Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.603
Filtrar
1.
Anal Chem ; 96(28): 11326-11333, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38953527

RESUMEN

Herein, the aptamer-antibody sandwich module was first introduced to accurately recognize a low molecular weight compound (mycotoxin). Impressively, compared with the large steric hindrance of a traditional dual-antibody module, the aptamer-antibody sandwich with low Gibbs free energy and a low dissociation constant has high recognition efficiency; thus, it could reduce false positives and false negatives caused by a dual-antibody module. As a proof of concept, a sensitive electrochemiluminescence (ECL) biosensor was constructed for detecting mycotoxin zearalenone (ZEN) based on an aptamer-antibody sandwich as a biological recognition element and porous ZnO nanosheets (Zn NSs) supported Cu nanoclusters (Cu NCs) as the signal transduction element, in which the antibody was modified on the vertex of a tetrahedral DNA nanostructure (TDN) with a rigid structure to increase the kinetics of target recognition for promoting the detection sensitivity. Moreover, the Cu NCs/Zn NSs exhibited an excellent ECL response that was attributed to the aggregation-induced ECL enhancement through electrostatic interactions. The sensing platform achieved trace detection of ZEN with a low detection limit of 0.31 fg/mL, far beyond that of the enzyme-linked immunosorbent assay (ELISA, the current rapid detection method) and high-performance liquid chromatography (HPLC, the national standard detection method). The strategy has great application potential in food analysis, environmental monitoring, and clinical diagnosis.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Técnicas Electroquímicas , Zearalenona , Aptámeros de Nucleótidos/química , Técnicas Biosensibles/métodos , Zearalenona/análisis , Zearalenona/inmunología , Técnicas Electroquímicas/métodos , Cobre/química , Límite de Detección , Anticuerpos/química , Anticuerpos/inmunología , Mediciones Luminiscentes/métodos , Óxido de Zinc/química , Peso Molecular
2.
Toxins (Basel) ; 16(6)2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38922147

RESUMEN

Zearalenone (ZEN) is a prevalent mycotoxin found in grains and grain-derived products, inducing adverse health effects in both animals and humans. The in-field application of microorganisms to degrade and detoxify ZEN is a promising strategy to enhance the safety of food and feed. In this study, we investigated the potential of three actinobacterial strains to degrade and detoxify ZEN in vitro and in planta on wheat ears. The residual ZEN concentration and toxicity in the samples were analysed with UHPLC-MS/MS and a bioluminescence BLYES assay, respectively. Streptomyces rimosus subsp. rimosus LMG19352 could completely degrade and detoxify 5 mg/L ZEN in LB broth within 24 h, along with significant reductions in ZEN concentration both in a minimal medium (MM) and on wheat ears. Additionally, it was the only strain that showed a significant colonisation of these ears. Rhodococcus sp. R25614 exhibited partial but significant degradation in LB broth and MM, whereas Streptomyces sp. LMG16995 degraded and detoxified ZEN in LB broth after 72 h by 39% and 33%, respectively. Although all three actinobacterial strains demonstrated the metabolic capability to degrade and detoxify ZEN in vitro, only S. rimosus subsp. rimosus LMG19352 showed promising potential to mitigate ZEN in planta. This distinction underscores the importance of incorporating in planta screening assays for assessing the potential of mycotoxin-biotransforming microorganisms as biocontrol agents.


Asunto(s)
Agentes de Control Biológico , Triticum , Zearalenona , Zearalenona/metabolismo , Zearalenona/toxicidad , Triticum/microbiología , Agentes de Control Biológico/metabolismo , Streptomyces/metabolismo , Actinobacteria/metabolismo , Contaminación de Alimentos/prevención & control , Espectrometría de Masas en Tándem
3.
Sci Rep ; 14(1): 13281, 2024 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-38858492

RESUMEN

Zearalenone (ZEN), an estrogenic mycotoxin, is one of the most common food and feed contaminants. Also, its metabolites α-zearalenol (α-ZEL) and ß-zearalenol (ß-ZEL) are considered to induce oxidative stress, however its effect in prostate cells is not known yet. Our previous observations showed that forehead box transcription factor 3a (FOXO3a) expression is modified in hormone- sensitive cells in the response to mycotoxins, similar to the phosphoinositide 3-kinase (PI3K)/ protein kinase B (Akt) pathway. Thus, this study evaluated the direct molecular effect of α-ZEL and ß-ZEL in a dose of 30 µM in hormone-dependent human prostate cancer (PCa) cells with the focus of the involvement of FOXO3a and PI3K/Akt signaling pathway in that effect. We observed that both active metabolites of ZEN reduced cell viability, induced oxidative stress, cell cycle arrest and apoptosis in PCa cells. Furthermore, we observed that FOXO3a as well as PI3K/Akt signaling pathway participate in ZELs induced toxicity in PCa cells, indicating that this signaling pathway might be a regulator of mycotoxin-induced toxicity generally.


Asunto(s)
Apoptosis , Proteína Forkhead Box O3 , Estrés Oxidativo , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Especies Reactivas de Oxígeno , Transducción de Señal , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Apoptosis/efectos de los fármacos , Proteína Forkhead Box O3/metabolismo , Proteína Forkhead Box O3/genética , Transducción de Señal/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Estrés Oxidativo/efectos de los fármacos , Zeranol/análogos & derivados , Zeranol/metabolismo , Zeranol/farmacología , Línea Celular Tumoral , Zearalenona/farmacología , Zearalenona/toxicidad , Zearalenona/análogos & derivados , Supervivencia Celular/efectos de los fármacos , Masculino , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología
4.
FASEB J ; 38(13): e23701, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38941193

RESUMEN

Zearalenone (ZEN) is a mycotoxin known for its estrogen-like effects, which can disrupt the normal physiological function of endometrial cells and potentially lead to abortion in female animals. However, the precise mechanism by which ZEN regulates endometrial function remains unclear. In this study, we found that the binding receptor estrogen receptors for ZEN is extensively expressed across various segments of the uterus and within endometrial cells, and a certain concentration of ZEN treatment reduced the proliferation capacity of goat endometrial epithelial cells (EECs) and endometrial stromal cells (ESCs). Meanwhile, cell cycle analysis revealed that ZEN treatment leaded to cell cycle arrest in goat EECs and ESCs. To explore the underlying mechanism, we investigated the mitochondrial quality control systems and observed that ZEN triggered excessive mitochondrial fission and disturbed the balance of mitochondrial fusion-fission dynamics, impaired mitochondrial biogenesis, increased mitochondrial unfolded protein response and mitophagy in goat EECs and ESCs. Additionally, ZEN treatment reduced the activities of mitochondrial respiratory chain complexes, heightened the production of hydrogen peroxide and reactive oxygen species, and caused cellular oxidative stress and mitochondrial dysfunction. These results suggest that ZEN has adverse effects on goat endometrium cells by disrupting the mitochondrial quality control system and affecting cell cycle and proliferation. Understanding the underlying molecular pathways involved in ZEN-induced mitochondrial dysfunction and its consequences on cell function will provide critical insights into the reproductive toxicity of ZEN and contribute to safeguarding the health and wellbeing of animals and humans exposed to this mycotoxin.


Asunto(s)
Proliferación Celular , Endometrio , Cabras , Mitocondrias , Zearalenona , Animales , Femenino , Endometrio/citología , Endometrio/metabolismo , Endometrio/efectos de los fármacos , Zearalenona/toxicidad , Zearalenona/farmacología , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Estrés Oxidativo/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/efectos de los fármacos , Células Cultivadas , Dinámicas Mitocondriales/efectos de los fármacos , Mitofagia/efectos de los fármacos , Células del Estroma/metabolismo , Células del Estroma/efectos de los fármacos , Células del Estroma/citología
5.
Mikrochim Acta ; 191(7): 367, 2024 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-38832980

RESUMEN

An electrochemical aptasensor was used for the fast and sensitive detection of zearalenone (ZEN) based on the combination of Co3O4/MoS2/Au nanocomposites and the hybrid chain reaction (HCR). The glassy carbon electrode was coated with Co3O4/MoS2/Au nanomaterials to immobilize the ZEN-cDNA that had been bound with ZEN-Apt by the principle of base complementary pairing. In the absence of ZEN, the HCR could not be triggered because the ZEN-cDNA could not be exposed. After ZEN was added to the surface of the electrode, a complex structure was produced on the modified electrode by the combination of ZEN and ZEN-Apt. Therefore, the ZEN-cDNA can raise the HCR to produce the long-strand dsDNA structure. Due to the formation of dsDNA, the methylene blue (MB) could be inserted into the superstructure of branched DNA and the peak currents of the MB redox signal dramatically increased. So the concentration of ZEN could be detected by the change of signal intensity. Under optimized conditions, the developed electrochemical biosensing strategy showed an outstanding linear detection range of 1.0×10-10 mol/L to 1.0×10-6 mol/L, a low detection limit (LOD) of 8.5×10-11 mol/L with desirable selectivity and stability. Therefore, the fabricated platform possessed a great application potential in fields of food safety, medical detection, and drug analysis.


Asunto(s)
Técnicas Electroquímicas , Análisis de los Alimentos , Análisis de Peligros y Puntos de Control Críticos , Nanocompuestos , Zearalenona , Zearalenona/análisis , Análisis de Peligros y Puntos de Control Críticos/métodos , Análisis de los Alimentos/instrumentación , Análisis de los Alimentos/métodos , Nanocompuestos/química , Nanocompuestos/normas , Electrodos , Oro/química , Sensibilidad y Especificidad , Reproducibilidad de los Resultados
6.
Int J Hyg Environ Health ; 260: 114405, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38878407

RESUMEN

Zearalenone (ZEN) is a fungal-derived toxin found in global food supplies including cereal grains and processed foods, impacting populations worldwide through diet. Because the chemical structure of ZEN and metabolites closely resembles 17ß-estradiol (E2), they interact with estrogen receptors α/ß earning their designation as 'mycoestrogens'. In animal models, gestational exposure to mycoestrogens disrupts estrogen activity and impairs fetal growth. Here, our objective was to evaluate relationships between mycoestrogen exposure and sex steroid hormone concentrations in maternal circulation and cord blood for the first time in humans. In each trimester, pregnant participants in the UPSIDE study (n = 297) provided urine for mycoestrogen analysis and serum for hormone analysis. At birth, placental mycoestrogens and cord steroids were measured. We fitted longitudinal models examining log-transformed mycoestrogen concentrations in relation to log-transformed hormones, adjusting for covariates. Secondarily, multivariable linear models examined associations at each time point (1st, 2nd, 3rd trimesters, delivery). We additionally considered effect modification by fetal sex. ZEN and its metabolite, α-zearalenol (α-ZOL), were detected in >93% and >75% of urine samples; >80% of placentas had detectable mycoestrogens. Longitudinal models from the full cohort exhibited few significant associations. In sex-stratified analyses, in pregnancies with male fetuses, estrone (E1) and free testosterone (fT) were inversely associated with ZEN (E1 %Δ: -6.68 95%CI: -12.34, -0.65; fT %Δ: -3.22 95%CI: -5.68, -0.70); while α-ZOL was positively associated with E2 (%Δ: 5.61 95%CI: -1.54, 9.85) in pregnancies with female fetuses. In analysis with cord hormones, urinary mycoestrogens were inversely associated with androstenedione (%Δ: 9.15 95%CI: 14.64, -3.30) in both sexes, and placental mycoestrogens were positively associated with cord fT (%Δ: 37.13, 95%CI: 4.86, 79.34) amongst male offspring. Findings support the hypothesis that mycoestrogens act as endocrine disruptors in humans, as in animal models and livestock. Additional work is needed to understand impacts on maternal and child health.


Asunto(s)
Sangre Fetal , Zearalenona , Humanos , Femenino , Sangre Fetal/química , Embarazo , Zearalenona/orina , Zearalenona/sangre , Adulto , Masculino , Hormonas Esteroides Gonadales/sangre , Exposición Materna , Estudios de Cohortes , Zeranol/análogos & derivados , Zeranol/orina , Estradiol/sangre , Adulto Joven , Placenta/química
7.
Int J Mol Sci ; 25(11)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38891908

RESUMEN

Chronic inflammation causes muscle wasting. Because most inflammatory cytokine signals are mediated via TGF-ß-activated kinase-1 (TAK1) activation, inflammatory cytokine-induced muscle wasting may be ameliorated by the inhibition of TAK1 activity. The present study was undertaken to clarify whether TAK1 inhibition can ameliorate inflammation-induced muscle wasting. SKG/Jcl mice as an autoimmune arthritis animal model were treated with a small amount of mannan as an adjuvant to enhance the production of TNF-α and IL-1ß. The increase in these inflammatory cytokines caused a reduction in muscle mass and strength along with an induction of arthritis in SKG/Jcl mice. Those changes in muscle fibers were mediated via the phosphorylation of TAK1, which activated the downstream signaling cascade via NF-κB, p38 MAPK, and ERK pathways, resulting in an increase in myostatin expression. Myostatin then reduced the expression of muscle proteins not only via a reduction in MyoD1 expression but also via an enhancement of Atrogin-1 and Murf1 expression. TAK1 inhibitor, LL-Z1640-2, prevented all the cytokine-induced changes in muscle wasting. Thus, TAK1 inhibition can be a new therapeutic target of not only joint destruction but also muscle wasting induced by inflammatory cytokines.


Asunto(s)
Citocinas , Quinasas Quinasa Quinasa PAM , Atrofia Muscular , Animales , Quinasas Quinasa Quinasa PAM/metabolismo , Quinasas Quinasa Quinasa PAM/antagonistas & inhibidores , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Atrofia Muscular/etiología , Atrofia Muscular/tratamiento farmacológico , Ratones , Citocinas/metabolismo , Debilidad Muscular/metabolismo , Debilidad Muscular/tratamiento farmacológico , Miostatina/metabolismo , Miostatina/antagonistas & inhibidores , Proteínas Musculares/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , FN-kappa B/metabolismo , Inflamación/metabolismo , Inflamación/patología , Inflamación/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Proteínas de Motivos Tripartitos/metabolismo , Proteínas de Motivos Tripartitos/genética , Modelos Animales de Enfermedad , Interleucina-1beta/metabolismo , Fosforilación/efectos de los fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Músculo Esquelético/efectos de los fármacos , Zearalenona/farmacología , Zearalenona/análogos & derivados
8.
Biosens Bioelectron ; 260: 116455, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38824702

RESUMEN

In this work, a potential-controlled electrochromic visual biosensor was developed for detecting zearalenone (ZEN) using a distance readout strategy. The sensor chip includes a square detection area and a folded signal output area created with laser etching technology. The detection area is modified with graphene oxide and ZEN aptamer, while Prussian blue (PB) is electrodeposited onto the signal output channel. When an appropriate voltage is applied, PB in the signal output area is reduced to colorless Prussian white (PW). The target ZEN molecules have the capability to release aptamers from graphene oxide (GO) surface in the detection area, resulting in a subsequent change in the potential of the visual signal output channel. This change determines the length of the channel that changes from blue to colorless, with the color change distance being proportional to the ZEN concentration. Using this distance readout strategy, ZEN detection within the range of 1 ng/mL to 300 ng/mL was achieved, with a detection limit of 0.29 ng/mL.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Grafito , Límite de Detección , Zearalenona , Zearalenona/análisis , Técnicas Biosensibles/métodos , Técnicas Biosensibles/instrumentación , Grafito/química , Aptámeros de Nucleótidos/química , Técnicas Electroquímicas/métodos , Diseño de Equipo , Ferrocianuros/química , Colorimetría/instrumentación , Colorimetría/métodos
9.
Toxicon ; 243: 107743, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38701903

RESUMEN

The estrogen-like mycotoxin zearalenone (ZEA) was popularly occurred in several food and feeds, posing threats to human and animal health. ZEA induced renal toxicity and caused oxidative stress. In the current study, the protecting effect of kefir administration against ZEA-induced renal damage in rats was explored. Rats were divided into 4 groups, each consisting of 5 animals. For the initial 7 days, they were orally administered sterile milk (200 µL/day). Subsequently, during the second week, the groups were exposed to kefir (200 µL/day), ZEA (40 mg/kg b.w./day) and a combination of kefir and ZEA. The biochemical parameters, kidney histological changes and ZEA residue were assessed. Kefir supplementation enhanced the antioxidant enzymes in the kidney, such as superoxide dismutase, catalase and glutathione peroxidase activities, which increased by 1.2, 4 and 20 folds, respectively, relative to the ZEA group. Remarkably, the concomitant administration kefir + ZEA suppressed ZEA residues in both serum and kidney. Additionally, serum levels of blood urea nitrogen, uric acid and renal malondialdehyde decreased by 22, 65 and 54%, respectively, in the kefir + ZEA group; while, the creatinine content increased by around 60%. Rats co-treated with kefir showed a normal kidney histological architecture contrary to tissues alterations mediated in the ZEA group. These results suggest that kefir may showed a protective effect on the kidneys, mitigating ZEA-induced acute toxicity in rats.


Asunto(s)
Kéfir , Riñón , Estrés Oxidativo , Ratas Wistar , Zearalenona , Animales , Zearalenona/toxicidad , Estrés Oxidativo/efectos de los fármacos , Femenino , Ratas , Riñón/efectos de los fármacos , Riñón/patología , Superóxido Dismutasa/metabolismo , Antioxidantes/farmacología , Catalasa/metabolismo , Malondialdehído/metabolismo , Enfermedades Renales/inducido químicamente , Enfermedades Renales/prevención & control , Enfermedades Renales/patología
10.
Food Funct ; 15(11): 6042-6053, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38752441

RESUMEN

Zearalenone (ZEN), a nonsteroidal estrogenic mycotoxin produced by Fusarium spp., contaminates cereals and threatens human and animal health by inducing hepatotoxicity, immunotoxicity, and genotoxicity. In this study, a new Bacillus subtilis strain, YQ-1, with a strong ability to detoxify ZEN, was isolated from soil samples and characterized. YQ-1 was confirmed to degrade more than 46.26% of 20 µg mL-1 ZEN in Luria-Bertani broth and 98.36% in fermentation broth within 16 h at 37 °C; one of the two resulting products was ZEN-diglucoside. Under optimal reaction conditions (50 °C and pH 5.0-9.0), the reaction mixture generated by YQ-1 catalyzing ZEN significantly reduced the promoting effect of ZEN on MCF-7 cell proliferation, effectively eliminating the estrogenic toxicity of ZEN. In addition, a new glycosyltransferase gene (yqgt) from B. subtilis YQ-1 was cloned with 98% similarity to Bs-YjiC from B. subtilis 168 and over-expressed in E. coli BL21 (DE3). ZEN glycosylation activity converted 25.63% of ZEN (20 µg mL-1) to ZEN-diG after 48 h of reaction at 37 °C. The characterization of ZEN degradation by B. subtilis YQ-1 and the expression of YQGT provide a theoretical basis for analyzing the mechanism by which Bacillus spp. degrades ZEN.


Asunto(s)
Bacillus subtilis , Glicosiltransferasas , Zearalenona , Zearalenona/metabolismo , Zearalenona/química , Bacillus subtilis/metabolismo , Bacillus subtilis/enzimología , Bacillus subtilis/genética , Glicosiltransferasas/metabolismo , Glicosiltransferasas/genética , Humanos , Glicosilación , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Escherichia coli/genética , Escherichia coli/metabolismo
11.
Front Immunol ; 15: 1386780, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38756773

RESUMEN

Introduction: Intracerebral hemorrhage (ICH) often triggers oxidative stress through reactive oxygen species (ROS). Transforming growth factor-ß-activated kinase 1 (TAK1) plays a pivotal role in regulating oxidative stress and inflammation across various diseases. 5Z-7-Oxozeaenol (OZ), a specific inhibitor of TAK1, has exhibited therapeutic effects in various conditions. However, the impact of OZ following ICH and its underlying molecular mechanisms remain elusive. This study aimed to explore the possible role of OZ in ICH and its underlying mechanisms by inhibiting oxidative stress-mediated pyroptosis. Methods: Adult male Sprague-Dawley rats were subjected to an ICH model, followed by treatment with OZ. Neurobehavioral function, blood-brain barrier integrity, neuronal pyroptosis, and oxidative stress markers were assessed using various techniques including behavioral tests, immunofluorescence staining, western blotting, transmission electron microscopy, and biochemical assays. Results: Our study revealed that OZ administration significantly inhibited phosphorylated TAK1 expression post-ICH. Furthermore, TAK1 blockade by OZ attenuated blood-brain barrier (BBB) disruption, neuroinflammation, and oxidative damage while enhancing neurobehavioral function. Mechanistically, OZ administration markedly reduced ROS production and oxidative stress by facilitating nuclear factor-erythroid 2-related factor 2 (NRF2) nuclear translocation. This was accompanied by a subsequent suppression of the NOD-like receptor protein 3 (NLRP3) activation-mediated inflammatory cascade and neuronal pyroptosis. Discussion: Our findings highlight that OZ alleviates brain injury and oxidative stress-mediated pyroptosis via the NRF2 pathway. Inhibition of TAK1 emerges as a promising approach for managing ICH.


Asunto(s)
Hemorragia Cerebral , Quinasas Quinasa Quinasa PAM , Factor 2 Relacionado con NF-E2 , Neuronas , Estrés Oxidativo , Piroptosis , Transducción de Señal , Animales , Masculino , Ratas , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Lesiones Encefálicas/etiología , Lesiones Encefálicas/metabolismo , Lesiones Encefálicas/tratamiento farmacológico , Hemorragia Cerebral/metabolismo , Hemorragia Cerebral/tratamiento farmacológico , Modelos Animales de Enfermedad , Lactonas , Quinasas Quinasa Quinasa PAM/metabolismo , Quinasas Quinasa Quinasa PAM/antagonistas & inhibidores , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/efectos de los fármacos , Piroptosis/efectos de los fármacos , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Resorcinoles , Transducción de Señal/efectos de los fármacos , Zearalenona/administración & dosificación
12.
Food Res Int ; 187: 114389, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38763651

RESUMEN

Ochratoxin A (OTA), zearalenone (ZEN), and deoxynivalenol (DON) are mycotoxins whose exposure is associated with various adverse health effects, including cancer and renal disorders, estrogenic effects, and immunosuppressive and gastrointestinal disorders, respectively. Infants (<2 years) are the most vulnerable group to mycotoxins, representing a unique combination of restricted food consumption types, low body weight, lower ability to eliminate toxins, and more future years to accumulate toxins. This study aimed to estimate the infant́s exposure to OTA, DON, and ZEN due to the consumption of milk formula and baby cereals in Chile. Milk formula samples (n = 41) and baby cereals (n = 30) were collected and analyzed using commercial ELISA kits for OTA, DON, and ZEA determination. Exposure was assessed by the Estimated Daily Intake (EDI) approach (mean and worst-case scenario, WCS) with the levels found in a modified Lower Bound (mLB) and Upper Bound (UB); ideal consumption (<6m, 7-12 m, and 13-24 m); adjusted by the weight of each group. The risk was estimated by comparing the EDI with a reference tolerable daily intake or by the margin of exposure (MOE) in the case of OTA. DON and OTA occurrence in infant formula were 34 % and 41 %, respectively. The co-occurrence between these mycotoxins was 22 %. Mycotoxin contents were below LOQ values except for OTA determined in one sample (0.29 ng/ml). No milk formulae were contaminated with ZEN. In the case of baby cereals, the occurrences were 17 % for OTA, 30 % for DON, and 7 % for ZEN, all below LOQ. Co-occurrence was seen in two samples between ZEN and OTA. According to exposure calculations, the MOE for OTA was less than 10,000 in all models for milk formula between 0 to 12 months of age and in the UB and WCS for cereal consumption. Health concerns were observed for DON in the WCS and UB for milk consumption in all ages and only in the UB WCS for cereal consumption. Considering the high consumption of milk formula in these age groups, regulation of OTA and other co-occurring mycotoxins in infant milk and food is strongly suggested.


Asunto(s)
Exposición Dietética , Grano Comestible , Contaminación de Alimentos , Fórmulas Infantiles , Ocratoxinas , Tricotecenos , Zearalenona , Humanos , Zearalenona/análisis , Fórmulas Infantiles/química , Chile , Grano Comestible/química , Lactante , Tricotecenos/análisis , Contaminación de Alimentos/análisis , Ocratoxinas/análisis , Exposición Dietética/análisis , Exposición Dietética/efectos adversos , Medición de Riesgo , Recién Nacido , Alimentos Infantiles/análisis
13.
Biosens Bioelectron ; 258: 116357, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38729049

RESUMEN

The label probe plays a crucial role in enhancing the sensitivity of lateral flow immunoassays. However, conventional fluorescent microspheres (FMs) have limitations due to their short fluorescence lifetime, susceptibility to background fluorescence interference, and inability to facilitate multi-component detection. In this study, carboxylate-modified Eu(III)-chelate-doped polystyrene nanobeads were employed as label probes to construct a multiple time-resolved fluorescent microsphere-based immunochromatographic test strip (TRFM-ICTS). This novel TRFM-ICTS facilitated rapid on-site quantitative detection of three mycotoxins in grains: Aflatoxin B1 (AFB1), Zearalenone (ZEN), and Deoxynivalenol (DON). The limit of detection (LOD) for AFB1, ZEN, and DON were found to be 0.03 ng/g, 0.11 ng/g, and 0.81 ng/g, respectively. Furthermore, the TRFM-ICTS demonstrated a wide detection range for AFB1 (0.05-8.1 ng/g), ZEN (0.125-25 ng/g), and DON (1.0-234 ng/g), while maintaining excellent selectivity. Notably, the test strip exhibited remarkable stability, retaining its detection capability even after storage at 4 °C for over one year. Importantly, the detection of these mycotoxins relied solely on simple manual operations, and with a portable reader, on-site detection could be accomplished within 20 min. This TRFM-ICTS presents a promising solution for sensitive on-site mycotoxin detection, suitable for practical application in various settings due to its sensitivity, accuracy, simplicity, and portability.


Asunto(s)
Técnicas Biosensibles , Grano Comestible , Contaminación de Alimentos , Límite de Detección , Microesferas , Micotoxinas , Zearalenona , Micotoxinas/análisis , Grano Comestible/química , Grano Comestible/microbiología , Técnicas Biosensibles/métodos , Contaminación de Alimentos/análisis , Zearalenona/análisis , Cromatografía de Afinidad/métodos , Cromatografía de Afinidad/instrumentación , Aflatoxina B1/análisis , Aflatoxina B1/aislamiento & purificación , Tricotecenos/análisis , Tiras Reactivas/análisis , Inmunoensayo/métodos , Inmunoensayo/instrumentación , Colorantes Fluorescentes/química
14.
J Agric Food Chem ; 72(23): 13371-13381, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38809574

RESUMEN

The enzymatic biodegradation of mycotoxins in food and feed has attracted the most interest in recent years. In this paper, the laccase gene from Bacillus swezeyi was cloned and expressed in Escherichia coli BL 21(D3). The sequence analysis indicated that the gene consisted of 1533 bp. The purified B. swezeyi laccase was analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis -12% with an estimated molecular weight of 56.7 kDa. The enzyme is thermo-alkali-tolerant, displaying the optimal degradation of zearalenone (ZEN) and aflatoxin B1 (AFB1) at pH 8 and 9, with incubation temperatures of 55 and 50 °C, respectively, within 24 h. The degradation potentials of the 50 µg of the enzyme against ZEN (5.0 µg/mL) and AFB1 (2.5 µg/mL) were 99.60 and 96.73%, respectively, within 24 h. To the best of our knowledge, this is the first study revealing the recombinant production of laccase from B. swezeyi, its biochemical properties, and potential use in ZEN and AFB1 degradation in vitro and in vivo.


Asunto(s)
Aflatoxina B1 , Bacillus , Proteínas Bacterianas , Estabilidad de Enzimas , Lacasa , Proteínas Recombinantes , Zearalenona , Lacasa/genética , Lacasa/metabolismo , Lacasa/química , Aflatoxina B1/metabolismo , Aflatoxina B1/química , Zearalenona/metabolismo , Zearalenona/química , Bacillus/enzimología , Bacillus/genética , Bacillus/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Concentración de Iones de Hidrógeno , Temperatura , Peso Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Clonación Molecular , Álcalis/metabolismo , Álcalis/química
15.
Anal Chem ; 96(22): 9043-9050, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38774984

RESUMEN

Zearalenone (ZEN) is an extremely hazardous chemical widely existing in cereals, and its high-sensitivity detection possesses significant significance to human health. Here, the cathodic aggregation-induced electrochemiluminescence (AIECL) performance of tetraphenylethylene nanoaggregates (TPE NAs) was modulated by solvent regulation, based on which an electrochemiluminescence (ECL) aptasensor was constructed for sensitive detection of ZEN. The aggregation state and AIECL of TPE NAs were directly and simply controlled by adjusting the type of organic solvent and the fraction of water, which solved the current shortcomings of low strength and weak stability of the cathode ECL signal for TPE. Impressively, in a tetrahydrofuran-water mixed solution (volume ratio, 6:4), the relative ECL efficiency of TPE NAs reached 16.03%, which was 9.2 times that in pure water conditions, and the maximum ECL spectral wavelength was obviously red-shifted to 617 nm. In addition, "H"-shape DNA structure-mediated dual-catalyzed hairpin self-assembly (H-D-CHA) with higher efficiency by the synergistic effect between the two CHA reactions was utilized to construct a sensitive ECL aptasensor for ZEN analysis with a low detection limit of 0.362 fg/mL. In conclusion, solvent regulation was a simple and efficient method for improving the performance of AIECL materials, and the proposed ECL aptasensor had great potential for ZEN monitoring in food safety.


Asunto(s)
Técnicas Electroquímicas , Electrodos , Mediciones Luminiscentes , Solventes , Zearalenona , Zearalenona/análisis , Zearalenona/química , Solventes/química , Estilbenos/química , Límite de Detección , Técnicas Biosensibles , Aptámeros de Nucleótidos/química
16.
Nat Commun ; 15(1): 4340, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773142

RESUMEN

Macrophage-orchestrated inflammation contributes to multiple diseases including sepsis. However, the underlying mechanisms remain to be defined clearly. Here, we show that macrophage TP53-induced glycolysis and apoptosis regulator (TIGAR) is up-regulated in murine sepsis models. When myeloid Tigar is ablated, sepsis induced by either lipopolysaccharide treatment or cecal ligation puncture in male mice is attenuated via inflammation inhibition. Mechanistic characterizations indicate that TIGAR directly binds to transforming growth factor ß-activated kinase (TAK1) and promotes tumor necrosis factor receptor-associated factor 6-mediated ubiquitination and auto-phosphorylation of TAK1, in which residues 152-161 of TIGAR constitute crucial motif independent of its phosphatase activity. Interference with the binding of TIGAR to TAK1 by 5Z-7-oxozeaenol exhibits therapeutic effects in male murine model of sepsis. These findings demonstrate a non-canonical function of macrophage TIGAR in promoting inflammation, and confer a potential therapeutic target for sepsis by disruption of TIGAR-TAK1 interaction.


Asunto(s)
Proteínas Reguladoras de la Apoptosis , Modelos Animales de Enfermedad , Lipopolisacáridos , Quinasas Quinasa Quinasa PAM , Macrófagos , Sepsis , Animales , Sepsis/inmunología , Sepsis/tratamiento farmacológico , Sepsis/metabolismo , Quinasas Quinasa Quinasa PAM/metabolismo , Quinasas Quinasa Quinasa PAM/genética , Masculino , Ratones , Macrófagos/metabolismo , Macrófagos/inmunología , Macrófagos/efectos de los fármacos , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Reguladoras de la Apoptosis/genética , Ratones Endogámicos C57BL , Fosforilación , Humanos , Ubiquitinación , Zearalenona/análogos & derivados , Zearalenona/farmacología , Zearalenona/administración & dosificación , Factor 6 Asociado a Receptor de TNF/metabolismo , Factor 6 Asociado a Receptor de TNF/genética , Inflamación/metabolismo , Inflamación/patología , Monoéster Fosfórico Hidrolasas/metabolismo , Ratones Noqueados , Lactonas , Resorcinoles
17.
J Hazard Mater ; 472: 134321, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38723478

RESUMEN

It is challenging to prepare sample pretreatment materials with simple use, strong selectivity and satisfactory enrichment performance. In this study, the antibody (3D4) that can specifically recognize zearalenone (ZEN) and its metabolites was immobilized on the surface of gold-coated magnetic Fe3O4 nanoparticles (GMN) by streptavidin (SA)-biotin interaction using GMN as the substrate and our designed four-arm PEG derivative (HS-4ARMPEG10K-(CM)3) as the linker. The immunomagnetic nanoparticles (GMN-4ARMPEG10K-SA-3D4) prepared by this strategy can achieve rapid enrichment (only 5 min) of analytes directly in the matrix, and higher enrichment capacity compared with the previous immunomagnetic particles. The sensitive and accurate analysis of ZEN and its metabolites can be achieved coupled with HPLC-MS/MS. The LODs and LOQs were 0.02-0.05 µg/kg and 0.05-0.10 µg/kg, respectively. The recoveries were 84.13%-112.67%, and the RSDs were 1.09%-9.39%. The method can provide a powerful tool for highly sensitive and rapid monitoring of mycotoxins in complex matrices due to its' strong selectivity and resistance to matrix interference.


Asunto(s)
Polietilenglicoles , Zearalenona , Zearalenona/química , Zearalenona/análisis , Zearalenona/metabolismo , Polietilenglicoles/química , Oro/química , Separación Inmunomagnética , Nanopartículas de Magnetita/química , Límite de Detección , Anticuerpos Inmovilizados/química , Cromatografía Líquida de Alta Presión , Espectrometría de Masas en Tándem
18.
Food Res Int ; 186: 114364, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38729726

RESUMEN

With the aim of reintroducing wheat grains naturally contaminated with mycotoxins into the food value chain, a decontamination strategy was developed in this study. For this purpose, in a first step, the whole wheat kernels were pre-treated using cold needle perforation. The pore size was evaluated by scanning electron microscopy and the accessibility of enzymes and microorganisms determined using fluorescent markers in the size range of enzymes (5 nm) and microorganisms (10 µm), and fluorescent microscopy. The perforated wheat grains, as well as non-perforated grains as controls, were then incubated with selected microorganisms (Bacillus megaterium Myk145 and B. licheniformis MA572) or with the enzyme ZHD518. The two bacilli strains were not able to significantly reduce the amount of zearalenone (ZEA), neither in the perforated nor in the non-perforated wheat kernels in comparison with the controls. In contrast, the enzyme ZHD518 significantly reduced the initial concentration of ZEA in the perforated and non-perforated wheat kernels in comparison with controls. Moreover, in vitro incubation of ZHD518 with ZEA showed the presence of two non-estrogenic degradation products of ZEA: hydrolysed zearalenone (HZEA) and decarboxylated hydrolysed ZEA (DHZEA). In addition, the physical pre-treatment led to a reduction in detectable mycotoxin contents in a subset of samples. Overall, this study emphasizes the promising potential of combining physical pre-treatment approaches with biological decontamination solutions in order to address the associated problem of mycotoxin contamination and food waste reduction.


Asunto(s)
Contaminación de Alimentos , Triticum , Zearalenona , Zearalenona/análisis , Triticum/química , Triticum/microbiología , Contaminación de Alimentos/análisis , Bacillus megaterium/enzimología , Descontaminación/métodos , Microbiología de Alimentos , Manipulación de Alimentos/métodos , Bacillus/enzimología , Semillas/química , Semillas/microbiología , Microscopía Electrónica de Rastreo
19.
J Insect Sci ; 24(3)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38717261

RESUMEN

The mealworm Tenebrio molitor L. (Coleoptera: Tenebrionidae) feeds on wheat bran and is considered both a pest and an edible insect. Its larvae contain proteins and essential amino acids, fats, and minerals, making them suitable for animal and human consumption. Zearalenone (ZEA) is the mycotoxin most commonly associated with Fusarium spp. It is found in cereals and cereal products, so their consumption is a major risk for mycotoxin contamination. One of the most important effects of ZEA is the induction of oxidative stress, which leads to physiological and behavioral changes. This study deals with the effects of high doses of ZEA (10 and 20 mg/kg) on survival, molting, growth, weight gain, activity of antioxidant enzymes superoxide dismutase (SOD) and glutathione S-transferase (GST), and locomotion of mealworm larvae. Both doses of ZEA were found to (i) have no effect on survival, (ii) increase molting frequency, SOD, and GST activity, and (iii) decrease body weight and locomotion, with more pronounced changes at 20 mg/kg. These results indicated the susceptibility of T. molitor larvae to high doses of ZEA in feed.


Asunto(s)
Glutatión Transferasa , Larva , Locomoción , Tenebrio , Zearalenona , Animales , Tenebrio/efectos de los fármacos , Tenebrio/crecimiento & desarrollo , Larva/crecimiento & desarrollo , Larva/efectos de los fármacos , Zearalenona/toxicidad , Glutatión Transferasa/metabolismo , Locomoción/efectos de los fármacos , Superóxido Dismutasa/metabolismo , Antioxidantes/metabolismo
20.
J Agric Food Chem ; 72(14): 8200-8213, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38560889

RESUMEN

Zearalenone (ZEN) is a mycotoxin that is harmful to humans and animals. In this study, female and male rats were exposed to ZEN, and the results showed that ZEN reduced the farnesoid X receptor (FXR) expression levels in the liver and disrupted the enterohepatic circulation of bile acids (BAs). A decrease in food intake induced by ZEN was negatively correlated with an increase in the level of total BAs. BA-targeted metabolomics revealed that ZEN increased glycochenodeoxycholic acid levels and decreased the ratio of conjugated BAs to unconjugated BAs, which further increased the hypothalamic FXR expression levels. Preventing the increase in total BA levels induced by ZEN via Lactobacillus rhamnosus GG intervention restored the appetite. In conclusion, ZEN disrupted the enterohepatic circulation of BAs to decrease the level of food intake. This study reveals a possible mechanism by which ZEN affects food intake and provides a new approach to decrease the toxic effects of ZEN.


Asunto(s)
Ácidos y Sales Biliares , Zearalenona , Humanos , Ratas , Masculino , Femenino , Animales , Ácidos y Sales Biliares/metabolismo , Zearalenona/metabolismo , Hígado/metabolismo , Hipotálamo , Ingestión de Alimentos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...