed to investigate the characteristics of iodine-rich groundwater in South China and identify potential contamination sources. The results revealed that the average concentration of iodine in groundwater was 890 µg/L, with a maximum concentration of 6350 µg/L, exceeding the permitted levels recommended by the World Health Organization (5-300 µg/L). Notably, the enrichment of iodide occurred in acidic conditions (pH = 6.6) and a relatively low Eh environment (Eh = 198.4 mV). Pearson correlation and cluster analyses suggested that the enrichment of iodide could be attributed to the intensified redox process involving Mn(II), iodine (I2), or iodate (IO3-) in the soil. The strong affinity between Mn(II) and I2/IO3- facilitated their interaction, resulting in the formation and mobilization of I- from the soil to the groundwater. Leaching experiments further confirmed that reducing substances (such as sodium sulfides, ascorbic acids, and fulvic acids) in the soil with low dissolved oxygen (DO) levels (< 1.0 mg/L) enhanced the dissolution of iodine species. Conversely, higher DO content (> 3.8 mg/L) promoted the oxidation of I- into I2 or IO3-, leading to its stabilization. This research provides new insights into the characteristics and mechanisms of I- enrichment in groundwater in South China, and emphasizes the significance of the redox reactions involving Mn(II) and I2/IO3-, as well as the influence of soil properties in regulating the occurrence and transportation of iodine species within groundwater systems.


Asunto(s)
Agua Subterránea , Yodo , Contaminantes Químicos del Agua , Yodo/análisis , Yoduros/análisis , Agua Subterránea/química , Suelo , China , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente
6.
Br J Nutr ; 131(10): 1740-1753, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38287697

RESUMEN

Iodine is a trace element required to produce the thyroid hormones, which are critical for development, growth and metabolism. To ensure appropriate population iodine nutrition, convenient and accurate methods of monitoring are necessary. Current methods for determining iodine status either involve a significant participant burden or are subject to considerable intra-individual variation. The continuous secretion of iodide in saliva potentially permits its use as a convenient, non-invasive assessment of status in populations. To assess its likely effectiveness, we reviewed studies analysing the association between salivary iodide concentration (SIC) and dietary iodine intake, urinary iodide concentration (UIC) and/or 24-h urinary iodide excretion (UIE). Eight studies conducted in different countries met the inclusion criteria, including data for 921 subjects: 702 healthy participants and 219 with health conditions. SIC correlated positively with UIC and/or UIE in four studies, with the strength of relationship ranging from r = 0·19 to r = 0·90 depending on sampling protocol, age, and if salivary values were corrected for protein concentration. Additionally, SIC positively correlated with dietary intake, being strongest when saliva was collected after dinner. SIC varied with external factors, including thyroid function, use of some medications, smoking and overall health status. Evidence provided here supports the use of SIC as a viable, low-burden method for determining iodine status in populations. However, small sample sizes and high variability indicates the need for more extensive analyses across age groups, ethnicities, disease states and dietary groups to clarify the relative accuracy and reliability in each case and standardise procedure.


Asunto(s)
Homeostasis , Yoduros , Yodo , Estado Nutricional , Saliva , Humanos , Yodo/análisis , Yodo/orina , Saliva/química , Saliva/metabolismo , Yoduros/análisis , Yoduros/metabolismo , Femenino , Dieta , Masculino , Adulto , Persona de Mediana Edad , Anciano
7.
Environ Sci Technol ; 57(48): 20272-20281, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37943152

RESUMEN

Iodate is a stable form of iodine species in the natural environment. This work found that the abiotic photosensitized reduction of iodate by fulvic acid (FA) is highly enhanced in frozen solution compared to that in aqueous solution. The freezing-induced removal of iodate by FA at an initial pH of 3.0 in 24 h was lower than 10% in the dark but enhanced under UV (77.7%) or visible light (31.6%) irradiation. This process was accompanied by the production of iodide, reactive iodine (RI), and organoiodine compounds (OICs). The photoreduction of iodate in ice increased with lowering pH (pH 3-7 range) or increasing FA concentration (1-10 mg/L range). It was also observed that coexisting iodide or chloride ions enhanced the photoreduction of iodate in ice. Fourier transform ion cyclotron resonance mass spectrometric analysis showed that 129 and 403 species of OICs (mainly highly unsaturated and phenolic compounds) were newly produced in frozen UV/iodate/FA and UV/iodate/FA/Cl- solution, respectively. In the frozen UV/iodate/FA/Cl- solution, approximately 97% of generated organochlorine compounds (98 species) were identified as typical chlorinated disinfection byproducts. These results call for further studies of the fate of iodate, especially in the presence of chloride, which may be overlooked in frozen environments.


Asunto(s)
Yodatos , Yodo , Yodatos/análisis , Yodatos/química , Yoduros/análisis , Yoduros/química , Congelación , Cloruros , Hielo , Yodo/química
8.
Environ Sci Technol ; 57(40): 15277-15287, 2023 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-37751521

RESUMEN

Bacterial sulfate reduction plays a crucial role in the mobilization of toxic substances in aquifers. However, the role of bacterial sulfate reduction on iodine mobilization in geogenic high-iodine groundwater systems has been unexplored. In this study, the enrichment of groundwater δ34SSO4 (15.56 to 69.31‰) and its significantly positive correlation with iodide and total iodine concentrations in deep groundwater samples of the North China Plain suggested that bacterial sulfate reduction participates in the mobilization of groundwater iodine. Similar significantly positive correlations were further observed between the concentrations of iodide and total iodine and the relative abundance of the dsrB gene by qPCR, as well as the composition and abundance of sulfate-reducing bacteria (SRB) predicted from 16S rRNA gene high-throughput sequencing data. Subsequent batch culture experiments by the SRB Desulfovibrio sp. B304 demonstrated that SRB could facilitate iodine mobilization through the enzyme-driven biotic and sulfide-driven abiotic reduction of iodate to iodide. In addition, the dehalogenation of organoiodine compounds by SRB and the reductive dissolution of iodine-bearing iron minerals by biogenic sulfide could liberate bound or adsorbed iodine into groundwater. The role of bacterial sulfate reduction in iodine mobilization revealed in this study provides new insights into our understanding of iodide enrichment in iodine-rich aquifers worldwide.


Asunto(s)
Arsénico , Agua Subterránea , Yodo , Contaminantes Químicos del Agua , Yodo/análisis , Yoduros/análisis , ARN Ribosómico 16S/genética , Bacterias/metabolismo , Sulfuros , Sulfatos/análisis , China , Contaminantes Químicos del Agua/análisis
9.
Zhonghua Yu Fang Yi Xue Za Zhi ; 57(6): 844-848, 2023 Jun 06.
Artículo en Chino | MEDLINE | ID: mdl-37357202

RESUMEN

The Drinking Water Sanitation Standard (GB 5749-2022) has been officially promulgated and implemented, with the iodide listed as a new reference indicator for water quality. This study interprets the distribution of iodine in environmental media, the impact of water iodine on health, the significance of establishing iodide standard limits, and the use of iodide standard limits, in order to provide a scientific basis for the application of iodide standard limits in this revised standard.


Asunto(s)
Agua Potable , Yodo , Contaminantes Químicos del Agua , Humanos , Calidad del Agua , Yoduros/análisis , China , Contaminantes Químicos del Agua/análisis
10.
Sci Total Environ ; 882: 163344, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37030373

RESUMEN

Oil and gas production generates large amounts of brine wastewater called "produced water" with various geogenic and synthetic contaminants. These brines are generally used in hydraulic fracturing operations to stimulate production. They are characterized by elevated halide levels, particularly geogenic bromide and iodide. Such salt concentrations in produced water may be as high as thousands of mg/L of bromide and tens of mg/L of iodide. Large volumes of produced water are stored, transported, reused in production operations, and ultimately disposed of by deep well injection into saline aquifers. Improper disposal may potentially contaminate shallow freshwater aquifers and impact drinking water sources. Because conventional produced water treatment typically does not remove halides, produced water contamination of groundwater aquifers may cause the formation of brominated and iodinated disinfection by-products (I-DBPs) at municipal water treatment plants. These compounds are of interest because of their higher toxicity relative to their chlorinated counterparts. This study reports a comprehensive analysis of 69 regulated and priority unregulated DBPs in simulated drinking waters fortified with 1 % (v/v) oil and gas wastewater. Impacted waters produced 1.3×-5× higher levels of total DBPs compared to river water after chlorination and chloramination. Individual DBP levels ranged from (<0.1-122 µg/L). Overall, chlorinated waters formed highest levels, including trihalomethanes that would exceed the U.S. EPA regulatory limit of 80 µg/L. Chloraminated waters had more I-DBP formation and highest levels of haloacetamides (23 µg/L) in impacted water. Calculated cytotoxicity and genotoxicity were higher for impacted waters treated with chlorine and chloramine than corresponding treated river waters. Chloraminated impacted waters had the highest calculated cytotoxicity, likely due to higher levels of more toxic I-DBPs and haloacetamides. These findings demonstrate that oil and gas wastewater if discharged to surface waters could adversely impact downstream drinking water supplies and potentially affect public health.


Asunto(s)
Desinfectantes , Agua Potable , Fracking Hidráulico , Contaminantes Químicos del Agua , Purificación del Agua , Desinfección , Agua Potable/análisis , Desinfectantes/análisis , Aguas Residuales , Yoduros/análisis , Bromuros/análisis , Contaminantes Químicos del Agua/análisis , Halogenación
11.
Anal Chim Acta ; 1239: 340700, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36628710

RESUMEN

The behaviour and distribution of iodine in the environment are of significant interest in a range of scientific disciplines, from health, as iodine is an essential element for humans and animals, to climate and air quality, to geochemistry. Aquatic environments are the reservoir for iodine, where it exists in low concentrations as iodide, iodate and dissolved organic iodine and in which it undergoes redox reactions. The current measurement techniques for iodine species are typically time-consuming, subject to relatively poor precision and require specialist instrumentation including those that require mercury as an electrode. We present a new method for measuring iodine species, that is tailored towards lower dissolved organic carbon waters, such as seawater, rainwater and snow, using ion exchange chromatography (IC) with direct ultra-violet spectrophotometric detection of iodide and without the need for sample pre-concentration. Simple chemical amendments to the sample allow for the quantification of both iodate and dissolved organic iodine in addition to iodide. The developed IC method, which takes 16 min, was applied to contrasting samples that encompass a wide range of aqueous environments, from Arctic sea-ice snow (low concentrations) to coastal seawater (complex sample matrix). Linear calibrations are demonstrated for all matrices, using gravimetrically prepared potassium iodide standards. The detection limit for the iodide ion is 0.12 nM based on the standard deviation of the blank, while sample reproducibility is typically <2% at >8 nM and ∼4% at <8 nM. Since there is no environmental certified reference material for iodine species, the measurements made on seawater samples using this IC method were compared to those obtained using established analytical techniques; iodide voltammetry and iodate spectrophotometry. We calculated recoveries of 102 ± 16% (n = 107) for iodide and 116 ± 9% (n = 103) for iodate, the latter difference may be due to an underestimation of iodate by the spectrophotometric method. We further compared a chemical oxidation and reduction of the sample to an ultra-violet digestion to establish the total dissolved iodine content, the average recovery following chemical amendments was 98 ± 4% (n = 92). The new method represents a simple, efficient, green, precise and sensitive method for measuring dissolved speciated iodine in complex matrices.


Asunto(s)
Yodo , Animales , Humanos , Yodo/análisis , Yoduros/análisis , Yodatos/análisis , Nieve , Reproducibilidad de los Resultados , Agua de Mar/química , Espectrofotometría , Cromatografía por Intercambio Iónico
12.
Environ Sci Technol ; 57(6): 2625-2635, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36668684

RESUMEN

Microorganisms play crucial roles in the global iodine cycling through iodine oxidation, reduction, volatilization, and deiodination. In contrast to iodate formation in radionuclide-contaminated groundwater by the iodine-oxidizing bacteria, microbial contribution to the formation of high level of iodide in geogenic high iodine groundwater is poorly understood. In this study, our results of comparative metagenomic analyses of deep groundwater with typical high iodide concentrations in the North China Plain revealed the existence of putative dissimilatory iodate-reducing idrABP1P2 gene clusters in groundwater. Heterologous expression and characterization of an identified idrABP1P2 gene cluster confirmed its functional role in iodate reduction. Thus, microbial dissimilatory iodate reduction could contribute to iodide formation in geogenic high iodine groundwater. In addition, the identified iron-reducing, sulfur-reducing, sulfur-oxidizing, and dehalogenating bacteria in the groundwater could contribute to the release and production of iodide through the reductive dissolution of iron minerals, abiotic iodate reduction of derived ferrous iron and sulfide, and dehalogenation of organic iodine, respectively. These microbially mediated iodate reduction and organic iodine dehalogenation processes may also result in the transformation among iodine species and iodide enrichment in other geogenic iodine-rich groundwater systems worldwide.


Asunto(s)
Agua Subterránea , Yodo , Contaminantes Químicos del Agua , Yoduros/análisis , Yodatos/análisis , Yodo/análisis , Hierro , Bacterias/genética , Bacterias/metabolismo , Oxidación-Reducción , China , Azufre/análisis , Contaminantes Químicos del Agua/análisis
13.
Environ Sci Process Impacts ; 25(2): 277-287, 2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36189623

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) are a class of ultra-persistent anthropogenic contaminants. PFAS are ubiquitous in environmental and built systems, but very few online methods exist for their characterization in atmospheric gases and aerosols. Iodide time-of-flight chemical ionization mass spectrometry (iodide-ToF-CIMS) is a promising technology for online characterization of PFAS in the atmosphere. Previous work using iodide-ToF-CIMS was successful in measuring gas-phase perfluoroalkyl carboxylic acids and fluorotelomer alcohols, but those are just two of the myriad classes of PFAS that are atmospherically relevant. Therefore, our first objective was to test other sample introduction methods coupled to iodide-TOF-CIMS to evaluate its ability to measure a wider suite of PFAS in both gas and aerosol phases. Using a variety of sample introduction techniques, we successfully measured gas-phase fluorotelomer alcohols (FTOHs), gas and aerosol-phase perfluoroalkyl carboxylic acids (PFCAs), and aerosol-phase perfluoroalkyl sulfonic acids and polyfluoroalkyl phosphoric acid diesters (PFSAs and diPAPs). We also determined iodide-ToF-CIMS response factors for these compounds by introducing known quantities using a Filter Inlet for Gases and AEROsols (FIGAERO). These response factors ranged from 400 to 6 × 104 ions per nanogram, demonstrating low limits of detection. Furthermore, PFAS are a poorly understood diverse class of molecules that exhibit unusual and often unexpected physicochemical properties due to their highly fluorinated nature. Since detection of PFAS with iodide-ToF-CIMS relies on the analyte molecule to either undergo proton transfer or adduct formation with iodide, understanding PFAS behavior during chemical ionization gives rise to a more fundamental understanding of these compounds. Through voltage scanning experiments and DFT calculations, we found that PFCAs and FTOHs readily form iodide adducts, while PFSAs and diPAPs preferentially undergo proton transfer to iodide. Generally, binding energy increased with increasing linear chain length, and PFCAs had stronger binding than FTOHs. Overall, our results suggest that iodide-ToF-CIMS can be used to measure even nonvolatile PFAS such as PFSAs and diPAPs in the aerosol phase in a semi-continuous online fashion.


Asunto(s)
Fluorocarburos , Contaminantes Químicos del Agua , Monitoreo del Ambiente/métodos , Yoduros/análisis , Protones , Fluorocarburos/análisis , Ácidos Carboxílicos/análisis , Espectrometría de Masas , Contaminantes Químicos del Agua/análisis
14.
Anal Methods ; 14(37): 3623-3631, 2022 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-36047386

RESUMEN

A complete protocol is presented for the speciation analysis of 129I for both inorganic and organic iodine in seawater using coprecipitation and solid-phase extraction (SPE) combined with accelerator mass spectrometry (AMS). By modifying the iodide separation process and adding a crossover removal step, the improved coprecipitation method significantly reduces the cross-contamination of iodide and iodate to less than 0.05% in the speciation analysis of inorganic 129I, with the separation efficiencies of about 95% and 93% for iodide and iodate, respectively. The SPE-DOI method for the dissolved organic 129I (DO129I) analysis was developed, whereby we report the first direct observation of DO129I/DO127I atom ratios in seawater in this paper. 129I species in seawater from Tokyo Bay were analysed. The 129I results demonstrated that our protocol for speciation analysis of 129I is reliable and provided new insights into understanding the iodine cycle.


Asunto(s)
Yoduros , Yodo , Yodatos/análisis , Yodatos/química , Yoduros/análisis , Yoduros/química , Yodo/análisis , Yodo/química , Radioisótopos de Yodo , Agua de Mar/química
15.
Anal Chem ; 94(27): 9835-9843, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35771968

RESUMEN

Atmospheric iodine cycling is of significance in climate change and environmental and health impacts. To better explore speciation transformation of atmospheric stable and radioactive iodine, an ultra-sensitive analytical method was established for determination of 129I and 127I in particulate, gaseous inorganic, and gaseous organic species, which was conducted with a self-designed cascade sampling apparatus, followed by their separation with a pyrolysis system and accelerator mass spectrometry and ICP-MS measurements. Combustion protocols for three sampling matrices and NaOH concentration for iodine trapping were optimized to achieve a safe analytical procedure with a high chemical yield of iodine. Based on the lowest concentrations of 129I and 127I, a suitable activated carbon product for adsorption of gaseous organic iodine was carefully selected. The detection limits of the three species were 0.30-2.21 ng m-3 for 127I and 0.05-0.22 × 105 atoms m-3 for 129I. This newly established method was successfully applied to analyze the levels and species of 129I and 127I in ambinet air from Xi'an, China, from May to August, 2020. Gaseous organic iodine was found to be the dominant species of 127I and 129I, accounting for about half of total iodine, and gaseous inorganic iodine and particulate iodine accounted for one-quarter each during the whole sampling period. Speciation variation of 129I and 127I indicates that speciation transformation apparently occurred at the turn of spring and summer, mainly between particulate and gaseous organic iodine. This study has implications on delicate tracing of the atmospheric behavior of iodine with long-lived anthropogenic 129I.


Asunto(s)
Contaminantes Atmosféricos , Yodo , Neoplasias de la Tiroides , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , Gases/análisis , Humanos , Yoduros/análisis , Radioisótopos de Yodo , Material Particulado/análisis
16.
Food Chem ; 368: 130810, 2022 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-34403996

RESUMEN

A novel method based on diffused reflectance Fourier-transform infrared spectroscopy (DRS-FTIR) was employed for iodate determination in food grade salt and food products. The method attained sensitivity that was comparable to or better than that in most of the contemporary spectrophotometric methods. This was realized through a combination of azo dye formation and dispersive liquid-liquid microextraction of dye when a 37-fold enrichment was obtained. FT-IR enabled integrating alternative target peak, and freedom in sample solvent composition relative to UV-visible spectrophotometry where the solvent polarity, pH, and presence of ions may affect the spectral properties of the measurable coloured species. Food samples containing iodide or covalently bonded iodine were oxidized with alkaline permanganate for mineralization and iodate formation. Optimization of both reaction conditions was carried out by means of response surface methodology. The method had a linear range 0.04-10 mg kg-1 iodate and limit of detection of 4.4 µg kg-1.


Asunto(s)
Microextracción en Fase Líquida , Yodatos/análisis , Yoduros/análisis , Límite de Detección , Espectroscopía Infrarroja por Transformada de Fourier
17.
Molecules ; 26(22)2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34833891

RESUMEN

Iodine is an essential component for fetal neurodevelopment and maternal thyroid function. Urine iodine is the most widely used indicator of iodine status. In this study, a novel validated ion-pair HPLC-UV method was developed to measure iodine concentration in clinical samples. A sodium thiosulfate solution was added to the urine sample to convert the total free iodine to iodide. Chromatographic separation was achieved in a Pursuit XRs C8 column. The mobile phase consisted of acetonitrile and a water phase containing 18-crown-6-ether, octylamine and sodium dihydrogen phosphate. Validation parameters, such as accuracy, precision, limits of detection and quantification, linearity and stability, were determined. Urinary samples from pregnant women were used to complete the validation and confirm the method's applicability. In the studied population of 93 pregnant women, the median UIC was lower in the group without iodine supplementation (117 µg/L, confidence interval (%CI): 95; 138) than in the supplement group (133 µg/L, %CI: 109; 157). In conclusion, the newly established ion-pair HPLC-UV method was adequately precise, accurate and fulfilled validation the criteria for analyzing compounds in biological fluids. The method is less complicated and expensive than other frequently used assays and permits the identification of the iodine-deficient subjects.


Asunto(s)
Yodo/análisis , Yodo/orina , Adulto , Cromatografía Líquida de Alta Presión/métodos , Suplementos Dietéticos , Femenino , Humanos , Yoduros/análisis , Persona de Mediana Edad , Estado Nutricional , Polonia , Embarazo , Mujeres Embarazadas , Tiosulfatos/química
18.
Drug Dev Ind Pharm ; 47(8): 1209-1222, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34601978

RESUMEN

OBJECTIVE: It is clinically important to deliver a sustained-release mucoadhesive dosage of local anesthetic and antimicrobial agents for pain control. The current study aimed to develop and evaluate chitosan (CHI) based buccal mucoadhesive delivery for the local release of tibezonium iodide (TBN) and lignocaine hydrochloride (LGN). METHODS: Direct compression technique was employed, aided by other mucoadhesive polymers like hydroxypropylmethylcellulose (HPMC) and sodium alginate (SA) and evaluated for physicochemical and in vivo character. RESULTS: Fourier transform infrared spectral analysis (FTIR), powdered X-ray diffraction (XRPD), and differential scanning calorimetry (DSC) absence of physical interaction between ingredients. The physical parameters complied with USP specifications for all formulations. Optimum swellability (551.9%) was offered from formulation TL15, containing 30% SA. The highest ex vivo mucoadhesive strength (24.79 g) and time (18.39 h) was found with TL8. Formulation TL8 also exhibited maximum in vivo residence time (11.37 h). Almost complete drug release at 6 h was possessed by formulation TL5 (HPMC and CHI, 20% each) for TBN (99.98%) and LGN (99.06%). The optimized formulation TL5 exhibited dosage stability up to 6 months at 75% relative humidity and retained drug contents. TL5 was well tolerated by the volunteers with no inflammation, pain or irritation found. Almost 73% of volunteers reported an increase in salivary secretion. The first-order salivary Cmax of TBN and LGN were found as 16.02 and 7.80 µg/mL within 4 h, respectively. CONCLUSION: Therefore, the sustained release mucoadhesive dosage form of TBN and LGN can be an effective and alternative option to conventional delivery.


Asunto(s)
Yoduros , Mucosa Bucal , Adhesividad , Administración Bucal , Benzodiazepinas , Humanos , Derivados de la Hipromelosa/química , Yoduros/análisis , Lidocaína , Mucosa Bucal/química , Dolor/tratamiento farmacológico , Comprimidos/análisis
19.
Nutrients ; 13(1)2021 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-33466826

RESUMEN

Iodine is essential for normal thyroid function, supporting healthy fetal and child development. Iodine requirements increase in pregnancy, but many women in regions without salt iodization have insufficient intakes. We explored associations between iodide intake and urinary iodine concentration (UIC), urinary iodine/creatinine ratio (I/Cr), thyroid stimulating hormone, thyroglobulin, free triiodothyronine, free thyroxine and palpable goiter in a region of mild-to-moderate iodine insufficiency. A total of 246 pregnant women aged 18-40 in Bradford, UK, joined the Health and Iodine in Babies (Hiba) study. They provided detailed information on diet and supplement use, urine and serum samples and were assessed for goiter at around 12, 26 and 36 weeks' gestation, and 6, 18 and 30 weeks postpartum. Dietary iodide intake from food and drink was estimated using six 24 h recalls. During pregnancy, median (IQR) dietary iodide intake was 101 µg/day (54, 142), with 42% from dairy and 9% from white fish. Including supplements, intake was 143 µg/day (94, 196), with 49% < UK reference nutrient intake (140 µg/day). Women with Pakistani heritage had 129 µg/day (87, 190) median total intake. Total intake during pregnancy was associated with 4% (95% CI: 1%, 7%) higher UIC, 5% (3%, 7%) higher I/Cr, 4% (2%, 6%) lower thyroglobulin and 21% (9%, 32%) lower odds of palpable goiter per 50 µg/day. This cohort consumed less iodide in pregnancy than UK and World Health Organization dietary recommendations. UIC, I/Cr and thyroglobulin were associated with intake. Higher intake was associated with fewer goiters. Because dairy was the dominant source of iodide, women following plant-based or low-dairy diets may be at particular risk of iodine insufficiency.


Asunto(s)
Enfermedades Carenciales , Yoduros/análisis , Yodo , Fenómenos Fisiologicos Nutricionales Maternos/fisiología , Hormonas Tiroideas/sangre , Adolescente , Adulto , Enfermedades Carenciales/sangre , Enfermedades Carenciales/epidemiología , Enfermedades Carenciales/orina , Dieta/estadística & datos numéricos , Suplementos Dietéticos/estadística & datos numéricos , Femenino , Humanos , Yodo/deficiencia , Yodo/orina , Periodo Posparto/fisiología , Embarazo/estadística & datos numéricos , Reino Unido , Adulto Joven
20.
Environ Geochem Health ; 43(2): 791-812, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32100242

RESUMEN

Datong Basin in China is a typical arid-semiarid inland basin, with high levels and wide distributions of arsenic (As), fluoride (F-), and iodine (I). To better understand the presence of low-quality groundwater in Datong Basin and assess the health risks for local residents, groundwater samples were collected from the shallow aquifer and in medium-deep groundwater and analyzed for As, F-, I, and nitrate (NO3-). Maxima of 1932 µg/L for As, 80.89 mg/L for F-, 2300 µg/L for I, and 3854.74 mg/L for NO3- were detected in shallow groundwater, which greatly exceeded the WHO limits for drinking purpose. High-As groundwater was present in both shallow and medium-deep aquifers. High-F- and high-NO3- groundwater was widely distributed in the shallow aquifer, and high-I groundwater was mainly present in the medium-deep aquifers. Poor-quality groundwater in the Datong Basin is mainly caused by local geological and climatic conditions, which are characterized by strong evaporation, active water-rock interactions, thick lacustrine sediment, low groundwater flow rate, and reducing and weak alkaline environments. However, groundwater quality was further impacted by agricultural activities in some areas, as shallow groundwater was also polluted by nitrate. Datong Basin inhabitants face high health risk caused by high concentrations of As, F-, I, and NO3-. The mean noncarcinogenic risk values (HQtotal) were 18.40 for children, 10.94 for adult females, and 9.47 for adult males due to exposure to contaminants in shallow groundwater; and 13.76 for children, 8.18 for adult females, and 7.08 for adult males because of exposure to medium-deep groundwater. Further, the carcinogenic risks (CR) caused by exposure to As were very high for local inhabitants, with the mean and median CR values of 4.20×10-3 and 4.13×10-4 in shallow groundwater and 3.44×10-3 and 1.71×10-4 in medium-deep groundwater, respectively.


Asunto(s)
Monitoreo del Ambiente/métodos , Agua Subterránea/química , Contaminantes Químicos del Agua/análisis , Adulto , Arsénico/análisis , Niño , China , Femenino , Fluoruros/análisis , Humanos , Yoduros/análisis , Masculino , Nitratos/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...