Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 365
Filtrar
1.
Food Microbiol ; 124: 104600, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39244359

RESUMEN

This study aimed to assess the impact of Saccharomyces cerevisiae and different non-Saccharomyces cerevisiae (Zygosaccharomyces bailii, Hanseniaspora opuntiae and Zygosaccharomyces rouxii) on the volatile compounds and sensory properties of low-alcohol pear beverages fermented from three varieties of pear juices (Korla, Laiyang and Binzhou). Results showed that all three pear juices were favorable matrices for yeasts growth. Non-Saccharomyces cerevisiae exhibited a higher capacity for acetate ester production compared to Saccharomyces cerevisiae, resulting in a significant enhancement in sensory complexity of the beverages. PCA and sensory analysis demonstrated that pear varieties exerted a stronger influence on the crucial volatile components and aroma characteristics of the fermented beverages compared to the yeast species. CA results showed different yeast strains exhibited suitability for the fermentation of specific pear juice varieties.


Asunto(s)
Fermentación , Odorantes , Pyrus , Saccharomyces cerevisiae , Compuestos Orgánicos Volátiles , Compuestos Orgánicos Volátiles/metabolismo , Compuestos Orgánicos Volátiles/análisis , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Pyrus/microbiología , Pyrus/química , Odorantes/análisis , Jugos de Frutas y Vegetales/análisis , Jugos de Frutas y Vegetales/microbiología , Gusto , Humanos , Zygosaccharomyces/metabolismo , Zygosaccharomyces/crecimiento & desarrollo , Hanseniaspora/metabolismo , Hanseniaspora/crecimiento & desarrollo , Frutas/microbiología , Frutas/química , Saccharomycetales
2.
Food Microbiol ; 123: 104589, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39038894

RESUMEN

To further explore strain potential and develop an aromatic kiwifruit wine fermentation technique, the feasibility of simultaneous inoculation by non-Saccharomyces yeast and lactic acid bacteria was investigated. Lacticaseibacillus paracasei, Lactiplantibacillus plantarum, and Limosilactobacillus fermentum, which have robust ß-glucosidase activity as well as good acid and ethanol tolerance, were inoculated for simultaneous fermentation with Zygosaccharomyces rouxii and Meyerozyma guilliermondii, respectively. Subsequently, the chemical compositions and sensory characteristics of the wines were comprehensively evaluated. The results showed that the majority of the simultaneous protocols effectively improved the quality of kiwifruit wines, increasing the content of polyphenols and volatile compounds, thereby enhancing sensory acceptability compared to the fermentation protocols inoculated with non-Saccharomyces yeast individually. Particularly, the collaboration between Lacp. plantarum and Z. rouxii significantly increased the diversity and content of esters, alcohols, and ketones, intensifying floral and seeded fruit odors, and achieving the highest overall acceptability. This study highlights the potential significance of simultaneous inoculation in kiwifruit wine production.


Asunto(s)
Actinidia , Fermentación , Frutas , Odorantes , Gusto , Compuestos Orgánicos Volátiles , Vino , Actinidia/microbiología , Vino/microbiología , Vino/análisis , Frutas/microbiología , Compuestos Orgánicos Volátiles/metabolismo , Compuestos Orgánicos Volátiles/análisis , Odorantes/análisis , Humanos , Polifenoles/metabolismo , Polifenoles/análisis , Lactobacillales/metabolismo , Levaduras/metabolismo , Zygosaccharomyces/metabolismo , Zygosaccharomyces/crecimiento & desarrollo
3.
Food Microbiol ; 122: 104545, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38839231

RESUMEN

Despite their acidic pH, carbonated beverages can be contaminated by spoilage microorganisms. Thermal treatments, before and/or after carbonation, are usually applied to prevent the growth of these microorganisms. However, the impact of CO2 on the heat resistance of spoilage microorganisms has never been studied. A better understanding of the combined impact of CO2 and pH on the heat resistance of spoilage microorganisms commonly found in carbonated beverages might allow to optimize thermal treatment. Five microorganisms were selected for this study: Alicyclobacillus acidoterrestris (spores), Aspergillus niger (spores), Byssochlamys fulva (spores), Saccharomyces cerevisiae (vegetative cells), and Zygosaccharomyces parabailii (vegetative cells). A method was developed to assess the impact of heat treatments in carbonated media on microbial resistance. The heat resistances of the five studied species are coherent with the literature, when data were available. However, neither the dissolved CO2 concentration (from 0 to 7 g/L), nor the pH (from 2.8 to 4.1) have an impact on the heat resistance of the selected microorganisms, except for As. niger, for which the presence of dissolved CO2 reduced the heat resistance. This study improved our knowledge about the heat resistance of some spoilage microorganisms in presence of CO2.


Asunto(s)
Aspergillus niger , Calor , Aspergillus niger/crecimiento & desarrollo , Concentración de Iones de Hidrógeno , Dióxido de Carbono/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/fisiología , Alicyclobacillus/crecimiento & desarrollo , Alicyclobacillus/fisiología , Bebidas Gaseosas/microbiología , Byssochlamys/crecimiento & desarrollo , Microbiología de Alimentos , Zygosaccharomyces/crecimiento & desarrollo , Zygosaccharomyces/fisiología , Contaminación de Alimentos/análisis , Contaminación de Alimentos/prevención & control , Medios de Cultivo/química , Medios de Cultivo/metabolismo
4.
Biosci Biotechnol Biochem ; 88(9): 1102-1108, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-38802125

RESUMEN

d-Arabitol, an alternative sweetener to sugar, has low calorie content, high sweetness, low glycemic index, and insulin resistance-improving ability. In this study, d-arabitol-producing yeast strains were isolated from various commercial types of miso, and strain Gz-5 was selected among these strains. Phylogenetic tree analysis of the internal transcribed spacer sequence revealed that strain Gz-5 was distinct from Zygosaccharomyces rouxii, a major fermenting yeast of miso. The strain, identified as Zygosaccharomyces sp. Gz-5, grew better than other Z. rouxii in 150 g/L NaCl and produced 114 g/L d-arabitol from 295 g/L glucose in a batch culture for 8 days (0.386 g/g-consumed glucose). In a fed-batch culture, the yeast produced 133 g/L d-arabitol for 14 days, and the total d-arabitol amount increased by 1.75-fold. These results indicated that Zygosaccharomyces sp. Gz-5, a non-genetically modified strain, has excellent potential for the industrial production of d-arabitol.


Asunto(s)
Fermentación , Filogenia , Alcoholes del Azúcar , Zygosaccharomyces , Zygosaccharomyces/metabolismo , Zygosaccharomyces/genética , Zygosaccharomyces/aislamiento & purificación , Alcoholes del Azúcar/metabolismo , Alimentos de Soja/microbiología , Glucosa/metabolismo , Técnicas de Cultivo Celular por Lotes
5.
J Mol Biol ; 436(4): 168443, 2024 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-38211892

RESUMEN

Yeast plasma-membrane Na+/H+ antiporters (Nha/Sod) ensure the optimal intracellular level of alkali-metal cations and protons in cells. They are predicted to consist of 13 transmembrane segments (TMSs) and a large hydrophilic C-terminal cytoplasmic part with seven conserved domains. The substrate specificity, specifically the ability to recognize and transport K+ cations in addition to Na+ and Li+, differs among homologs. In this work, we reveal that the composition of the C-terminus impacts the ability of antiporters to transport particular cations. In the osmotolerant yeast Zygosaccharomyces rouxii, the Sod2-22 antiporter only efficiently exports Na+ and Li+, but not K+. The introduction of a negative charge or removal of a positive charge in one of the C-terminal conserved regions (C3) enabled ZrSod2-22 to transport K+. The same mutations rescued the low level of activity and purely Li+ specificity of ZrSod2-22 with the A179T mutation in TMS6, suggesting a possible interaction between this TMS and the C-terminus. The truncation or replacement of the C-terminal part of ZrSod2-22 with the C-terminus of a K+-transporting Nha/Sod antiporter (Saccharomyces cerevisiae Nha1 or Z. rouxii Nha1) also resulted in an antiporter with the capacity to export K+. In addition, in ScNha1, the replacement of three positively charged arginine residues 539-541 in the C3 region with alanine caused its inability to provide cells with tolerance to Li+. All our results demonstrate that the physiological functions of yeast Nha/Sod antiporters, either in salt tolerance or in K+ homeostasis, depend on the composition of their C-terminal parts.


Asunto(s)
Proteínas Fúngicas , Potasio , Intercambiadores de Sodio-Hidrógeno , Zygosaccharomyces , Litio/metabolismo , Protones , Sodio/metabolismo , Intercambiadores de Sodio-Hidrógeno/genética , Intercambiadores de Sodio-Hidrógeno/química , Zygosaccharomyces/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Potasio/metabolismo
6.
Bioresour Technol ; 393: 130162, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38065516

RESUMEN

Biosynthesis of D-arabitol, a high value-added platform chemical, from renewable carbon sources provides a sustainable and eco-friendly alternative to the chemical industry. Here, a robust brewing yeast, Zygosaccharomyces rouxii, capable of naturally producing D-arabitol was rewired through genome sequencing-based metabolic engineering. The recombinant Z. rouxii obtained by reinforcing the native D-xylulose pathway, improving reductive power of the rate-limiting step, and inhibiting the shunt pathway, produced 73.61% higher D-arabitol than the parent strain. Subsequently, optimization of the fermentation medium composition for the engineered strain provided 137.36 g/L D-arabitol, with a productivity of 0.64 g/L/h in a fed-batch experiment. Finally, the downstream separation of D-arabitol from the complex fermentation broth using an ethanol precipitation method provided a purity of 96.53%. This study highlights the importance of D-xylulose pathway modification in D-arabitol biosynthesis, and pave a complete and efficient way for the sustainable manufacturing of this value-added compound from biosynthesis to preparation.


Asunto(s)
Saccharomycetales , Xilulosa , Zygosaccharomyces , Xilulosa/metabolismo , Glucosa/metabolismo , Alcoholes del Azúcar/metabolismo , Fermentación , Zygosaccharomyces/genética , Zygosaccharomyces/metabolismo
7.
J Agric Food Chem ; 71(50): 20295-20303, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37929595

RESUMEN

Lactic acid is the primary inhibitor of the growth and ethanol production of yeasts in Baijiu fermentation. Certain amino acids have been found to be related to stress tolerance in yeasts. This study explored the effect of lactic acid stress on the ethanol-producing yeast Zygosaccharomyces bailii and evaluated the ability of serine to increase the lactic acid tolerance of Z. bailii in vitro. Serine significantly improved Z. bailii viability by 16.5% and ethanol production by 226.6% under lactic acid stress. Under lactic acid stress, serine supplementation led to an increase of 41.9% in cell wall integrity, 31.9% in cell membrane integrity, 296.6% in intracellular adenosine triphosphate (ATP), and 18.4% in the mitochondrial membrane potential. Finally, field emission scanning electron microscopy (FESEM) indicated that serine supplementation maintained the cell shape and reduced cell leakage. This study revealed a novel lactic acid tolerance mechanism of core functional yeasts during Jiang-flavor Baijiu fermentation.


Asunto(s)
Ácido Láctico , Zygosaccharomyces , Fermentación , Ácido Láctico/metabolismo , Etanol/metabolismo , Serina/metabolismo , Zygosaccharomyces/metabolismo , Saccharomyces cerevisiae/metabolismo
8.
Food Microbiol ; 115: 104322, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37567632

RESUMEN

Zygosaccharomyces rouxii has excellent fermentation performance and good tolerance to osmotic stress. Acetyl-CoA is a crucial intermediate precursor in the central carbon metabolic pathway of yeast. This study investigated the effect of engineering acetyl-CoA metabolism on the membrane functionality and stress tolerance of yeast. Firstly, exogenous supplementation of acetyl-CoA improved the biomass and the ability of unsaturated fatty acid synthesis of Z. rouxii under salt stress. Q-PCR results suggested that the gene ACSS (coding acetyl-CoA synthetase) was significantly up-expressed. Subsequently, the gene ACSS from Z. rouxii was transformed and heterologously expressed in S. cerevisiae. The recombinant cells exhibited better multiple stress (salt, acid, heat, and cold) tolerance, higher fatty acid contents, membrane integrity, and fluidity. Our findings may provide a suitable means to enhance the stress tolerance and fermentation efficiency of yeast under harsh fermentation environments.


Asunto(s)
Saccharomyces cerevisiae , Zygosaccharomyces , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Acetilcoenzima A/metabolismo , Acetilcoenzima A/farmacología , Zygosaccharomyces/genética , Fermentación
9.
BMC Microbiol ; 23(1): 197, 2023 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-37488503

RESUMEN

BACKGROUND: The traditional Sichuan Sun-dried vinegar (SSV) with unique flavor and taste is believed to be generated by the solid-state fermentation craft. However, how microorganisms and their metabolites change along with fermentation has not yet been explored. RESULTS: In this study, our results demonstrated that the middle and late stages of SSV fermentation were the periods showing the largest accumulation of organic acids and amino acids. Furthermore, in the bacterial community, the highest average relative abundance was Lactobacillus (ranging from 37.55 to 92.50%) in all fermentation stages, while Acetobacters ranked second position (ranging from 20.15 to 0.55%). The number of culturable lactic acid bacteria is also increased during fermentation process (ranging from 3.93 to 8.31 CFU/g). In fungal community, Alternaria (29.42%), Issatchenkia (37.56%) and Zygosaccharomyces (69.24%) were most abundant in different fermentation stages, respectively. Interestingly, Zygosaccharomyces, Schwanniomyces and Issatchenkia were first noticed as the dominant yeast genera in vinegar fermentation process. Additionally, spearman correlation coefficients exhibited that Lactobacillus, Zygosaccharomyces and Schwanniomyces were significant correlation with most metabolites during the fermentation, implying that these microorganisms might make a significant contribution to the flavor formation of SSV. CONCLUSION: The unique flavor of SSV is mainly produced by the core microorganisms (Lactobacillus, Zygosaccharomyces and Schwanniomyces) during fermentation. This study will provide detailed information related to the structure of microorganism and correlation between changes in metabolites and microbial succession in SSV. And it will be very helpful for proposing a potential approach to monitor the traditional fermentation process.


Asunto(s)
Ácido Acético , Alimentos Fermentados , Fermentación , Ácido Acético/química , Lactobacillus/metabolismo , Zygosaccharomyces/metabolismo , Saccharomycetales/metabolismo , Aminoácidos/metabolismo , Fenoles/análisis , Flavonoides/análisis , Alimentos Fermentados/microbiología
10.
Appl Environ Microbiol ; 89(6): e0012523, 2023 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-37255457

RESUMEN

Populations of microbial cells may resist environmental stress by maintaining a high population-median resistance (IC50) or, potentially, a high variability in resistance between individual cells (heteroresistance); where heteroresistance would allow certain cells to resist high stress, provided the population was sufficiently large to include resistant cells. This study sets out to test the hypothesis that both IC50 and heteroresistance may contribute to conventional minimal inhibitory concentration (MIC) determinations, using the example of spoilage-yeast resistance to the preservative sorbic acid. Across a panel of 26 diverse yeast species, both heteroresistance and particularly IC50 were positively correlated with predicted MIC. A focused panel of 29 different isolates of a particular spoilage yeast was also examined (isolates previously recorded as Zygosaccharomyces bailii, but genome resequencing revealing that several were in fact hybrid species, Z. parabailii and Z. pseudobailii). Applying a novel high-throughput assay for heteroresistance, it was found that IC50 but not heteroresistance was positively correlated with predicted MIC when considered across all isolates of this panel, but the heteroresistance-MIC interaction differed for the individual Zygosaccharomyces subspecies. Z. pseudobailii exhibited higher heteroresistance than Z. parabailii whereas the reverse was true for IC50, suggesting possible alternative strategies for achieving high MIC between subspecies. This work highlights the limitations of conventional MIC measurements due to the effect of heteroresistance in certain organisms, as the measured resistance can vary markedly with population (inoculum) size. IMPORTANCE Food spoilage by fungi is a leading cause of food waste, with specialized food spoilage yeasts capable of growth at preservative concentrations above the legal limit, in part due to heteroresistance allowing small subpopulations of cells to exhibit extreme preservative resistance. Whereas heteroresistance has been characterized in numerous ecological contexts, measuring this phenotype systematically and assessing its importance are not encompassed by conventional assay methods. The development here of a high-throughput method for measuring heteroresistance, amenable to automation, addresses this issue and has enabled characterization of the contribution that heteroresistance may make to conventional MIC measurements. We used the example of sorbic acid heteroresistance in spoilage yeasts like Zygosaccharomyces spp., but the approach is relevant to other fungi and other inhibitors, including antifungals. The work shows how median resistance, heteroresistance, and inoculum size should all be considered when selecting appropriate inhibitor doses in real-world antimicrobial applications such as food preservation.


Asunto(s)
Eliminación de Residuos , Zygosaccharomyces , Ácido Sórbico , Alimentos , Levaduras , Pruebas de Sensibilidad Microbiana , Zygosaccharomyces/genética
11.
J Agric Food Chem ; 71(14): 5525-5534, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-36989392

RESUMEN

The microbial community structure in traditional fermented foods is quite complex, making the relationship between strains unclear. In this regard, the co-culture system can simulate microbial interactions during food fermentation and reveal the morphological changes, metabolic processes, and gene expression of microbial communities. The present study sought to investigate the effects of microbial interactions on the growth of Aspergillus oryzae and Zygosaccharomyces rouxii through omics. After co-cultivation, the pH value and dry weight were consistent with the pure culture of Z. rouxii. Additionally, the consumption of reducing sugar decreased, and the enzymatic activity increased compared with the pure culture of fungus. The analysis of volatile organic compounds (VOCs) and transcriptomics showed that co-culture significantly promoted the effect on Z. rouxii. A total of 6 different VOCs and 2202 differentially expressed genes were identified in the pure and co-culture of Z. rouxii. The differentially expressed genes were mainly related to the endonucleolytic cleavage of rRNA, ribosome biogenesis in eukaryotes, and RNA polymerase metabolic pathways. The study results will provide insights into the effect of microbial interactions on the growth of A. oryzae and Z. rouxii.


Asunto(s)
Zygosaccharomyces , Carbohidratos , Fermentación , Perfilación de la Expresión Génica , Transcriptoma , Zygosaccharomyces/genética , Zygosaccharomyces/metabolismo , Aspergillus/genética , Aspergillus/metabolismo
12.
FEMS Yeast Res ; 232023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36898669

RESUMEN

Genome ploidy of Zygosaccharomyces rouxii is an intriguing topic in the field of industrial yeast research. However, the evolutionary relationship between the genome of Z. rouxii and other Zygosaccharomyces species is complex and not completely understood. In this study, we determined the genome sequences of Z. rouxii NCYC 3042, also referred to as 'Z. pseudorouxii,' and Z. mellis CBS 736T. We also conducted comparative analysis of the yeast genomes of a total of 21 strains, including 17 strains of nine Zygosaccharomyces species. This comparative genomics revealed that 17 Zygosaccharomyces strains are classified into four groups consisting of nine genome types: (i) Z. rouxii, Z. mellis, Z. sapae, Z. siamensis, and 'Candida versatilis' t-1 belong to the group Rouxii sharing four related genome types (Rouxii-1 to Rouxii-4), (ii) Z. bailii, Z. parabailii, and Z. pseudobailii belong to the group Bailii sharing three related genome types (Bailii-1 to Bailii-3), (iii and iv) Z. bisporus and Z. kombuchaensis belong to the groups Bisporus and Kombuchaensis, respectively, which each have haploid genomes. The Zygosaccharomyces genome seems to have acquired complexity and diversity through evolutionary events such as interspecies hybridization, reciprocal translocation, and diploidization of these nine genome types.


Asunto(s)
Zygosaccharomyces , Filogenia , Zygosaccharomyces/genética , Saccharomyces cerevisiae , Evolución Biológica , Hibridación Genética
13.
Food Chem ; 413: 135588, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-36758388

RESUMEN

Doubanjiang is a well-known fermented condiment in China, but the high-salt concentration in its traditional manufacture process greatly lengthens the fermentation time, and leads to potential health risks. Here, the effects of salt reduction and co-inoculated starters (Tetragenococcus halophilus and Zygosaccharomyces rouxii) on the volatile metabolites (VMs) and non-volatile metabolites (NVMs) of doubanjiang were investigated using metabolomics technology and chemometrics analysis. Results showed that 75 VMs were identified, and 12 of them had significant aroma contribution (ROVAs ≥ 1). In addition, 106 NVMs were defined as significantly different metabolites (p < 0.05; VIP ≥ 1). Salt reduction could significantly increase the concentrations of VMs, but this strategy also promoted some undesirable odors like 2-phetylfuran and hexanoic acid, which could be totally suppressed by inoculation of starter. Moreover, the two starters improved amino acid, ester, and acid metabolites. This study provides a deeper insight into the development of low-salt fermented foods.


Asunto(s)
Alimentos de Soja , Zygosaccharomyces , Alimentos de Soja/análisis , Fermentación , Condimentos/análisis , Odorantes/análisis
14.
Bioresour Technol ; 367: 128251, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36334865

RESUMEN

d-Arabitol is a top value-added compound with wide applications in the food, pharmaceutical and biochemical industries. Nevertheless, sustainable biosynthesis of d-arabitol is limited by lack of efficient strains and suitable fermentation process. Herein, metabolic engineering and process optimization were performed in Zygosaccharomyces rouxii to overcoming these limitations. Adopting systems metabolic engineering include enhancement of innate biosynthetic pathway, supply of precursor substrate d-ribulose-5P and cofactors regeneration, a novel recombinant strain ZR-5A with good performance was obtained, which boosted d-arabitol production up to 29.01 g/L, 59.31 % higher than the parent strain. Further with the optimum medium composition and fed-batch fermentation, the strain ZR-5A finally produced 149.10 g/L d-arabitol with the productivity of 1.04 g/L/h, which was the highest titer ever reported by Z.rouxii system. This is the first report on the use of metabolic engineering to construct Z. rouxii chassis for the sustainable production of d-arabitol.


Asunto(s)
Glucosa , Zygosaccharomyces , Glucosa/metabolismo , Ingeniería Metabólica , Alcoholes del Azúcar/metabolismo , Fermentación , Zygosaccharomyces/genética , Zygosaccharomyces/metabolismo
15.
J Gen Appl Microbiol ; 68(6): 295-302, 2023 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-35934805

RESUMEN

There is currently great interest in the salt-tolerant yeast strains used to produce miso and soy sauce. Since the isolation of Zygosaccharomyces sp. strain from Japanese miso more than 60 years, several hybrid strains have been identified in fermented foods. Studies have shown that the active mating-type locus of the original Zygosaccharomyces sp. yeast strain is located between the T-subgenome sequence and the P-subgenome sequence. In this study, 32 salt-tolerant Zygosaccharomyces sp. yeast strains were isolated from five miso factories in Hiroshima Prefecture, Japan. Analysis by flow cytometry revealed that 27 strains were diploid and five strains were haploid. PCR analysis indicated that the 27 diploid strains had the same chromosomal structure of the active mating-type (MAT) locus as the original yeast strain isolated from miso 60 years ago. In addition, the 27 diploid strains were allodiploid, namely, natural hybrids of Z. rouxii and a related species, while the five haploid strains were all Z. rouxii. We found that cells of yeast strains isolated from miso changed morphologically when co-cultured with a yeast strain of opposite mating-type under nitrogen starvation conditions. The DNA sequence of the active mating-type locus and the results of cell morphology changes by co-culture were consistent with the mating type of each strain shown in the mating experiments. These findings will be useful for the future production of miso and soy sauce.


Asunto(s)
Alimentos de Soja , Zygosaccharomyces , Saccharomyces cerevisiae , Zygosaccharomyces/genética , Japón
16.
FEMS Yeast Res ; 22(1)2022 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-35932192

RESUMEN

Zygosaccharomyces rouxii is an osmotolerant and halotolerant yeast that can participate in fermentation. To understand the mechanisms of salt and sugar tolerance, the transcription levels of Z. rouxii M 2013310 under 180 g/L NaCl stress and 600 g/L glucose stress were measured. The transcriptome analysis showed that 2227 differentially expressed genes (DEGs) were identified under 180 g/L NaCl stress, 1530 DEGs were identified under 600 g/L glucose stress, and 1278 DEGs were identified under both stress conditions. Then, KEGG enrichment analyses of these genes indicated that 53.3% of the upregulated genes were involved in the ergosterol synthesis pathway. Subsequently, quantitative PCR was used to verify the results, which showed that the genes of the ergosterol synthesis pathway were significantly upregulated under 180 g/L NaCl stress. Finally, further quantitative testing of ergosterol and spotting assays revealed that Z. rouxii M 2013310 increased the amount of ergosterol in response to high salt stress. These results highlighted the functional differences in ergosterol under sugar stress and salt stress, which contributes to our understanding of the tolerance mechanisms of salt and sugar in Z. rouxii.


Asunto(s)
Zygosaccharomyces , Ergosterol/metabolismo , Glucosa/metabolismo , Saccharomyces cerevisiae/genética , Saccharomycetales , Cloruro de Sodio/metabolismo , Azúcares/metabolismo , Zygosaccharomyces/fisiología
17.
J Food Sci ; 87(9): 4119-4136, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35986680

RESUMEN

This work aimed for the first time to provide detailed insights into thymol and trans-cinnamaldehyde's mechanisms of action on the food-spoilage yeast Zygosaccharomyces rouxii and offers evidence in favor of the activation of an apoptosis-like phenotype. The action mechanisms of thymol and trans-cinnamaldehyde were investigated by the measurement of a series of typical apoptotic features using flow cytometer or microplate reader. Moreover, quantitative reverse transcription PCR (QRT-PCR) was performed to investigate the effects of thymol and trans-cinnamaldehyde on the transcription of key regulators of apoptosis in Z. rouxii. The results indicated that the treatment of Z. rouxii with thymol or trans-cinnamaldehyde (minimum inhibitory and subinhibitory concentrations) triggered reactive oxygen species (ROS) accumulation, elevated intracellular Ca2+ level, and depolarized mitochondrial membrane potential (MMP) coupled with hallmarks of apoptosis including mitochondrial cytochrome c (cyt c) release, metacaspase activation, phosphatidylserine (PS) exposure, and DNA fragmentation. Moreover, thymol or trans-cinnamaldehyde treatment upregulated the transcription of proapoptotic regulators including Yca1, Dnm1, Nuc1, Ndi1, and Mmi1 and downregulated the transcription of antiapoptotic regulators of Fis1 and Cdc48, further confirming the apoptosis induced by thymol and trans-cinnamaldehyde in Z. rouxii. In summary, thymol and trans-cinnamaldehyde probably induced apoptosis through a metacaspase-dependent mitochondrial pathway in Z. roxuii. These findings provide theoretical support for the development of safe and efficient agents used in food preservation. PRACTICAL APPLICATION: The results will provide a new idea for the systematic analysis of the antifungal mechanisms of thymol and trans-cinnamaldehyde and also provide a theoretical support for the development and application of natural food preservatives, which is of positive significance for the effective control of the spoilage caused by Z. rouxii in food processing and storage and the protection of consumers' health.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Zygosaccharomyces , Acroleína/análogos & derivados , Antifúngicos/farmacología , Apoptosis , Citocromos c/farmacología , Complejo I de Transporte de Electrón , Endonucleasas , Exonucleasas , Conservantes de Alimentos/farmacología , Proteínas Mitocondriales/farmacología , Fosfatidilserinas/farmacología , Especies Reactivas de Oxígeno , Saccharomyces cerevisiae/genética , Saccharomycetales , Timol/farmacología , Zygosaccharomyces/genética
18.
Methods Mol Biol ; 2513: 179-204, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35781206

RESUMEN

Microorganisms offer a tremendous potential as cell factories, and they are indeed been used by humans since the previous centuries for biotransformations. Among them, yeasts combine the advantage of a unicellular state with a eukaryotic organization. Moreover, in the era of biorefineries, their biodiversity can offer solutions to specific process constraints. Zygosaccharomyces bailii, an ascomycete budding yeast, is widely known for its peculiar tolerance to different stresses, among which are organic acids. Moreover, the recent reclassification of the species, including diverse hybrids, is further expanding both fundamental and applied interests. It is therefore reasonable that despite the possibility to apply with this yeast some of the molecular tools and protocols routinely used to manipulate Saccharomyces cerevisiae, adjustments and optimizations are necessary. Here we describe in detail the methods for determining chromosome number, size, and aneuploidy, transformation, classical target gene disruption or gene integration, and designing of episomal expression plasmids helpful for engineering the yeast Z. bailii .


Asunto(s)
Saccharomycetales , Zygosaccharomyces , Ácidos , Humanos , Saccharomyces cerevisiae , Saccharomycetales/genética , Zygosaccharomyces/genética , Zygosaccharomyces/metabolismo
19.
Food Res Int ; 156: 111347, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35650976

RESUMEN

The soy sauce produced by Cantonese fermentation has a unique flavor, among which brine fermentation plays an important role. In this fermentation process, 61 volatile compounds, including 19 esters, 10 aldehydes, 9 alcohols, 5 phenols, and 18 others, were identified by headspace solid-phase microextraction-gas chromatography-mass spectrometry. Seventeen kinds of free amino acids were detected by high-performance liquid chromatography. Results showed that Touyou, which comprised 1.5 g/100 g total nitrogen, 1.0 g/100 mL amino acid nitrogen, 3.66 g/100 g reducing sugar, 1.44 g/100 mL total acid, 17.04 g/100 mL salt content, and 27.3% umami free amino acids, had excellent quality. High-throughput sequencing was used to identify microorganisms. The top 3 of bacteria were Weissella, Staphylococcus, and Lactobacillus, and the top 3 fungi were Aspergillus, Zygosaccharomyces, and Candida. The co-occurrence network analysis of microorganisms showed that the top-ranked microorganisms were Plectosphaerella, Aureobasidium, unidentified_Mortierellales_sp, Glutinomyces, Faecalibacterium, and Cladophialophora. Then, eight microorganisms (VIP[pred] > 1) were obtained by two-way orthogonal partial least squares model, namely, Staphylococcus, Candida, Weissella, Aspergillus, Zygosaccharomyces, Lactobacillus, Monilinia, and Clavispora. Correlation analysis showed that these microorganisms were strongly related to flavor metabolites. This study explored the dynamics of traditional Cantonese fermentation, which has positive implications for optimizing this traditional fermentation process.


Asunto(s)
Microbiota , Alimentos de Soja , Zygosaccharomyces , Aminoácidos/metabolismo , Fermentación , Hongos/metabolismo , Nitrógeno/metabolismo , Alimentos de Soja/análisis , Zygosaccharomyces/metabolismo
20.
Food Microbiol ; 106: 104056, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35690450

RESUMEN

This study aimed to investigate the formation and abatement strategies of biogenic amines (BAs) in the moromi contaminated accidently during Cantonese soy sauce (CSS) production processes. The ratio of total acid/amino nitrogen (TA/AAN) in koji can be used to predict the change in BAs content. Of the three main phases, BAs contents were more significantly increased once moromi manufacturing- and fermentation-phase were polluted. By co-culturing Tetragenococcus halophilus CGMCC3792 with Zygosaccharomyces rouxii CGMCC21865, BAs content was reduced by 59.96% and 51.10%, respectively, for the contaminated initial and fermenting moromi. Moreover, BAs content was reduced by 67.68% via the split batch fermentation method for the latter. Based on high throughput sequencing and metatranscriptome technology, BAs content was closely related to Lactobacillus abundance. It revealed the mechanism of abating BAs by inhibiting decarboxylase expression and changing redox potential. Therefore, it was an efficient strategy for abating BAs content and improving the flavor profile of CSS.


Asunto(s)
Alimentos de Soja , Zygosaccharomyces , Aminas Biogénicas/metabolismo , Enterococcaceae , Fermentación , Saccharomycetales , Zygosaccharomyces/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...