RESUMEN
Several natural products are being studied to identify new bioactive molecules with therapeutic potential for infections, immune modulation, and other pathologies. TLRs are a family of receptors that play a crucial role in the immune system, constituting the first line of immune defense. They recognize specific products derived from microorganisms that activate multiple pathways and transcription factors in target cells, which are vital for producing immune mediators. Mygalin is a synthetic acylpolyamine derived from hemocytes of the spider Acanthoscurria gomesiana. This molecule negatively regulates macrophage response to LPS stimulation by interacting with MD2 in the TLR4/MD2 complex. Here, we investigated the activity of Mygalin mediated by TLR2 agonists in cells treated with Pam3CSK4 (TLR2/1), Pam2CSK4, Zymosan (TLR2/6), and IFN-γ. Our data showed that Mygalin significantly inhibited stimulation with agonists and IFN-γ, reducing NO and IL-6 synthesis, regardless of the stimulation. There was also a significant reduction in the phosphorylation of proteins NF-κB p65 and STAT-1 in cells treated with Pam3CSK4. Molecular docking assays determined the molecular structure of Mygalin and agonists Pam3CSK4, Pam2CSK4, and Zymosan, as well as their interaction and free energy with the heterodimeric complexes TLR2/1 and TLR2/6. Mygalin interacted with the TLR1 and TLR2 dimer pathway through direct interaction with the agonists, and the ligand-binding domain was similar in both complexes. However, the binding of Mygalin was different from that of the agonists, since the interaction energy with the receptors was lower than with the agonists for their receptors. In conclusion, this study showed the great potential of Mygalin as a potent natural inhibitor of TLR2/1 and TLR2/6 and a suppressor of the inflammatory response induced by TLR2 agonists, in part due to its ability to interact with the heterodimeric complexes.
Asunto(s)
Interferón gamma , Receptor Toll-Like 2 , Receptor Toll-Like 2/agonistas , Receptor Toll-Like 2/metabolismo , Animales , Interferón gamma/metabolismo , Ratones , Simulación del Acoplamiento Molecular , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Lipopéptidos/farmacología , Células RAW 264.7 , Humanos , Transducción de Señal/efectos de los fármacos , Zimosan/farmacología , Interleucina-6/metabolismo , Polisacáridos/farmacología , Polisacáridos/química , Factor de Transcripción ReIA/metabolismoRESUMEN
In allergen-specific immunotherapy, adjuvants are explored for modulating allergen-specific Th2 immune responses to re-establish clinical tolerance. One promising class of adjuvants are ß-glucans, which are naturally derived sugar structures and components of dietary fibers that activate C-type lectin (CLR)-, "Toll"-like receptors (TLRs), and complement receptors (CRs). We characterized the immune-modulating properties of six commercially available ß-glucans, using immunological (receptor activation, cytokine secretion, and T cell modulating potential) as well as metabolic parameters (metabolic state) in mouse bone marrow-derived myeloid dendritic cells (mDCs). All tested ß-glucans activated the CLR Dectin-1a, whereas TLR2 was predominantly activated by Zymosan. Further, the tested ß-glucans differentially induced mDC-derived cytokine secretion and activation of mDC metabolism. Subsequent analyses focusing on Zymosan, Zymosan depleted, ß-1,3 glucan, and ß-1,3 1,6 glucan revealed robust mDC activation with the upregulation of the cluster of differentiation 40 (CD40), CD80, CD86, and MHCII to different extents. ß-glucan-induced cytokine secretion was shown to be, in part, dependent on the activation of the intracellular Dectin-1 adapter molecule Syk. In co-cultures of mDCs with Th2-biased CD4+ T cells isolated from birch allergen Bet v 1 plus aluminum hydroxide (Alum)-sensitized mice, these four ß-glucans suppressed allergen-induced IL-5 secretion, while only Zymosan and ß-1,3 glucan significantly suppressed allergen-induced interferon gamma (IFNγ) secretion, suggesting the tested ß-glucans to have distinct effects on mDC T cell priming capacity. Our experiments indicate that ß-glucans have distinct immune-modulating properties, making them interesting adjuvants for future allergy treatment.
Asunto(s)
Citocinas , Células Dendríticas , Lectinas Tipo C , beta-Glucanos , Animales , Células Dendríticas/inmunología , Células Dendríticas/efectos de los fármacos , Células Dendríticas/metabolismo , beta-Glucanos/farmacología , beta-Glucanos/química , Ratones , Lectinas Tipo C/metabolismo , Citocinas/metabolismo , Adyuvantes Inmunológicos/farmacología , Zimosan/farmacología , Células Mieloides/efectos de los fármacos , Células Mieloides/inmunología , Células Mieloides/metabolismo , Receptor Toll-Like 2/metabolismo , Ratones Endogámicos C57BL , Quinasa Syk/metabolismoRESUMEN
Neuroinflammation can positively influence axon regeneration following injury in the central nervous system. Inflammation promotes the release of neurotrophic molecules and stimulates intrinsic proregenerative molecular machinery in neurons, but the detailed mechanisms driving this effect are not fully understood. We evaluated how microRNAs are regulated in retinal neurons in response to intraocular inflammation to identify their potential role in axon regeneration. We found that miR-383-5p is downregulated in retinal ganglion cells in response to zymosan-induced intraocular inflammation. MiR-383-5p downregulation in neurons is sufficient to promote axon growth in vitro, and the intravitreal injection of a miR-383-5p inhibitor into the eye promotes axon regeneration following optic nerve crush. MiR-383-5p directly targets ciliary neurotrophic factor (CNTF) receptor components, and miR-383-5p inhibition sensitizes adult retinal neurons to the outgrowth-promoting effects of CNTF. Interestingly, we also demonstrate that CNTF treatment is sufficient to reduce miR-383-5p levels in neurons, constituting a positive-feedback module, whereby initial CNTF treatment reduces miR-383-5p levels, which then disinhibits CNTF receptor components to sensitize neurons to the ligand. Additionally, miR-383-5p inhibition derepresses the mitochondrial antioxidant protein peroxiredoxin-3 (PRDX3) which was required for the proregenerative effects associated with miR-383-5p loss-of-function in vitro. We have thus identified a positive-feedback mechanism that facilitates neuronal CNTF sensitivity in neurons and a new molecular signaling module that promotes inflammation-induced axon regeneration.
Asunto(s)
Axones , MicroARNs , Regeneración Nerviosa , Células Ganglionares de la Retina , Transducción de Señal , Animales , MicroARNs/metabolismo , MicroARNs/genética , Regeneración Nerviosa/fisiología , Regeneración Nerviosa/efectos de los fármacos , Axones/fisiología , Axones/efectos de los fármacos , Células Ganglionares de la Retina/metabolismo , Células Ganglionares de la Retina/efectos de los fármacos , Transducción de Señal/fisiología , Transducción de Señal/efectos de los fármacos , Ratones , Inflamación/metabolismo , Factor Neurotrófico Ciliar/metabolismo , Factor Neurotrófico Ciliar/farmacología , Ratones Endogámicos C57BL , Traumatismos del Nervio Óptico/metabolismo , Masculino , Zimosan/farmacología , Células CultivadasRESUMEN
Acute inflammation is a rapid and dynamic process involving the recruitment and activation of multiple cell types in a coordinated and precise manner. Here, we investigate the origin and transcriptional reprogramming of monocytes using a model of acute inflammation, zymosan-induced peritonitis. Monocyte trafficking and adoptive transfer experiments confirmed that monocytes undergo rapid phenotypic change as they exit the blood and give rise to monocyte-derived macrophages that persist during the resolution of inflammation. Single-cell transcriptomics revealed significant heterogeneity within the surface marker-defined CD11b+Ly6G-Ly6Chi monocyte populations within the blood and at the site of inflammation. We show that two major transcriptional reprogramming events occur during the initial six hours of Ly6Chi monocyte mobilisation, one in the blood priming monocytes for migration and a second at the site of inflammation. Pathway analysis revealed an important role for oxidative phosphorylation (OxPhos) during both these reprogramming events. Experimentally, we demonstrate that OxPhos via the intact mitochondrial electron transport chain is essential for murine and human monocyte chemotaxis. Moreover, OxPhos is needed for monocyte-to-macrophage differentiation and macrophage M(IL-4) polarisation. These new findings from transcriptional profiling open up the possibility that shifting monocyte metabolic capacity towards OxPhos could facilitate enhanced macrophage M2-like polarisation to aid inflammation resolution and tissue repair.
Asunto(s)
Antígenos Ly , Diferenciación Celular , Inflamación , Macrófagos , Monocitos , Fosforilación Oxidativa , Animales , Humanos , Ratones , Antígenos Ly/metabolismo , Reprogramación Celular , Quimiotaxis , Inflamación/patología , Inflamación/metabolismo , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Monocitos/metabolismo , Peritonitis/inducido químicamente , Peritonitis/patología , Zimosan/farmacologíaRESUMEN
BACKGROUND/AIM: Oral epithelial cells serve as the primary defense against microbial exposure in the oral cavity, including the fungus Candida albicans. Dectin-1 is crucial for recognition of ß-glucan in fungi. However, expression and function of Dectin-1 in oral epithelial cells remain unclear. MATERIALS AND METHODS: We assessed Dectin-1 expression in Ca9-22 (gingiva), HSC-2 (mouth), HSC-3 (tongue), and HSC-4 (tongue) human oral epithelial cells using flow cytometry and real-time polymerase chain reaction. Cell treated with ß-glucan-rich zymosan were evaluated using real-time polymerase chain reaction. Phosphorylation of spleen-associated tyrosine kinase (SYK) was analyzed by western blotting. RESULTS: Dectin-1 was expressed in all four cell types, with high expression in Ca9-22 and HSC-2. In Ca9-22 cells, exposure to ß-glucan-rich zymosan did not alter the mRNA expression of chemokines nor of interleukin (IL)6, IL8, IL1ß, IL17A, and IL17F. Zymosan induced the expression of antimicrobial peptides ß-defensin-1 and LL-37, but not S100 calcium-binding protein A8 (S100A8) and S100A9. Furthermore, the expression of cylindromatosis (CYLD), a negative regulator of nuclear factor kappa B (NF-κB) signaling, was induced. In HSC-2 cells, zymosan induced the expression of IL17A. The expression of tumor necrosis factor alpha-induced protein 3 (TNFAIP3), a negative regulator of NF-κB signaling, was also induced. Expression of other cytokines and antimicrobial peptides remained unchanged. Zymosan induced phosphorylation of SYK in Ca9-22 cells, as well as NF-κB. CONCLUSION: Oral epithelial cells express Dectin-1 and recognize ß-glucan, which activates SYK and induces the expression of antimicrobial peptides and negative regulators of NF-κB, potentially maintaining oral homeostasis.
Asunto(s)
Células Epiteliales , Lectinas Tipo C , FN-kappa B , Transducción de Señal , Quinasa Syk , Humanos , Lectinas Tipo C/metabolismo , Lectinas Tipo C/genética , FN-kappa B/metabolismo , Quinasa Syk/metabolismo , Quinasa Syk/genética , Células Epiteliales/metabolismo , Células Epiteliales/efectos de los fármacos , Línea Celular , Zimosan/farmacología , Citocinas/metabolismo , Citocinas/genética , Fosforilación , Mucosa Bucal/metabolismo , Mucosa Bucal/inmunología , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Proteínas Citotóxicas Formadoras de Poros/genética , Péptidos Catiónicos Antimicrobianos/genética , Péptidos Catiónicos Antimicrobianos/metabolismoRESUMEN
The phagocytic activity of macrophages activated with MT-II, a Lys-49 PLA2 homolog, and MT-III, an Asp-49 PLA2, from Bothrops asper snake venom, was investigated in this study using a pharmacological approach. Stimulating thioglycollate-elicited macrophages with both venom components enhanced their ability to phagocytose non-opsonized zymosan particles. MT-II and MT-III-induced phagocytosis was drastically inhibited by pretreating cells with L-NAME, aminoguanidine or L-NIL, cNOS or iNOS inhibitors, or with ODQ (sGC inhibitor) or Rp-cGMPS (PKG inhibitor). These results indicate that the NO/sGC/GMP/PKG pathway plays an essential role in the ß-glucan-mediated phagocytosis induced in macrophages by these venom-secretory PLA2s.
Asunto(s)
Bothrops , Venenos de Crotálidos , Macrófagos , Óxido Nítrico , Fagocitosis , Transducción de Señal , Zimosan , Animales , Fagocitosis/efectos de los fármacos , Zimosan/farmacología , Transducción de Señal/efectos de los fármacos , Óxido Nítrico/metabolismo , Macrófagos/efectos de los fármacos , Ratones , Fosfolipasas A2 Secretoras/metabolismoRESUMEN
Nitric oxide (NO) is gaseous bioactive molecule that is synthesized by NO synthase (NOS). Inducible NOS (iNOS) expression occurs in response to pathogenic challenges, resulting in the production of large amounts of NO. However, there is a lack of knowledge regarding neuronal NOS (nNOS) and endothelial NOS (eNOS) in birds during pathogenic challenge. Therefore, the present study was conducted to determine the influence of intraperitoneal (IP) injection of zymosan (cell wall component of yeast) and lipopolysaccharide (LPS, a cell wall component of gram-negative bacteria) on NOS expression in chicks (Gallus gallus). Furthermore, the effect of NOS inhibitors on the corresponding behavioral and physiological parameters was investigated. Zymosan and LPS injections induced iNOS mRNA expression in several organs. Zymosan had no effect on eNOS mRNA expression in the organs investigated, whereas LPS increased its expression in the pancreas. Zymosan and LPS decreased nNOS mRNA expression in the lung, heart, kidney, and pancreas. The decreased nNOS mRNA expression in pancreas was probably associated with the NO from iNOS provided that such effect was reproduced by IP injection of sodium nitroprusside, which is a NO donor. Furthermore, pancreatic nNOS mRNA expression decreased following subcutaneous injection of corticosterone. Furthermore, IP injections of a nonspecific NOS inhibitor, NG-nitro-L-arginine methyl ester, and an nNOS-specific inhibitor, 7-nitroindazole, resulted in the significant decreases in food intake, cloacal temperature, and feed passage via the digestive tract in chicks. Collectively, the current findings imply the decreased nNOS expression because of fungal and bacterial infections, which affects food intake, body temperature, and the digestive function in birds.
Asunto(s)
Pollos , Lipopolisacáridos , Óxido Nítrico Sintasa de Tipo I , Zimosan , Animales , Zimosan/farmacología , Lipopolisacáridos/farmacología , Pollos/inmunología , Óxido Nítrico Sintasa de Tipo I/genética , Óxido Nítrico Sintasa de Tipo I/metabolismo , Masculino , Indazoles/farmacología , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Óxido Nítrico Sintasa de Tipo III/genética , Óxido Nítrico Sintasa de Tipo III/metabolismoRESUMEN
Stimulation of the innate immune system prior to stress exposure is a possible strategy to prevent depression under stressful conditions. Based on the innate immune system stimulating activities of zymosan A, we hypothesize that zymosan A may prevent the development of chronic stress-induced depression-like behavior. Our results showed that a single injection of zymosan A 1â day before stress exposure at a dose of 2 or 4â mg/kg, but not at a dose of 1â mg/kg, prevented the development of depression-like behaviors in mice treated with chronic social defeat stress (CSDS). The prophylactic effect of a single zymosan A injection (2â mg/kg) on CSDS-induced depression-like behaviors disappeared when the time interval between zymosan A and stress exposure was extended from 1â day or 5â days to 10â days, which was rescued by a second zymosan A injection 10â days after the first zymosan A injection and 4â days (4×, once daily) of zymosan A injections 10â days before stress exposure. Further analysis showed that a single zymosan A injection (2â mg/kg) 1â day before stress exposure could prevent the CSDS-induced increase in pro-inflammatory cytokines in the hippocampus and prefrontal cortex. Inhibition of the innate immune system by pretreatment with minocycline (40â mg/kg) abolished the preventive effect of zymosan A on CSDS-induced depression-like behaviors and CSDS-induced increase in pro-inflammatory cytokines in the brain. These results suggest that activation of the innate immune system triggered by zymosan A prevents the depression-like behaviors and neuroinflammatory responses in the brain induced by chronic stress.
Asunto(s)
Depresión , Hipocampo , Estrés Psicológico , Zimosan , Animales , Zimosan/farmacología , Ratones , Estrés Psicológico/inmunología , Masculino , Depresión/tratamiento farmacológico , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Citocinas/metabolismo , Conducta Animal/efectos de los fármacos , Derrota Social , Inmunización/métodos , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Enfermedades Neuroinflamatorias/inmunología , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Minociclina/farmacología , Relación Dosis-Respuesta a DrogaRESUMEN
NADPH oxidase is a target of hyperglycemia in type 2 diabetes mellitus (T2DM), which causes dysregulation of enzyme. Alterations in regulation of NADPH oxidase activity mediated receptor and non-receptor signaling in bone marrow granulocytes of mice with obesity-induced T2DM were studied. The animals fed high fat diet (516 kcal/100 g) for 16 weeks. NADPH oxidase-related generation of reactive species (RS) at normo- and hyperthermia was estimated using chemiluminescent analysis. The redox status of the cells was assessed by Redox Sensor Red CC-1. Baseline biochemical indicators in blood (glucose, cholesterol, HDL and LDL levels) were significant higher in T2DM mice versus controls. Using specific inhibitors, signaling mediated by formyl peptide receptors (FPRs) to NADPH oxidase was shown to involve PLC, PKC, cytochrome p450 in both control and T2DM groups and PLA2 in controls. In T2DM regulation of NADPH oxidase activity via mFpr1, a high-affinity receptors, occurred with a significant increase of the role of PKC isoforms and suppression of PLA2 participation. Significant differences between this regulation via mFpr2, low-affinity receptors, were not found. Non-receptor activation of NADPH oxidase with ionomycin (Ca2+ ionophore) or phorbol ester (direct activator of PKC isoforms) did not revealed differences in the kinetic parameters between groups at 37 °C and 40 °C. When these agents were used together (synergistic effect), lower sensitivity of cells to ionophore was observed in T2DM at both temperatures. Redox status in responses to opsonized zymosan was higher in T2DM mice at 37 °C and similar to control levels at 40 °C. ROC-analysis identified Tmax, RS production and effect of opsonized zymosan as the most significant predictors for discriminating between groups. It was concluded that Ca2+-dependent/PKC-mediated regulation of NADPH oxidase activity was altered in BM granulocytes from diabetic mice.
Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Ratones , Animales , Zimosan/farmacología , Granulocitos , NADPH Oxidasas/genética , Isoformas de Proteínas , Ionóforos/farmacología , Fosfolipasas A2 , Obesidad/complicaciones , Especies Reactivas de Oxígeno/farmacologíaRESUMEN
Cells of the innate immune system retain memory of prior exposures through a process known as innate immune training. ß-glucan, a Dectin-1 ligand purified from the Candida albicans cell wall, has been one of the most widely utilized ligands for inducing innate immune training. However, many Dectin-1 ligands exist, and it is not known whether these all produce the same phenotype. Using a well-established in vitro model of innate immune training, we compared two commercially available Dectin-1 agonists, zymosan and depleted zymosan, with the gold standard ß-glucan in the literature. We found that depleted zymosan, a ß-glucan purified from Saccharomyces cerevisiae cell wall through alkali treatment, produced near identical effects as C. albicans ß-glucan. However, untreated zymosan produced a distinct training effect from ß-glucans at both the transcript and cytokine level. Training with zymosan diminished, rather than potentiated, induction of cytokines such as TNF and IL-6. Zymosan activated NFκB and AP-1 transcription factors more strongly than ß-glucans. The addition of the toll-like receptor (TLR) ligand Pam3CSK4 was sufficient to convert the training effect of ß-glucans to a phenotype resembling zymosan. We conclude that differential activation of TLR signaling pathways determines the phenotype of innate immune training induced by Dectin-1 ligands.
Asunto(s)
Monocitos , beta-Glucanos , Humanos , Zimosan/farmacología , Monocitos/metabolismo , Ligandos , Lectinas Tipo C/metabolismo , beta-Glucanos/metabolismo , Citocinas/metabolismo , Saccharomyces cerevisiae/metabolismo , FenotipoRESUMEN
Zymosan is a fungi-derived pathogen-associated molecular pattern. It activates the immune system and induces the reduction of feed passage rate in the gastrointestinal tract of vertebrates including birds. However, the mechanism mediating the zymosan-induced inhibition of feed passage in the gastrointestinal tract remains unknown. Since the medulla oblongata regulates the digestive function, it is plausible that the medulla oblongata is involved in the zymosan-induced inhibition of feed passage. The present study was performed to identify the genes that were affected by zymosan within the medulla oblongata of chicks (Gallus gallus) using an RNA sequencing approach. We found that mRNAs of several bioactive molecules including neuropeptide Y (NPY) were increased with an intraperitoneal (IP) injection of zymosan. The increase of mRNA expression of NPY in the medulla oblongata was also observed after the IP injection of lipopolysaccharide, derived from gram-negative bacteria. These results suggest that medullary NPY is associated with physiological changes during fungal and bacterial infection. Furthermore, we found that intracerebroventricular injection of NPY and its receptor agonists reduced the feed passage from the crop. Additionally, the injection of NPY reduced the feed passage from the proventriculus to lower digestive tract. NPY also suppressed the activity of duodenal activities of amylase and trypsin. The present study suggests that fungi- and bacteria-induced activation of the immune system may activate the NPY neurons in the medulla oblongata and thereby reduce the digestive function in chicks.
Asunto(s)
Lipopolisacáridos , Neuropéptido Y , Animales , Neuropéptido Y/genética , Neuropéptido Y/metabolismo , Lipopolisacáridos/farmacología , Zimosan/farmacología , Pollos/metabolismo , Bulbo Raquídeo/metabolismo , Tracto Gastrointestinal/metabolismoRESUMEN
Chronic inflammation and oxidative stress play a pivotal role in the pathophysiology of most challenging illnesses, including cancer, Alzheimer's, cardiovascular and autoimmune diseases. The present study aimed to investigate the anti-inflammatory potential of a new sulfadimethoxine derivative N-(4-(N-(2,6-dimethoxypyrimidin-4-yl) sulfamoyl) phenyl) dodecanamide (MHH-II-32). The compound was characterised by applying 1H-, 13C-NMR, EI-MS and HRFAB-MS spectroscopic techniques. The compound inhibited zymosan-induced oxidative bursts from whole blood phagocytes and isolated polymorphonuclear cells with an IC50 value of (2.5 ± 0.4 and 3.4 ± 0.3 µg/mL), respectively. Furthermore, the inhibition of nitric oxide with an IC50 (3.6 ± 2.2 µg/mL) from lipopolysaccharide-induced J774.2 macrophages indicates its in vitro anti-inflammatory efficacy. The compound did not show toxicity towards normal fibroblast cells. The observational findings, gross anatomical analysis of visceral organs and serological tests revealed the non-toxicity of the compound at the highest tested intraperitoneal (IP) dose of 100 mg/kg in acute toxicological studies in Balb/c mice. The compound treatment (100 mg/kg) (SC) significantly (P < 0.001) downregulated the mRNA expression of inflammatory markers TNF-α, IL-1ß, IL-2, IL-13, and NF-κB, which were elevated in zymosan-induced generalised inflammation (IP) in Balb/c mice while upregulated the expression of anti-inflammatory cytokine IL-10, which was reduced in zymosan-treated mice. No suppressive effect was observed at the dose of 25 mg/kg. Ibuprofen was taken as a standard drug. The results revealed that the new acyl derivative of sulfadimethoxine has an immunomodulatory effect against generalised inflammatory response with non-toxicity both in vitro and in vivo, and has therapeutic potential for various chronic inflammatory illnesses.
Asunto(s)
Estallido Respiratorio , Sulfadimetoxina , Animales , Ratones , Zimosan/farmacología , Sulfadimetoxina/efectos adversos , Sulfadimetoxina/metabolismo , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Antiinflamatorios/uso terapéutico , Citocinas/metabolismo , FN-kappa B/metabolismo , Fagocitos/metabolismo , Modelos Animales de Enfermedad , Óxido Nítrico/metabolismo , Lipopolisacáridos/farmacologíaRESUMEN
Beta-glucan (ß-glucan) is a natural polysaccharide produced by fungi, bacteria, and plants. Although it has been reported that ß-glucan enhances innate immune memory responses, it is unclear whether different types of ß-glucans display similar immune effects. To address this issue, we employed zymosan (ß-1,3-glycosidic linkage) and pustulan (ß-1,6-glycosidic linkage) to investigate their in vivo effects on innate memory immune responses. We examined the changes of innate memory-related markers in macrophages and natural killer (NK) cells, two immune cell types that display innate memory characteristics, at two different time points (16 h and 7 days) after ß-glucan stimulation. We found that short-term (16 h) zymosan treatment significantly induced macrophages to upregulate IL15 production and increased surface IL15Rα expression on NK cells. In addition, long-term (7 days) zymosan treatment significantly induced macrophages to upregulate the expression of innate memory-related markers (e.g., TNFα, HIF1α, and mTOR) and induced NK cells to express enhanced levels of KLRG1, known as an innate memory-like marker. Our results provide support that zymosan can be an effective adjuvant to promote innate memory immune responses, providing a bridge between innate and adaptive immune cells to enhance various immune responses such as those directed against tumors.
Asunto(s)
Interleucina-15 , beta-Glucanos , Ratones , Animales , Zimosan/farmacología , Macrófagos , beta-Glucanos/farmacología , Células Asesinas Naturales , Inmunidad InnataRESUMEN
BACKGROUND AND OBJECTIVE: Cytokine storm (CS) is a major contributor to the fatal outcome of severe infectious diseases, including Covid-19. Treatment with the complement (C) C5 inhibitor eculizumab was beneficial in end-stage Covid-19, however, the mechanism of this effect is unknown. To clarify this, we analyzed the relationship between C activation and production of pro-inflammatory cytokines in a PBMC model. METHODS: Human PBMC with or without 20 % autologous serum was incubated with C3a, C5a, zymosan or zymosan-pre-activated serum (ZAS) for 24 h with or without eculizumab or the C5a receptor antagonist, DF2593A. C activation (sC5b-9) and 9 inflammatory cytokines were measured by ELISA. RESULTS: In serum-free unstimulated PBMC only IL-8 release could be measured during incubation. Addition of C5a increased IL-8 secretion only, ZAS induced both IL-2 and IL-8, while zymosan led to significant production of all cytokines, most abundantly IL-8. In the presence of serum the above effects were greatly enhanced, and the zymosan-induced rises of IL-1α, IL-1ß IFN-γ and IL-2 were significantly attenuated by eculizumab but not by DF2593a. CONCLUSIONS: These data highlight the complexity of interrelationships between C activation and cytokine secretion under different experimental conditions. The clinically relevant findings include the abundant formation of the chemokine IL-8, which was stimulated by C5a, and the suppression of numerous inflammatory cytokines by eculizumab, which explains its therapeutic efficacy in severe Covid-19. These data strengthen the clinical relevance of the applied PBMC model for drug screening against CS, enabling the separation of complex innate immune cross-talks.
Asunto(s)
COVID-19 , Citocinas , Humanos , Citocinas/farmacología , Interleucina-2/farmacología , Zimosan/farmacología , Leucocitos Mononucleares , Síndrome de Liberación de Citoquinas/tratamiento farmacológico , Interleucina-8/farmacología , Interferón gamma/farmacologíaRESUMEN
Recent studies had reported that compounds that stimulate microglia could be developed as potential drugs for the treatment of depression due to their reversal effect on depression-like behaviors in chronically stressed mice. Zymosan A is a cell wall preparation of Saccharomyces cerevisiae composed of ß-glucans. Based on its immuno-stimulatory activities, we hypothesized that zymosan A might have a therapeutic effect on depression. Our results showed that a single injection of zymosan A 5â h before behavioral tests at a dose of 1 or 2â mg/kg, but not at a dose of 0.5â mg/kg, reversed chronic unpredictable stress (CUS)-induced depression-like behaviors in mice in the tail suspension test, forced swimming test, and sucrose preference test. Time-dependent analysis showed that the antidepressant effect of zymosan A (2â mg/kg) in CUS mice became statistically significant at 5 and 8â h, but not at 3â h, and persisted for at least 7 days. Fourteen days after a single injection of zymosan A, no antidepressant effect was observed anymore. However, the disappeared antidepressant effect of zymosan A was restored by a second zymosan A injection (2â mg/kg, 5 h) 14 days after the first zymosan A injection. Stimulation of microglia was essential for the antidepressant effect of zymosan A because pre-inhibition of microglia by minocycline or pre-depletion of microglia by PLX3397 prevented the antidepressant effect of zymosan A. Based on these effects of zymosan A, zymosan A administration could be developed as a new strategy for the treatment of depression.
Asunto(s)
Antidepresivos , Microglía , Ratones , Animales , Zimosan/farmacología , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Natación , Hipocampo , Depresión/tratamiento farmacológico , Depresión/etiología , Estrés Psicológico/tratamiento farmacológico , Modelos Animales de EnfermedadRESUMEN
BACKGROUND: Candida albicans is linked to persistent endodontic lesions. However, the recognition receptor that identifies it is not explored previously. OBJECTIVES: The aim of this study was to (1) establish a zymosan-induced model of apical periodontitis in mouse, (2) observe the expression of Dectin-1 and its possible relationship with toll-like receptor (TLR) 2 and (3) observe relationship between Osteopontin (OPN) and inflammatory cytokines. METHODS: A total of 138 Naval Medical Research Institute (NMRI) mice were randomly divided into; Experimental Group n = 69 and Zymosan Group n = 69. Periapical periodontitis was developed in right maxillary molar. The animals were sacrificed at 7, 21 and 42 days. Bone blocks containing the mesial root (n = 15 for qRT-PCR, n = 45 for enzyme-linked immune sorbent assay (ELISA)) were collected for mRNA expression and ELISA. While whole maxilla (n = 3 from each time interval) were used for histology and immunohistochemical analysis. One way analysis of variance (ANOVA) and Tuckey's posthoc was used for statistical analysis at p ≤ .05. RESULTS: TLR-2, Dectin-1 and TLR4-positive cells was detected at all time intervals in both groups. A strong positive correlation was observed between TLR-2 and Dectin-1 in both lesions (regular r = .680, p = .015, zymosan (r = .861, p < .001)). A significant correlation was found between OPN and tumour necrosis factor-alpha (TNF-α) in zymosan lesion (r = .827, p = .001). CONCLUSIONS: Immune cells of inflamed periapical tissue expressed Dectin-1 receptor in response to the microbial challenge from infected root canals and showed positive correlation with TLR-2 and OPN suggesting a possible receptor collaboration mediated by OPN. The expression of OPN and TNF-α showed positive correlation in response to fungal antigen, indicating a possible relationship.
Asunto(s)
Periodontitis Periapical , Receptor Toll-Like 2 , Animales , Ratones , Receptor Toll-Like 2/genética , Receptor Toll-Like 2/metabolismo , Zimosan/farmacología , Factor de Necrosis Tumoral alfa/metabolismo , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismoRESUMEN
Immunoglobulin A (IgA) is the most abundant isotype of antibodies and provides a first line of defense at the mucosa against pathogens invading the host. It has been widely accepted that the mucosal IgA response provided by vaccination requires mucosal inoculation, and intranasal inoculation has been proposed for vaccines against influenza virus. Considering the difficulty of intranasal vaccination in infants or elderly people, however, parenteral vaccination that provides the mucosal IgA response is desirable. Here, we demonstrate that subcutaneous immunisation with zymosan, a yeast cell wall constituent known to be recognised by Dectin-1 and TLR2, potentiates the production of antigen-specific IgA antibodies in the sera and airway mucosa upon intranasal antigen challenge. We confirmed that the antigen-specific IgA-secreting cells accumulated in the lung and nasal-associated lymphoid tissues after the antigen challenge. Such an adjuvant effect of zymosan in the primary immunisation for the IgA response depended on Dectin-1 signalling, but not on TLR2. The IgA response to the antigen challenge required both antigen-specific memory B and T cells, and the generation of memory T cells, but not memory B cells, depended on zymosan as an adjuvant. Finally, we demonstrated that subcutaneous inoculation of inactivated influenza virus with zymosan, but not with alum, mostly protected the mice from infection with a lethal dose of a heterologous virus strain. These data suggest that zymosan is a possible adjuvant for parenteral immunisation that generates memory IgA responses to respiratory viruses such as influenza virus.
Asunto(s)
Enfermedades Transmisibles , Vacunas contra la Influenza , Gripe Humana , Infecciones por Orthomyxoviridae , Orthomyxoviridae , Ratones , Animales , Humanos , Inmunoglobulina A , Zimosan/farmacología , Receptor Toll-Like 2 , Anticuerpos Antivirales , Inmunización , Vacunación , Administración Intranasal , Adyuvantes Inmunológicos/farmacología , Membrana Mucosa , Antígenos , Inmunidad MucosaRESUMEN
Background: Intestinal epithelial cells (IECs) are the first to encounter luminal microorganisms and actively participate in intestinal immunity. We reported that IECs express the ß-glucan receptor Dectin-1, and respond to commensal fungi and ß-glucans. In phagocytes, Dectin-1 mediates LC3-associated phagocytosis (LAP) utilizing autophagy components to process extracellular cargo. Dectin-1 can mediate phagocytosis of ß-glucan-containing particles by non-phagocytic cells. We aimed to determine whether human IECs phagocytose ß-glucan-containing fungal particles via LAP. Methods: Colonic (n=18) and ileal (n=4) organoids from individuals undergoing bowel resection were grown as monolayers. Fluorescent-dye conjugated zymosan (ß-glucan particle), heat-killed- and UV inactivated C. albicans were applied to differentiated organoids and to human IEC lines. Confocal microscopy was used for live imaging and immuno-fluorescence. Quantification of phagocytosis was carried out with a fluorescence plate-reader. Results: zymosan and C. albicans particles were phagocytosed by monolayers of human colonic and ileal organoids and IEC lines. LAP was identified by LC3 and Rubicon recruitment to phagosomes and lysosomal processing of internalized particles was demonstrated by co-localization with lysosomal dyes and LAMP2. Phagocytosis was significantly diminished by blockade of Dectin-1, actin polymerization and NAPDH oxidases. Conclusions: Our results show that human IECs sense luminal fungal particles and internalize them via LAP. This novel mechanism of luminal sampling suggests that IECs may contribute to the maintenance of mucosal tolerance towards commensal fungi.
Asunto(s)
Células Epiteliales , Hongos , Fagocitosis , beta-Glucanos , Humanos , Zimosan/farmacologíaRESUMEN
The inability of mature retinal ganglion cells (RGCs) to regenerate axons after optic nerve injury can be partially reversed by manipulating cell-autonomous and/or -nonautonomous factors. Although manipulations of cell-nonautonomous factors could have higher translational potential than genetic manipulations of RGCs, they have generally produced lower levels of optic nerve regeneration. Here, we report that preconditioning resulting from mild lens injury (conditioning LI, cLI) before optic nerve damage induced far greater regeneration than LI after nerve injury or the pro-inflammatory agent zymosan given either before or after nerve damage. Unlike zymosan-induced regeneration, cLI was unaltered by depleting mature neutrophils or T cells or blocking receptors for known inflammation-derived growth factors (oncomodulin, stromal cell-derived factor 1, CCL5) and was only partly diminished by suppressing CCR2+ monocyte recruitment. Repeated episodes of LI led to full-length optic nerve regeneration, and pharmacological removal of local resident macrophages with the colony stimulating factor 1 receptor inhibitor PLX5622 enabled some axons to reinnervate the brain in just 6 weeks, comparable to the results obtained with the most effective genetic manipulations of RGCs. Thus, cell-nonautonomous interventions can induce high levels of optic nerve regeneration, paving the way to uncovering potent, translatable therapeutic targets for CNS repair.
Asunto(s)
Regeneración Nerviosa , Traumatismos del Nervio Óptico , Humanos , Zimosan/farmacología , Regeneración Nerviosa/genética , Traumatismos del Nervio Óptico/tratamiento farmacológico , Traumatismos del Nervio Óptico/metabolismo , Células Ganglionares de la Retina/fisiología , Axones/metabolismoRESUMEN
Hemodynamic disturbance, a rise in neutrophil-to-lymphocyte ratio (NLR) and release of inflammatory cytokines into blood, is a bad prognostic indicator in severe COVID-19 and other diseases involving cytokine storm syndrome (CSS). The purpose of this study was to explore if zymosan, a known stimulator of the innate immune system, could reproduce these changes in pigs. Pigs were instrumented for hemodynamic analysis and, after i.v. administration of zymosan, serial blood samples were taken to measure blood cell changes, cytokine gene transcription in PBMC and blood levels of inflammatory cytokines, using qPCR and ELISA. Zymosan bolus (0.1 mg/kg) elicited transient hemodynamic disturbance within minutes without detectable cytokine or blood cell changes. In contrast, infusion of 1 mg/kg zymosan triggered maximal pulmonary hypertension with tachycardia, lasting for 30 min. This was followed by a transient granulopenia and then, up to 6 h, major granulocytosis, resulting in a 3-4-fold increase in NLR. These changes were paralleled by massive transcription and/or rise in IL-6, TNF-alpha, CCL-2, CXCL-10, and IL-1RA in blood. There was significant correlation between lymphopenia and IL-6 gene expression. We conclude that the presented model may enable mechanistic studies on late-stage COVID-19 and CSS, as well as streamlined drug testing against these conditions.