Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 369
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Plant Physiol ; 188(1): 81-96, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-34662407

RESUMEN

Bicontinuous membranes in cell organelles epitomize nature's ability to create complex functional nanostructures. Like their synthetic counterparts, these membranes are characterized by continuous membrane sheets draped onto topologically complex saddle-shaped surfaces with a periodic network-like structure. Their structure sizes, (around 50-500 nm), and fluid nature make transmission electron microscopy (TEM) the analysis method of choice to decipher their nanostructural features. Here we present a tool, Surface Projection Image Recognition Environment (SPIRE), to identify bicontinuous structures from TEM sections through interactive identification by comparison to mathematical "nodal surface" models. The prolamellar body (PLB) of plant etioplasts is a bicontinuous membrane structure with a key physiological role in chloroplast biogenesis. However, the determination of its spatial structural features has been held back by the lack of tools enabling the identification and quantitative analysis of symmetric membrane conformations. Using our SPIRE tool, we achieved a robust identification of the bicontinuous diamond surface as the dominant PLB geometry in angiosperm etioplasts in contrast to earlier long-standing assertions in the literature. Our data also provide insights into membrane storage capacities of PLBs with different volume proportions and hint at the limited role of a plastid ribosome localization directly inside the PLB grid for its proper functioning. This represents an important step in understanding their as yet elusive structure-function relationship.


Asunto(s)
Membrana Celular/fisiología , Membrana Celular/ultraestructura , Productos Agrícolas/crecimiento & desarrollo , Productos Agrícolas/ultraestructura , Plastidios/fisiología , Plastidios/ultraestructura , Avena/crecimiento & desarrollo , Avena/ultraestructura , Cucumis sativus/crecimiento & desarrollo , Cucumis sativus/ultraestructura , Microscopía Electrónica de Transmisión/métodos , Modelos Teóricos , Pisum sativum/crecimiento & desarrollo , Pisum sativum/ultraestructura , Phaseolus/crecimiento & desarrollo , Phaseolus/ultraestructura , Programas Informáticos , Zea mays/crecimiento & desarrollo , Zea mays/ultraestructura
2.
Plant Sci ; 311: 110986, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34482923

RESUMEN

In recent years, the plant morphology has been well studied by multiple approaches at cellular and subcellular levels. Two-dimensional (2D) microscopy techniques offer imaging of plant structures on a wide range of magnifications for researchers. However, subcellular imaging is still challenging in plant tissues like roots and seeds. Here we use a three-dimensional (3D) imaging technology based on the X-ray microscope (XRM) and analyze several plant tissues from different plant species. The XRM provides new insights into plant structures using non-destructive imaging at high-resolution and high contrast. We also utilized a workflow aiming to acquire accurate and high-quality images in the context of the whole specimen. Multiple plant samples including rice, tobacco, Arabidopsis and maize were used to display the differences of phenotypes. Our work indicates that the XRM is a powerful tool to investigate plant microstructure in high-resolution scale. Our work also provides evidence that evaluate and quantify tissue specific differences for a range of plant species. We also characterize novel plant tissue phenotypes by the XRM, such as seeds in Arabidopsis, and utilize them for novel observation measurement. Our work represents an evaluated spatial and temporal resolution solution on seed observation and screening.


Asunto(s)
Arabidopsis/ultraestructura , Imagenología Tridimensional , Nicotiana/ultraestructura , Orgánulos/ultraestructura , Oryza/ultraestructura , Semillas/ultraestructura , Zea mays/ultraestructura , Oryza/anatomía & histología , Tomografía Computarizada por Rayos X
3.
Nat Plants ; 7(4): 514-523, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33875833

RESUMEN

Etioplasts are photosynthetically inactive plastids that accumulate when light levels are too low for chloroplast maturation. The etioplast inner membrane consists of a paracrystalline tubular lattice and peripheral, disk-shaped membranes, respectively known as the prolamellar body and prothylakoids. These distinct membrane regions are connected into one continuous compartment. To date, no structures of protein complexes in or at etioplast membranes have been reported. Here, we used electron cryo-tomography to explore the molecular membrane landscape of pea and maize etioplasts. Our tomographic reconstructions show that ATP synthase monomers are enriched in the prothylakoids, and plastid ribosomes in the tubular lattice. The entire tubular lattice is covered by regular helical arrays of a membrane-associated protein, which we identified as the 37-kDa enzyme, light-dependent protochlorophyllide oxidoreductase (LPOR). LPOR is the most abundant protein in the etioplast, where it is responsible for chlorophyll biosynthesis, photoprotection and defining the membrane geometry of the prolamellar body. Based on the 9-Å-resolution volume of the subtomogram average, we propose a structural model of membrane-associated LPOR.


Asunto(s)
Cloroplastos/ultraestructura , Membranas Intracelulares/ultraestructura , Pisum sativum/ultraestructura , Zea mays/ultraestructura , Tomografía con Microscopio Electrónico
4.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33536333

RESUMEN

Mechanical impedance limits soil exploration and resource capture by plant roots. We examine the role of root anatomy in regulating plant adaptation to mechanical impedance and identify a root anatomical phene in maize (Zea mays) and wheat (Triticum aestivum) associated with penetration of hard soil: Multiseriate cortical sclerenchyma (MCS). We characterize this trait and evaluate the utility of MCS for root penetration in compacted soils. Roots with MCS had a greater cell wall-to-lumen ratio and a distinct UV emission spectrum in outer cortical cells. Genome-wide association mapping revealed that MCS is heritable and genetically controlled. We identified a candidate gene associated with MCS. Across all root classes and nodal positions, maize genotypes with MCS had 13% greater root lignin concentration compared to genotypes without MCS. Genotypes without MCS formed MCS upon exogenous ethylene exposure. Genotypes with MCS had greater lignin concentration and bending strength at the root tip. In controlled environments, MCS in maize and wheat was associated improved root tensile strength and increased penetration ability in compacted soils. Maize genotypes with MCS had root systems with 22% greater depth and 49% greater shoot biomass in compacted soils in the field compared to lines without MCS. Of the lines we assessed, MCS was present in 30 to 50% of modern maize, wheat, and barley cultivars but was absent in teosinte and wild and landrace accessions of wheat and barley. MCS merits investigation as a trait for improving plant performance in maize, wheat, and other grasses under edaphic stress.


Asunto(s)
Raíces de Plantas/anatomía & histología , Suelo , Triticum/anatomía & histología , Zea mays/anatomía & histología , Fenómenos Biomecánicos/efectos de los fármacos , Etilenos/farmacología , Genoma de Planta , Estudio de Asociación del Genoma Completo , Genotipo , Lignina/metabolismo , Fenotipo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/ultraestructura , Sitios de Carácter Cuantitativo/genética , Espectroscopía Infrarroja por Transformada de Fourier , Triticum/efectos de los fármacos , Triticum/genética , Triticum/ultraestructura , Zea mays/efectos de los fármacos , Zea mays/genética , Zea mays/ultraestructura
5.
Plant Sci ; 304: 110823, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33568312

RESUMEN

Waterlogging stress in maize is one of the emerging abiotic stresses in the current climate change scenario. To gain insights in transcriptional reprogramming during late hours of waterlogging stress under field conditions, we aimed to elucidate the transcriptional and anatomical changes in two contrasting maize inbreds viz. I110 (susceptible) and I172 (tolerant). Waterlogging stress reduced dry matter translocations from leaves and stems to ears, resulting in a lack of sink capacity and inadequate grain filling in I110, thus decreased the grain yield drastically. The development of aerenchyma cells within 48 h in I172 enabled hypoxia tolerance. The upregulation of alanine aminotransferase, ubiquitin activating enzyme E1, putative mitogen activated protein kinase and pyruvate kinase in I172 suggested that genes involved in protein degradation, signal transduction and carbon metabolism provided adaptive mechanisms during waterlogging. Overexpression of alcohol dehydrogenase, sucrose synthase, aspartate aminotransferase, NADP dependent malic enzyme and many miRNA targets in I110 indicated that more oxygen and energy consumption might have shortened plant survival during long-term waterlogging exposure. To the best of our knowledge, this is the first report of transcript profiling at late stage (24-96 h) of waterlogging stress under field conditions and provides new visions to understand the molecular basis of waterlogging tolerance in maize.


Asunto(s)
Zea mays/fisiología , Adaptación Fisiológica/fisiología , Microscopía Electrónica de Rastreo , Raíces de Plantas/fisiología , Raíces de Plantas/ultraestructura , Reacción en Cadena en Tiempo Real de la Polimerasa , Estrés Fisiológico , Transcriptoma , Agua/metabolismo , Zea mays/crecimiento & desarrollo , Zea mays/metabolismo , Zea mays/ultraestructura
6.
Nat Commun ; 11(1): 5346, 2020 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-33093471

RESUMEN

The mechanism that creates vitreous endosperm in the mature maize kernel is poorly understood. We identified Vitreous endosperm 1 (Ven1) as a major QTL influencing this process. Ven1 encodes ß-carotene hydroxylase 3, an enzyme that modulates carotenoid composition in the amyloplast envelope. The A619 inbred contains a nonfunctional Ven1 allele, leading to a decrease in polar and an increase in non-polar carotenoids in the amyloplast. Coincidently, the stability of amyloplast membranes is increased during kernel desiccation. The lipid composition in endosperm cells in A619 is altered, giving rise to a persistent amyloplast envelope. These changes impede the gathering of protein bodies and prevent them from interacting with starch grains, creating air spaces that cause an opaque kernel phenotype. Genetic modifiers were identified that alter the effect of Ven1A619, while maintaining a high ß-carotene level. These studies provide insight for breeding vitreous kernel varieties and high vitamin A content in maize.


Asunto(s)
Carotenoides/metabolismo , Zea mays/metabolismo , Alelos , Mapeo Cromosómico , Cruzamientos Genéticos , Endospermo/genética , Endospermo/metabolismo , Endospermo/ultraestructura , Genes de Plantas , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Fenotipo , Fitomejoramiento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plastidios/genética , Plastidios/metabolismo , Plastidios/ultraestructura , Sitios de Carácter Cuantitativo , Semillas/genética , Semillas/metabolismo , Semillas/ultraestructura , Zea mays/genética , Zea mays/ultraestructura
7.
PLoS One ; 15(9): e0232566, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32941421

RESUMEN

Hydathode is a plant organ responsible for guttation in vascular plants, i.e. the release of droplets at leaf margin or surface. Because this organ connects the plant vasculature to the external environment, it is also a known entry site for several vascular pathogens. In this study, we present a detailed microscopic examination of leaf apical hydathodes in monocots for three crops (maize, rice and sugarcane) and the model plant Brachypodium distachyon. Our study highlights both similarities and specificities of those epithemal hydathodes. These observations will serve as a foundation for future studies on the physiology and the immunity of hydathodes in monocots.


Asunto(s)
Brachypodium/ultraestructura , Productos Agrícolas/ultraestructura , Oryza/ultraestructura , Hojas de la Planta/ultraestructura , Saccharum/ultraestructura , Zea mays/ultraestructura
8.
Planta ; 252(2): 23, 2020 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-32676847

RESUMEN

MAIN CONCLUSION: The changes in the expression of key sugar metabolism enzymes (SPS and SUS), sucrose content and arrangement of chloroplast starch may play a significant role in the cold response in M. giganteus and maize plants. To understand the mechanism of the chilling-response of two closely-related C4 plants, we investigated the changes in the expression of sucrose phosphate synthase (SPS) and sucrose synthase (SUS) as well as changes in their potential products: sucrose, cellulose and starch in the leaves of Miscanthus × giganteus and Zea mays. Low temperature (12-14 °C) increased SPS content in Miscanthus (MG) and chilling-sensitive maize line (Zm-S), but not in chilling-tolerant one (Zm-T). In Zm-S line, chilling also caused the higher intensity of labelling of SPS in the cytoplasm of mesophyll cells, as demonstrated by electron microscopy. SUS labelling was also increased by cold stress only in MG plants what was observed in the secondary wall between mesophyll and bundle sheath cells, as well as in the vacuoles of companion cells. Cold led to a marked increase in total starch grain area in the chloroplasts of Zm-S line. In turn, Fourier transform infrared spectroscopy (FTIR) showed a slight shift in the cellulose band position, which may indicate the formation of more compact cellulose arrangement in Zm-T maize line. In conclusion, this work presents new findings supporting diversified cold-response, not only between two C4 plant species but also within one species of maize.


Asunto(s)
Metabolismo de los Hidratos de Carbono , Glucosiltransferasas/metabolismo , Poaceae/enzimología , Zea mays/enzimología , Celulosa/metabolismo , Cloroplastos/metabolismo , Frío , Inmunohistoquímica , Hojas de la Planta/enzimología , Hojas de la Planta/fisiología , Hojas de la Planta/ultraestructura , Proteínas de Plantas/metabolismo , Poaceae/fisiología , Poaceae/ultraestructura , Almidón/metabolismo , Estrés Fisiológico , Sacarosa/metabolismo , Zea mays/fisiología , Zea mays/ultraestructura
9.
Folia Microbiol (Praha) ; 65(5): 849-861, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32372279

RESUMEN

Fungi can improve stover digestibility due to their ability to secrete oxidative enzymes that depolymerize lignin, allowing the rumen microorganisms to access the polysaccharides of the plant cell wall. Some ascomycetes have shown good delignification capability; however, they have been scarcely evaluated for their ability to improve corn stover (CS) ruminal digestibility. We evaluated the laccase induction by CS of the CMU-196 strain of the ascomycete fungus Didymosphaeria sp. (syn. = Paraconiothyrium sp.). Also, we analyzed the capacity of such strain to modify the cell wall of CS and to improve its digestion by the ruminal microbiota. The CMU-196 strain showed a maximum extracellular laccase activity of 39.74 ± 0.24 U/L when an aqueous stover extract (SE, 10% v/v) was added to the growth medium. The addition of ground stover (GS, 2% w/v) increased the activity to a maximum of 262.27 ± 0.58 U/L. In solid-state fermentation (SSF) assays of GS, the strain degrades cell walls, destabilizing the vessels and tracheids of plant biomass; the protein content reaches a maximum of 33.2 g/kg dry matter (DM) at 70 days, while the crude fiber content shows the highest level of 314 g/kg DM at 14 days. SSF treatment of the CS increased the in vitro ruminal production of gas in a fraction that was considered nondigestible at 18 h, and gas production increased by 14% with respect to the untreated GS at 14 days. The CMU-196 strain can digest the plant cell wall and improve ruminal CS digestibility at a level equivalent to several basidiomycete species.


Asunto(s)
Ascomicetos/metabolismo , Lacasa/metabolismo , Zea mays/metabolismo , Alimentación Animal/análisis , Alimentación Animal/microbiología , Animales , Ascomicetos/enzimología , Ascomicetos/crecimiento & desarrollo , Biomasa , Pared Celular/metabolismo , Pared Celular/ultraestructura , Fermentación , Lignina/metabolismo , Rumen/microbiología , Zea mays/ultraestructura
10.
Microsc Res Tech ; 83(5): 490-498, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32319189

RESUMEN

Starch granules from rice and corn were isolated, and their molecular mechanism on interaction with α-amylase was characterized through biochemical test, microscopic imaging, and spectroscopic measurements. The micro-scale structure of starch granules were observed under an optical microscope and their average size was in the range 1-100 µm. The surface topological structures of starch with micro-holes due to the effect of α- amylase were also visualized under scanning electron microscope. The crystallinity was confirmed by X-ray diffraction patterns as well as second-harmonic generation microscopy. The change in chemical bonds before and after hydrolysis of the starch granules by α- amylase was determined by Fourier transform infrared spectroscopy. Combination of microscopy and spectroscopy techniques relates structural and chemical features that explain starch enzymatic hydrolysis which will provide a valid basis for future studies in food science and insights into the energy transformation dynamics.


Asunto(s)
Oryza/ultraestructura , Almidón/metabolismo , Almidón/ultraestructura , Zea mays/ultraestructura , alfa-Amilasas/metabolismo , Hidrólisis , Microscopía Electrónica de Rastreo , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X
11.
Nat Commun ; 11(1): 495, 2020 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-31980630

RESUMEN

Maize rough dwarf disease (MRDD), caused by various species of the genus Fijivirus, threatens maize production worldwide. We previously identified a quantitative locus qMrdd1 conferring recessive resistance to one causal species, rice black-streaked dwarf virus (RBSDV). Here, we show that Rab GDP dissociation inhibitor alpha (RabGDIα) is the host susceptibility factor for RBSDV. The viral P7-1 protein binds tightly to the exon-10 and C-terminal regions of RabGDIα to recruit it for viral infection. Insertion of a helitron transposon into RabGDIα intron 10 creates alternative splicing to replace the wild-type exon 10 with a helitron-derived exon 10. The resultant splicing variant RabGDIα-hel has difficulty being recruited by P7-1, thus leading to quantitative recessive resistance to MRDD. All naturally occurring resistance alleles may have arisen from a recent single helitron insertion event. These resistance alleles are valuable to improve maize resistance to MRDD and potentially to engineer RBSDV resistance in other crops.


Asunto(s)
Resistencia a la Enfermedad , Inhibidores de Disociación de Guanina Nucleótido/metabolismo , Enfermedades de las Plantas/virología , Proteínas de Plantas/metabolismo , Virus de Plantas/fisiología , Zea mays/virología , Alelos , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Inhibidores de Disociación de Guanina Nucleótido/genética , Modelos Biológicos , Mapeo Físico de Cromosoma , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Unión Proteica , Sitios de Carácter Cuantitativo/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reproducibilidad de los Resultados , Proteínas Virales/metabolismo , Zea mays/genética , Zea mays/ultraestructura
12.
BMC Plant Biol ; 20(1): 17, 2020 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-31918680

RESUMEN

BACKGROUND: Maize bsd2 (bundle sheath defective2) is a classical C4 mutant with defective C4 photosynthesis, accompanied with reduced accumulation of Rubisco (ribulose bisphosphate carboxylase oxygenase) and aberrant mature chloroplast morphology in the bundle sheath (BS) cells. However, as a hypothetical chloroplast chaperone, the effects of BSD2 on C4 chloroplast development have not been fully examined yet, which precludes a full appreciation of BSD2 function in C4 photosynthesis. The aims of our study are to find out the role ofBSD2 in regulating chloroplasts development in maize leaves, and to add new insights into our understanding of C4 biology. RESULTS: We found that at the chloroplast maturation stage, the thylakoid membranes of chloroplasts in the BS and mesophyll (M) cells became significantly looser, and the granaof chloroplasts in the M cells became thinner stacking in the bsd2 mutant when compared with the wildtype plant. Moreover, at the early chloroplast development stage, the number of dividing chloroplasts and the chloroplast division rate are both reduced in the bsd2 mutant, compared with wild type. Quantitative reverse transcriptase-PCR analysis revealed that the expression of both thylakoid formation-related genesand chloroplast division-related genes is significantly reduced in the bsd2 mutants. Further, we showed that BSD2 interacts physically with the large submit of Rubisco (LS) in Bimolecular Fluorescence Complementation assay. CONCLUSIONS: Our combined results suggest that BSD2 plays an essential role in regulating the division and differentiation of the dimorphic BS and M chloroplasts, and that it acts at a post-transcriptional level to regulate LS stability or assembly of Rubisco.


Asunto(s)
Cloroplastos/ultraestructura , Hojas de la Planta/citología , Proteínas de Plantas/genética , Zea mays , Cloroplastos/metabolismo , Mutación , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Ribulosa-Bifosfato Carboxilasa/metabolismo , Zea mays/citología , Zea mays/genética , Zea mays/metabolismo , Zea mays/ultraestructura
13.
Methods Mol Biol ; 2122: 191-203, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31975304

RESUMEN

Compared with small model plants like Arabidopsis containing ovules with few cell layers, embryo sac and embryo development of model crop plants such as maize and other grasses are difficult to image. Multiple layers of tissue usually surround the deeply embedded embryo sac and developing embryo. Moreover, reliable cell biological marker lines labeling, for example, nuclei, plasma membrane, cell walls, or cells of a specific identity are often not available. The introduction of markers to study mutants is difficult and time-consuming and may require several generations of backcrosses. In this chapter, we therefore present an easy protocol to image maize ovaries and developing embryo sacs before and after fertilization allowing also high-throughput mutant analysis. The laborious embedding of samples and preparation of thin sections are omitted in this fixing-Feulgen staining-clearing (FFC) method. Optical sectioning through multiple layers of tissue is possible allowing 3D reconstructions of the whole embryo sac if necessary. The advantage of staining cell nuclei using the FFC method described here compared, for example, with DAPI staining is a wide range of Schiff's type reagents available for the Feulgen reaction. Depending on the reagent of choice, various conditions such as different excitation/emission filters or even white light can be applied for imaging. Moreover, in order to better visualize cell division, nuclei polarity as well as cell extent and integrity, periodic acid staining (PAS) of cell walls can be combined with Feulgen staining.


Asunto(s)
Colorantes de Rosanilina/análisis , Semillas/embriología , Coloración y Etiquetado/métodos , Zea mays/embriología , Microscopía/métodos , Semillas/ultraestructura , Fijación del Tejido/métodos , Zea mays/ultraestructura
14.
Protoplasma ; 257(1): 141-156, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31471650

RESUMEN

This article deals with the distribution of callose and of the homogalacturonan (HG) epitopes recognized by LM20, JIM5, and 2F4 antibodies in cell walls of differentiating and functioning stomatal complexes of the monocotyledon Zea mays and the dicotyledon Vigna sinensis. The findings revealed that, during stomatal development, in these plant species, callose appears in an accurately spatially and timely controlled manner in cell walls of the guard cells (GCs). In functioning stomata of both plants, callose constitutes a dominant cell wall matrix material of the polar ventral cell wall ends and of the local GC cell wall thickenings. In Zea mays, the LM20, JIM5, or 2F4 antibody-recognized HG epitopes were mainly located in the expanding cell wall regions of the stomatal complexes, while in Vigna sinensis, they were deposited in the local cell wall thickenings of the GCs as well as at the ledges of the stomatal pore. Consideration of the presented data favors the view that in the stomatal complexes of the monocotyledon Z. mays and the dicotyledon V. sinensis, the esterified HGs contribute to the cell wall expansion taking place during GC morphogenesis and the opening of the stomatal pore. Besides, callose and the highly de-esterified HGs allow to GC cell wall regions to withstand the mechanical stresses exerted during stomatal function.


Asunto(s)
Epítopos/metabolismo , Pectinas/metabolismo , Estomas de Plantas/metabolismo , Vigna/metabolismo , Zea mays/metabolismo , Pared Celular/metabolismo , Estomas de Plantas/ultraestructura , Vigna/ultraestructura , Zea mays/ultraestructura
15.
Int J Mol Sci ; 21(1)2019 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-31861957

RESUMEN

The distribution of highly de-esterified homogalacturonans (HGs) in dividing protodermal cells of the monocotyledon Zea mays, the dicotyledon Vigna sinensis, and the fern Asplenium nidus was investigated in order to examine whether the cell wall region adjoining the preprophase band (PPB) is locally diversified. Application of immunofluorescence revealed that de-esterified HGs were accumulated selectively in the cell wall adjacent to the PPB in: (a) symmetrically dividing cells of stomatal rows of Z. mays, (b) the asymmetrically dividing protodermal cells of Z. mays, (c) the symmetrically dividing guard cell mother cells (GMCs) of Z. mays and V. sinensis, and (d) the symmetrically dividing protodermal cells of A. nidus. A common feature of the above cell types is that the cell division plane is defined by extrinsic cues. The presented data suggest that the PPB cortical zone-plasmalemma and the adjacent cell wall region function in a coordinated fashion in the determination/accomplishment of the cell division plane, behaving as a continuum. The de-esterified HGs, among other possible functions, might be involved in the perception and the transduction of the extrinsic cues determining cell division plane in the examined cells.


Asunto(s)
Pared Celular/metabolismo , Helechos/metabolismo , Pectinas/metabolismo , Vigna/metabolismo , Zea mays/metabolismo , Pared Celular/ultraestructura , Embryophyta/citología , Embryophyta/metabolismo , Embryophyta/ultraestructura , Esterificación , Helechos/citología , Helechos/ultraestructura , Vigna/citología , Vigna/ultraestructura , Zea mays/citología , Zea mays/ultraestructura
16.
BMC Genomics ; 20(1): 785, 2019 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-31664907

RESUMEN

BACKGROUND: The cellular machinery for cell wall synthesis and metabolism is encoded by members of large multi-gene families. Maize is both a genetic model for grass species and a potential source of lignocellulosic biomass from crop residues. Genetic improvement of maize for its utility as a bioenergy feedstock depends on identification of the specific gene family members expressed during secondary wall development in stems. RESULTS: High-throughput sequencing of transcripts expressed in developing rind tissues of stem internodes provided a comprehensive inventory of cell wall-related genes in maize (Zea mays, cultivar B73). Of 1239 of these genes, 854 were expressed among the internodes at ≥95 reads per 20 M, and 693 of them at ≥500 reads per 20 M. Grasses have cell wall compositions distinct from non-commelinid species; only one-quarter of maize cell wall-related genes expressed in stems were putatively orthologous with those of the eudicot Arabidopsis. Using a slope-metric algorithm, five distinct patterns for sub-sets of co-expressed genes were defined across a time course of stem development. For the subset of genes associated with secondary wall formation, fifteen sequence motifs were found in promoter regions. The same members of gene families were often expressed in two maize inbreds, B73 and Mo17, but levels of gene expression between them varied, with 30% of all genes exhibiting at least a 5-fold difference at any stage. Although presence-absence and copy-number variation might account for much of these differences, fold-changes of expression of a CADa and a FLA11 gene were attributed to polymorphisms in promoter response elements. CONCLUSIONS: Large genetic variation in maize as a species precludes the extrapolation of cell wall-related gene expression networks even from one common inbred line to another. Elucidation of genotype-specific expression patterns and their regulatory controls will be needed for association panels of inbreds and landraces to fully exploit genetic variation in maize and other bioenergy grass species.


Asunto(s)
Pared Celular/genética , Tallos de la Planta/genética , Transcriptoma , Zea mays/genética , Arabidopsis/genética , Pared Celular/metabolismo , Pared Celular/ultraestructura , Celulosa/biosíntesis , Lignina/biosíntesis , Familia de Multigenes , Fitomejoramiento , Tallos de la Planta/crecimiento & desarrollo , Tallos de la Planta/metabolismo , Regiones Promotoras Genéticas , Xilanos/biosíntesis , Zea mays/crecimiento & desarrollo , Zea mays/metabolismo , Zea mays/ultraestructura
17.
J Exp Bot ; 70(21): 6163-6179, 2019 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-31598687

RESUMEN

Pentatricopeptide repeat (PPR) proteins are one of the largest protein families, which consists of >400 members in most species. However, the molecular functions of many PPR proteins are still uncharacterized. Here, we isolated a maize mutant, defective kernel 40 (dek40). Positional cloning, and genetic and molecular analyses revealed that DEK40 encodes a new E+ subgroup PPR protein that is localized in the mitochondrion. DEK40 recognizes and directly binds to cox3, nad2, and nad5 transcripts and functions in their processing. In the dek40 mutant, abolishment of the C-to-U editing of cox3-314, nad2-26, and nad5-1916 leads to accumulated reactive oxygen species and promoted programmed cell death in endosperm cells due to the dysfunction of mitochondrial complexes I and IV. Furthermore, RNA sequencing analysis showed that gene expression in some pathways, such as glutathione metabolism and starch biosynthesis, was altered in the dek40 mutant compared with the wild-type control, which might be involved in abnormal development of the maize mutant kernels. Thus, our results provide solid evidence on the molecular mechanism underlying RNA editing by DEK40, and extend our understanding of PPR-E+ type protein in editing functions and kernel development in maize.


Asunto(s)
Mitocondrias/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Secuencias Repetitivas de Aminoácido , Zea mays/crecimiento & desarrollo , Zea mays/metabolismo , Apoptosis , Secuencia de Bases , Endospermo/metabolismo , Regulación de la Expresión Génica de las Plantas , Mitocondrias/ultraestructura , Mutación/genética , Fenotipo , Edición de ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Zea mays/ultraestructura
18.
Plant Sci ; 287: 110203, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31481208

RESUMEN

Embryo and endosperm originate from the double fertilization, but they have different developmental fates and biological functions. We identified a previously undescribed maize seed mutant, wherein the embryo appears to be more severely affected than the endosperm (embryo-specific, emb). In the W22 background, the emb embryo arrests at the transition stage whereas its endosperm appears nearly normal in size. At maturity, the embryo in W22-emb is apparently small or even invisible. In contrast, the emb endosperm develops into a relative normal size. We cloned the mutant gene on the Chromosome 7L and designated it emb-7L. This gene is generally expressed, but it has a relatively higher expression level in leaves. Emb-7L encodes a chloroplast-localized P-type pentatricopeptide repeat (PPR) protein, consistent with the severe chloroplast deficiency in emb-7L albino seedling leaves. Full transcriptome analysis of the leaves of WT and emb-7L seedlings reveals that transcription of chloroplast protein-encoding genes are dramatically variable with pre-mRNA intron splicing apparently affected in a tissue-dependent pattern and the chloroplast structure and activity were dramatically affected including chloroplast membrane and photosynthesis machinery component and synthesis of metabolic products (e.g., fatty acids, amino acids, starch).


Asunto(s)
Proteínas de Plantas/genética , Empalme del ARN , Transcriptoma , Zea mays/genética , Cloroplastos/genética , Cloroplastos/ultraestructura , Endospermo/embriología , Endospermo/genética , Endospermo/crecimiento & desarrollo , Endospermo/ultraestructura , Regulación de la Expresión Génica de las Plantas , Genes del Cloroplasto/genética , Intrones/genética , Mutación , Fotosíntesis , Hojas de la Planta/embriología , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/ultraestructura , Precursores del ARN/genética , Plantones/embriología , Plantones/genética , Plantones/crecimiento & desarrollo , Plantones/ultraestructura , Zea mays/embriología , Zea mays/crecimiento & desarrollo , Zea mays/ultraestructura
19.
Proc Natl Acad Sci U S A ; 116(32): 15991-15996, 2019 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-31332013

RESUMEN

Plants produce suites of defenses that can collectively deter and reduce herbivory. Many defenses target the insect digestive system, with some altering the protective peritrophic matrix (PM) and causing increased permeability. The PM is responsible for multiple digestive functions, including reducing infections from potential pathogenic microbes. In our study, we developed axenic and gnotobiotic methods for fall armyworm (Spodoptera frugiperda) and tested how particular members present in the gut community influence interactions with plant defenses that can alter PM permeability. We observed interactions between gut bacteria with plant resistance. Axenic insects grew more but displayed lower immune-based responses compared with those possessing Enterococcus, Klebsiella, and Enterobacter isolates from field-collected larvae. While gut bacteria reduced performance of larvae fed on plants, none of the isolates produced mortality when injected directly into the hemocoel. Our results strongly suggest that plant physical and chemical defenses not only act directly upon the insect, but also have some interplay with the herbivore's microbiome. Combined direct and indirect, microbe-mediated assaults by maize defenses on the fall armyworm on the insect digestive and immune system reduced growth and elevated mortality in these insects. These results imply that plant-insect interactions should be considered in the context of potential mediation by the insect gut microbiome.


Asunto(s)
Enterobacteriaceae/fisiología , Inmunidad de la Planta , Spodoptera/microbiología , Zea mays/inmunología , Zea mays/parasitología , Animales , Quitinasas/metabolismo , Genotipo , Herbivoria/fisiología , Interacciones Huésped-Patógeno , Spodoptera/crecimiento & desarrollo , Spodoptera/ultraestructura , Síndrome , Tricomas/metabolismo , Zea mays/genética , Zea mays/ultraestructura
20.
Planta ; 250(2): 573-588, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31127375

RESUMEN

MAIN CONCLUSION: The information on core components in maize polycomb repressive complex 2 (PRC2) are updated at a genome-wide scale, and the protein-protein interaction networks of PRC2 components are further provided in maize. The evolutionarily conserved polycomb group (PcG) proteins form multi-subunits polycomb repressive complexes (PRCs) that repress gene expression via chromatin condensation. In Arabidopsis, three distinct PRC2s have been identified, each determining a specific developmental program with partly functional redundancy. However, the core components and biological functions of PRC2 in cereals remain obscure. Here, we updated the information on maize PRC2 components at a genome-wide scale. Maize PRC2 subunits are highly duplicated, with five MSI1, three E(z), two ESC and two Su(z)12 homologs. ZmFIE1 is preferentially expressed in the endosperm, whereas the remaining are broadly expressed in many tissues. ZmCLF/MEZ1 and ZmFIE1 are maternally expressed imprinted genes, in contrast to the paternal-dominantly expression of ZmFIE2 in the endosperm. In maize, E(z) members likely provide a scaffold for assembling PRC2 complexes, whereas Su(z)12 and p55/MSI1-like proteins together reinforce the complex; ESC members probably determine its specificity: FIE1-PRC2 regulates endosperm cell development, whereas FIE2-PRC2 controls other cell types. The duplicated Brassicaceae-specific MEA and FIS2 also directly interact with maize PRC2 members. Together, this study establishes a roadmap for protein-protein interactions of maize PRC2 components, providing new insights into their functions in the growth and development of cereals.


Asunto(s)
Complejo Represivo Polycomb 2/metabolismo , Zea mays/enzimología , Alelos , Arabidopsis/enzimología , Arabidopsis/genética , Endospermo/enzimología , Endospermo/genética , Endospermo/ultraestructura , Epigenómica , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Complejo Represivo Polycomb 2/genética , Dominios Proteicos , Técnicas del Sistema de Dos Híbridos , Zea mays/genética , Zea mays/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA