Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.491
Filtrar
1.
Cell Mol Biol Lett ; 29(1): 66, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724931

RESUMEN

The development of compact CRISPR systems has facilitated delivery but has concurrently reduced gene editing efficiency, thereby limiting the further utilization of CRISPR systems. Enhancing the efficiency of CRISPR systems poses a challenging task and holds significant implications for the advancement of biotechnology. In our work, we report a synthetic dual-antibody system that can stably exist in the intracellular environment, specifically inhibiting the functions of NF-κB and ß-catenin. This not only elevates the transgenic expression of the CRISPR system by suppressing the innate immune response within cells to enhance the gene editing efficiency but also demonstrates a notable tumor inhibitory effect. Based on the specific output expression regulation of CRISPR-CasΦ, we constructed a CRISPR-based gene expression platform, which includes sensor modules for detecting intracellular ß-catenin and NF-κB, as well as an SDA module to enhance overall efficiency. In vitro experiments revealed that the CRISPR-based gene expression platform exhibited superior CDK5 expression inhibition efficiency and specific cytotoxicity towards tumor cells. In vitro experiments, we found that CRISPR-based gene expression platforms can selectively kill bladder cancer cells through T cell-mediated cytotoxicity. Our design holds significant assistant potential of transgene therapy and may offer the capability to treat other diseases requiring transgene therapy.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Neoplasias de la Vejiga Urinaria , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/terapia , Neoplasias de la Vejiga Urinaria/metabolismo , Humanos , Sistemas CRISPR-Cas/genética , Línea Celular Tumoral , Edición Génica/métodos , beta Catenina/metabolismo , beta Catenina/genética , FN-kappa B/metabolismo , FN-kappa B/genética , Expresión Génica/genética , Regulación Neoplásica de la Expresión Génica , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética
2.
Sci Rep ; 14(1): 10642, 2024 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724565

RESUMEN

Colorectal cancer (CRC) often necessitates cetuximab (an EGFR-targeting monoclonal antibody) for treatment. Despite its clinical utility, the specific operative mechanism of cetuximab remains elusive. This research investigated the influence of PLCB3, a potential CRC oncogene, on cetuximab treatment. We extracted differentially expressed genes from the GSE140973, the overlapping genes combined with 151 Wnt/ß-Catenin signaling pathway-related genes were identified. Then, we conducted bioinformatics analysis to pinpoint the hub gene. Subsequently, we investigated the clinical expression characteristics of this hub gene, through cell experimental, scrutinized the impact of cetuximab and PLCB3 on CRC cellular progression. The study identified 26 overlapping genes. High expression of PLCB3, correlated with poorer prognosis. PLCB3 emerged as a significant oncogene associated with patient prognosis. In vitro tests revealed that cetuximab exerted a cytotoxic effect on CRC cells, with PLCB3 knockdown inhibiting CRC cell progression. Furthermore, cetuximab treatment led to a reduction in both ß-catenin and PLCB3 expression, while simultaneously augmenting E-cadherin expression. These findings revealed PLCB3 promoted cetuximab inhibition on Wnt/ß-catenin signaling. Finally, simultaneous application of cetuximab with a Wnt activator (IM12) and PLCB3 demonstrated inhibited CRC proliferation, migration, and invasion. The study emphasized the pivotal role of PLCB3 in CRC and its potential to enhance the efficacy of cetuximab treatment. Furthermore, cetuximab suppressed Wnt/ß-catenin pathway to modulate PLCB3 expression, thus inhibiting colorectal cancer progression. This study offered fresh perspectives on cetuximab mechanism in CRC.


Asunto(s)
Proliferación Celular , Cetuximab , Neoplasias Colorrectales , Regulación Neoplásica de la Expresión Génica , Vía de Señalización Wnt , beta Catenina , Humanos , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Cetuximab/farmacología , Vía de Señalización Wnt/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , beta Catenina/metabolismo , beta Catenina/genética , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Pronóstico , Antineoplásicos Inmunológicos/farmacología
3.
Cell Mol Life Sci ; 81(1): 211, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38722330

RESUMEN

Spermatogonial stem cells (SSCs) are capable of transmitting genetic information to the next generations and they are the initial cells for spermatogenesis. Nevertheless, it remains largely unknown about key genes and signaling pathways that regulate fate determinations of human SSCs and male infertility. In this study, we explored the expression, function, and mechanism of USP11 in controlling the proliferation and apoptosis of human SSCs as well as the association between its abnormality and azoospermia. We found that USP11 was predominantly expressed in human SSCs as shown by database analysis and immunohistochemistry. USP11 silencing led to decreases in proliferation and DNA synthesis and an enhancement in apoptosis of human SSCs. RNA-sequencing identified HOXC5 as a target of USP11 in human SSCs. Double immunofluorescence, Co-immunoprecipitation (Co-IP), and molecular docking demonstrated an interaction between USP11 and HOXC5 in human SSCs. HOXC5 knockdown suppressed the growth of human SSCs and increased apoptosis via the classical WNT/ß-catenin pathway. In contrast, HOXC5 overexpression reversed the effect of proliferation and apoptosis induced by USP11 silencing. Significantly, lower levels of USP11 expression were observed in the testicular tissues of patients with spermatogenic disorders. Collectively, these results implicate that USP11 regulates the fate decisions of human SSCs through the HOXC5/WNT/ß-catenin pathway. This study thus provides novel insights into understanding molecular mechanisms underlying human spermatogenesis and the etiology of azoospermia and it offers new targets for gene therapy of male infertility.


Asunto(s)
Apoptosis , Proliferación Celular , Proteínas de Homeodominio , Vía de Señalización Wnt , Humanos , Masculino , Apoptosis/genética , Proliferación Celular/genética , Vía de Señalización Wnt/genética , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética , Azoospermia/metabolismo , Azoospermia/genética , Azoospermia/patología , Espermatogonias/metabolismo , Espermatogonias/citología , Espermatogénesis/genética , Células Madre Germinales Adultas/metabolismo , beta Catenina/metabolismo , beta Catenina/genética , Testículo/metabolismo , Testículo/citología , Tioléster Hidrolasas
4.
Commun Biol ; 7(1): 545, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714724

RESUMEN

CircRNAs are covalently closed, single-stranded RNA that form continuous loops and play a crucial role in the initiation and progression of tumors. Cancer stem cells (CSCs) are indispensable for cancer development; however, the regulation of cancer stem cell-like properties in gastric cancer (GC) and its specific mechanism remain poorly understood. We elucidate the specific role of Circ-0075305 in GC stem cell properties. Circ-0075305 associated with chemotherapy resistance was identified by sequencing GC cells. Subsequent confirmation in both GC tissues and cell lines revealed that patients with high expression of Circ-0075305 had significantly better overall survival (OS) rates than those with low expression, particularly when treated with postoperative adjuvant chemotherapy for GC. In vitro and in vivo experiments confirmed that overexpression of Circ-0075305 can effectively reduce stem cell-like properties and enhance the sensitivity of GC cells to Oxaliplatin compared with the control group. Circ-0075305 promotes RPRD1A expression by acting as a sponge for corresponding miRNAs. The addition of LF3 (a ß-catenin/TCF4 interaction antagonist) confirmed that RPRD1A inhibited the formation of the TCF4-ß-catenin transcription complex through competitive to ß-catenin and suppressed the transcriptional activity of stem cell markers such as SOX9 via the Wnt/ß-catenin signaling pathway. This leads to the downregulation of stem cell-like property-related markers in GC. This study revealed the underlying mechanisms that regulate Circ-0075305 in GCSCs and suggests that its role in reducing ß-catenin signaling may serve as a potential therapeutic candidate.


Asunto(s)
Regulación hacia Abajo , Regulación Neoplásica de la Expresión Génica , Células Madre Neoplásicas , ARN Circular , Factor de Transcripción SOX9 , Neoplasias Gástricas , Factor de Transcripción 4 , beta Catenina , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patología , Humanos , Factor de Transcripción SOX9/metabolismo , Factor de Transcripción SOX9/genética , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , beta Catenina/metabolismo , beta Catenina/genética , ARN Circular/genética , ARN Circular/metabolismo , Factor de Transcripción 4/genética , Factor de Transcripción 4/metabolismo , Animales , Ratones , Línea Celular Tumoral , Ratones Desnudos , Masculino , Femenino , Resistencia a Antineoplásicos/genética , Ratones Endogámicos BALB C , Persona de Mediana Edad
5.
BMC Cancer ; 24(1): 564, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38711026

RESUMEN

BACKGROUND: 5-Fluorouracil (5FU) is a primary chemotherapeutic agent used to treat oral squamous cell carcinoma (OSCC). However, the development of drug resistance has significantly limited its clinical application. Therefore, there is an urgent need to determine the mechanisms underlying drug resistance and identify effective targets. In recent years, the Wingless and Int-1 (WNT) signaling pathway has been increasingly studied in cancer drug resistance; however, the role of WNT3, a ligand of the canonical WNT signaling pathway, in OSCC 5FU-resistance is not clear. This study delved into this potential connection. METHODS: 5FU-resistant cell lines were established by gradually elevating the drug concentration in the culture medium. Differential gene expressions between parental and resistant cells underwent RNA sequencing analysis, which was then substantiated via Real-time quantitative PCR (RT-qPCR) and western blot tests. The influence of the WNT signaling on OSCC chemoresistance was ascertained through WNT3 knockdown or overexpression. The WNT inhibitor methyl 3-benzoate (MSAB) was probed for its capacity to boost 5FU efficacy. RESULTS: In this study, the WNT/ß-catenin signaling pathway was notably activated in 5FU-resistant OSCC cell lines, which was confirmed through transcriptome sequencing analysis, RT-qPCR, and western blot verification. Additionally, the key ligand responsible for pathway activation, WNT3, was identified. By knocking down WNT3 in resistant cells or overexpressing WNT3 in parental cells, we found that WNT3 promoted 5FU-resistance in OSCC. In addition, the WNT inhibitor MSAB reversed 5FU-resistance in OSCC cells. CONCLUSIONS: These data underscored the activation of the WNT/ß-catenin signaling pathway in resistant cells and identified the promoting effect of WNT3 upregulation on 5FU-resistance in oral squamous carcinoma. This may provide a new therapeutic strategy for reversing 5FU-resistance in OSCC cells.


Asunto(s)
Resistencia a Antineoplásicos , Fluorouracilo , Neoplasias de la Boca , Vía de Señalización Wnt , Proteína Wnt3 , Humanos , Fluorouracilo/farmacología , Fluorouracilo/uso terapéutico , Resistencia a Antineoplásicos/genética , Neoplasias de la Boca/tratamiento farmacológico , Neoplasias de la Boca/metabolismo , Neoplasias de la Boca/genética , Neoplasias de la Boca/patología , Vía de Señalización Wnt/efectos de los fármacos , Línea Celular Tumoral , Proteína Wnt3/metabolismo , Proteína Wnt3/genética , beta Catenina/metabolismo , beta Catenina/genética , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Antimetabolitos Antineoplásicos/farmacología , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/patología
6.
Anim Biotechnol ; 35(1): 2351975, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38742598

RESUMEN

The development of ovarian follicles in poultry is a key factor affecting the performance of egg production. Ovarian follicle development is regulated via the Wnt/ß-catenin signaling pathway, and ß-catenin, encoded by CTNNB1, is a core component of this pathway. In this study, using ovary GCs from laying hens, we investigated the regulatory role of CTNNB1 in steroid synthesis. We found that CTNNB1 significantly regulates the expression of StAR and CYP11A1 (key genes related to progesterone synthesis) and the secretion of progesterone (P4). Furthermore, simultaneous overexpression of CTNNB1 and SF1 resulted in significantly higher levels of CYP11A1 and secretion of P4 than in cells overexpressing CTNNB1 or SF1 alone. We also found that in GCs overexpressing SF1, levels of CYP11A1 and secreted P4 were significantly greater than in controls. Silencing of CYP11A1 resulted in the inhibition of P4 secretion while overexpression of SF1 in CYP11A1-silenced cells restored P4 secretion to normal levels. Together, these results indicate that synergistic cooperation between the ß-catenin and SF1 regulates progesterone synthesis in laying hen ovarian hierarchical granulosa cells to promote CYP11A1 expression.


Asunto(s)
Pollos , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol , Células de la Granulosa , Progesterona , beta Catenina , Animales , Femenino , Progesterona/biosíntesis , Progesterona/metabolismo , beta Catenina/metabolismo , beta Catenina/genética , Células de la Granulosa/metabolismo , Pollos/genética , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/genética , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/metabolismo , Factor Esteroidogénico 1/genética , Factor Esteroidogénico 1/metabolismo , Regulación de la Expresión Génica/fisiología
7.
Elife ; 132024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38743056

RESUMEN

Mutations in the gene for ß-catenin cause liver cancer cells to release fewer exosomes, which reduces the number of immune cells infiltrating the tumor.


Asunto(s)
Escape del Tumor , Humanos , beta Catenina/metabolismo , beta Catenina/genética , Exosomas/inmunología , Exosomas/metabolismo , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/genética , Mutación , Sistema Inmunológico/inmunología , Neoplasias/inmunología , Neoplasias/genética
8.
Mol Biol Rep ; 51(1): 634, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38727746

RESUMEN

BACKGROUND: The Chinese soft-shelled turtle, Pelodiscus sinensis, exhibits distinct sexual dimorphism, with the males growing faster and larger than the females. During breeding, all-male offspring can be obtained using 17ß-estradiol (E2). However, the molecular mechanisms underlying E2-induced sexual reversal have not yet been elucidated. Previous studies have investigated the molecular sequence and expression characteristics of estrogen receptors (ERs). METHODS AND RESULTS: In this study, primary liver cells and embryos of P. sinensis were treated with ER agonists or inhibitors. Cell incubation experiments revealed that nuclear ERs (nERs) were the main pathway for the transmission of estrogen signals. Our results showed that ERα agonist (ERα-ag) upregulated the expression of Rspo1, whereas ERα inhibitor (ERα-Inh) downregulated its expression. The expression of Dmrt1 was enhanced after ERα-Inh + G-ag treatment, indicating that the regulation of male genes may not act through a single estrogen receptor, but a combination of ERs. In embryos, only the ERα-ag remarkably promoted the expression levels of Rspo1, Wnt4, and ß-catenin, whereas the ERα-Inh had a suppressive effect. Additionally, Dmrt1, Amh, and Sox9 expression levels were downregulated after ERß inhibitor (ERß-Inh) treatment. GPER agonist (G-ag) has a significant promotion effect on Rspo1, Wnt4, and ß-catenin, while the inhibitor G-Inh does not affect male-related genes. CONCLUSIONS: Overall, these results suggest that ERs play different roles during sexual reversal in P. sinensis and ERα may be the main carrier of estrogen-induced sexual reversal in P. sinensis. Further studies need to be performed to analyze the mechanism of ER action.


Asunto(s)
Receptores de Estrógenos , Tortugas , Animales , Tortugas/genética , Tortugas/metabolismo , Masculino , Femenino , Receptores de Estrógenos/metabolismo , Receptores de Estrógenos/genética , Receptor alfa de Estrógeno/metabolismo , Receptor alfa de Estrógeno/genética , Estradiol/farmacología , Estradiol/metabolismo , Caracteres Sexuales , Estrógenos/metabolismo , Estrógenos/farmacología , beta Catenina/metabolismo , beta Catenina/genética , Hígado/metabolismo , Transducción de Señal/genética , Transducción de Señal/efectos de los fármacos
9.
Cell Mol Biol Lett ; 29(1): 63, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698330

RESUMEN

BACKGROUND: Endometrial cancer (EC) is one of the most common gynecological cancers. Herein, we aimed to define the role of specific myosin family members in EC because this protein family is involved in the progression of various cancers. METHODS: Bioinformatics analyses were performed to reveal EC patients' prognosis-associated genes in patients with EC. Furthermore, colony formation, immunofluorescence, cell counting kit 8, wound healing, and transwell assays as well as coimmunoprecipitation, cycloheximide chase, luciferase reporter, and cellular thermal shift assays were performed to functionally and mechanistically analyze human EC samples, cell lines, and a mouse model, respectively. RESULTS: Machine learning techniques identified MYH14, a member of the myosin family, as the prognosis-associated gene in patients with EC. Furthermore, bioinformatics analyses based on public databases showed that MYH14 was associated with EC chemoresistance. Moreover, immunohistochemistry validated MYH14 upregulation in EC cases compared with that in normal controls and confirmed that MYH14 was an independent and unfavorable prognostic indicator of EC. MYH14 impaired cell sensitivity to carboplatin, paclitaxel, and progesterone, and increased cell proliferation and metastasis in EC. The mechanistic study showed that MYH14 interacted with MYH9 and impaired GSK3ß-mediated ß-catenin ubiquitination and degradation, thus facilitating the Wnt/ß-catenin signaling pathway and epithelial-mesenchymal transition. Sesamolin, a natural compound extracted from Sesamum indicum (L.), directly targeted MYH14 and attenuated EC progression. Additionally, the compound disrupted the interplay between MYH14 and MYH9 and repressed MYH9-regulated Wnt/ß-catenin signaling. The in vivo study further verified sesamolin as a therapeutic drug without side effects. CONCLUSIONS: Herein, we identified that EC prognosis-associated MYH14 was independently responsible for poor overall survival time of patients, and it augmented EC progression by activating Wnt/ß-catenin signaling. Targeting MYH14 by sesamolin, a cytotoxicity-based approach, can be applied synergistically with chemotherapy and endocrine therapy to eventually mitigate EC development. This study emphasizes MYH14 as a potential target and sesamolin as a valuable natural drug for EC therapy.


Asunto(s)
Neoplasias Endometriales , Glucógeno Sintasa Quinasa 3 beta , Cadenas Pesadas de Miosina , beta Catenina , Humanos , Femenino , Neoplasias Endometriales/tratamiento farmacológico , Neoplasias Endometriales/genética , Neoplasias Endometriales/metabolismo , Neoplasias Endometriales/patología , Cadenas Pesadas de Miosina/metabolismo , Cadenas Pesadas de Miosina/genética , Animales , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Glucógeno Sintasa Quinasa 3 beta/genética , Línea Celular Tumoral , beta Catenina/metabolismo , beta Catenina/genética , Ratones , Proliferación Celular/efectos de los fármacos , Ratones Desnudos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Pronóstico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Persona de Mediana Edad , Naftoquinonas/farmacología
10.
Cancer Med ; 13(9): e7221, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38733179

RESUMEN

BACKGROUND: Cervical cancer is one of the most common gynecological cancers. Accumulated evidence shows that long non-coding RNAs (lncRNAs) play essential roles in cervical cancer occurrence and progression, but their specific functions and mechanisms remain to be further explored. METHODS: The RT-qPCR assay was used to detect the expression of NEAT1 in cervical cancer tissues and cell lines. CCK-8, colony formation, flow cytometry, western blotting, and Transwell assays were used to evaluate the impact of NEAT1 on the malignant behavior of cervical cancer cells. Glucose consumption, lactate production, ATP levels, ROS levels, MMP levels, and the mRNA expressions of glycolysis-related genes and tricarboxylic acid cycle-related genes were detected to analyze the effect of NEAT1 on metabolism reprograming in cervical cancer cells. The expressions of PDK1, ß-catenin and downstream molecules of the WNT/ß-catenin signaling pathway in cervical cancer cells and tissues were detected by western blotting, RT-qPCR, immunofluorescence and immunohistochemistry assays. RESULTS: This study investigated the role and possible molecular mechanism of lncRNA nuclear paraspeckle assembly transcript 1 (NEAT1) in cervical cancer. Our results showed that NEAT1 was highly expressed in cervical cancer tissues and cell lines. Downregulation of NEAT1 inhibited the proliferation, migration, invasion and glycolysis of cervical cancer cells, while overexpression of NEAT1 led to the opposite effects. Mechanistically, NEAT1 upregulated pyruvate dehydrogenase kinase (PDK1) through the WNT/ß-catenin signaling pathway, which enhanced glycolysis and then facilitated cervical cancer metastasis. Furthermore, NEAT1 maintained the protein stability of ß-catenin but did not affect its mRNA level. We also excluded the direct binding of NEAT1 to the ß-catenin protein via RNA pull-down assay. The suppressive impact of NEAT1 knockdown on cell proliferation, invasion, and migration was rescued by ß-catenin overexpression. The WNT inhibitor iCRT3 attenuated the carcinogenic effect induced by NEAT1 overexpression. CONCLUSION: In summary, these findings indicated that NEAT1 may contribute to the progression of cervical cancer by activating the WNT/ß-catenin/PDK1 signaling axis.


Asunto(s)
Proliferación Celular , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora , ARN Largo no Codificante , Neoplasias del Cuello Uterino , Vía de Señalización Wnt , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/patología , Neoplasias del Cuello Uterino/metabolismo , Femenino , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/metabolismo , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/genética , Línea Celular Tumoral , beta Catenina/metabolismo , beta Catenina/genética , Glucólisis , Movimiento Celular
11.
J Gene Med ; 26(5): e3689, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38676365

RESUMEN

BACKGROUND: Intrahepatic cholangiocarcinoma (ICC) is a highly aggressive malignancy characterized by a poor prognosis and closely linked to tumor stemness. However, the key molecules that regulate ICC stemness remain elusive. Although Y-box binding protein 1 (YBX1) negatively affects prognosis in various cancers by enhancing stemness and chemoresistance, its effect on stemness and cisplatin sensitivity in ICC remains unclear. METHODS: Three bulk and single-cell RNA-seq datasets were analyzed to investigate YBX1 expression in ICC and its association with stemness. Clinical samples and colony/sphere formation assays validated the role of YBX1 in stemness and sensitivity to cisplatin. AZD5363 and KYA1979K explored the interaction of YBX1 with the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB/AKT) and WNT/ß-catenin pathways. RESULTS: YBX1 was significantly upregulated in ICC, correlated with worse overall survival and shorter postoperative recurrence time, and was higher in chemotherapy-non-responsive ICC tissues. The YBX1-high group exhibited significantly elevated stemness scores, and genes linked to YBX1 upregulation were enriched in multiple stemness-related pathways. Moreover, YBX1 expression is significantly correlated with several stemness-related genes (SOX9, OCT4, CD133, CD44 and EPCAM). Additionally, YBX1 overexpression significantly enhanced the colony- and spheroid-forming abilities of ICC cells, accelerated tumor growth in vivo and reduced their sensitivity to cisplatin. Conversely, the downregulation of YBX1 exerted the opposite effect. The transcriptomic analysis highlighted the link between YBX1 and the PI3K/AKT and WNT/ß-catenin pathways. Further, AZD5363 and KYA1979K were used to clarify that YBX1 promoted ICC stemness through the regulation of the AKT/ß-catenin axis. CONCLUSIONS: YBX1 is upregulated in ICC and promotes stemness and cisplatin insensitivity via the AKT/ß-catenin axis. Our study describes a novel potential therapeutic target for improving ICC prognosis.


Asunto(s)
Colangiocarcinoma , Cisplatino , Resistencia a Antineoplásicos , Regulación Neoplásica de la Expresión Génica , Proteína 1 de Unión a la Caja Y , beta Catenina , Animales , Femenino , Humanos , Masculino , Ratones , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , beta Catenina/metabolismo , beta Catenina/genética , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/metabolismo , Neoplasias de los Conductos Biliares/patología , Neoplasias de los Conductos Biliares/tratamiento farmacológico , Línea Celular Tumoral , Proliferación Celular , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Colangiocarcinoma/tratamiento farmacológico , Colangiocarcinoma/patología , Colangiocarcinoma/mortalidad , Cisplatino/farmacología , Cisplatino/uso terapéutico , Resistencia a Antineoplásicos/genética , Células Madre Neoplásicas/metabolismo , Pronóstico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Vía de Señalización Wnt , Ensayos Antitumor por Modelo de Xenoinjerto , Proteína 1 de Unión a la Caja Y/metabolismo , Proteína 1 de Unión a la Caja Y/genética
12.
J Gene Med ; 26(5): e3685, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38686653

RESUMEN

BACKGROUND: Glioblastoma multiforme (GBM) is identified as one of the most prevalent and malignant brain tumors, characterized by poor treatment outcomes and a limited prognosis. CMTM6, a membrane protein, has been found to upregulate the expression of programmed cell death 1 ligand 1 protein (PD-L1) and acts as an immune checkpoint inhibitor by inhibiting the programmed death 1 protein/PD-L1 signaling pathway. Recent research has demonstrated a high expression of CMTM6 in GBM, suggesting its potential role in influencing the pathogenesis and progression of GBM, as well as its association with immune cell infiltration in the tumor microenvironment. However, the underlying mechanism of CMTM6 in GBM requires further investigation. METHODS: Data from cancer patients in The Cancer Genome Atlas, Gene Expression Omnibus and Chinese Glioma Genome Atlas cohorts were consolidated for the current study. Through multi-omics analysis, the study systematically examined the expression profile of CMTM6, epigenetic modifications, prognostic significance, biological functions, potential mechanisms of action and alterations in the immune microenvironment. Additionally, the study investigated CMTM6 expression in GBM cell lines and normal cells using reverse transcription PCR and western blot analysis. The impact of CMTM6 on GBM cell proliferation, migration and invasion was evaluated using a combination of cell counting kit-8 assay, clone formation assay, 5-ethynyl-2'-deoxyuridine incorporation assay, wound healing assay and Transwell assay. In order to explore the mechanism of CMTM6, the Wnt/ß-catenin signaling pathway and autophagy-related genes were further verified through western blot analysis. RESULTS: CMTM6 is highly expressed in multiple tumors, particularly GBM. CMTM6 has been shown to be a valuable diagnostic and prognostic biomarker by various bioinformatics approaches. Additionally, CMTM6 plays a pivotal role in the pathogenesis of cancer, specifically GBM, by modulating various biological processes such as DNA methyltransferase expression, RNA modification, copy number variation, genomic heterogeneity, tumor stemness and DNA methylation. The findings of the experiment indicate a significant correlation between elevated CMTM6 expression and the proliferation, invasion, migration and autophagy of GBM cells, with potential key roles mediated through the Wnt/ß-catenin signaling pathway. Furthermore, CMTM6 is implicated in modulating tumor immune cell infiltration and is closely linked to the expression of various immune checkpoint inhibitors and immune modulators, particularly within the context of GBM. High levels of CMTM6 expression also enhance the responsiveness of GBM patients to radiotherapy and chemotherapy, thereby offering valuable insights for guiding treatment strategies for GBM. CONCLUSIONS: Autophagy-related CMTM6 is highly expressed in various types of cancer, especially GBM, and it can regulate GBM progression through the Wnt/ß-catenin signaling pathway and is capable of being used as an underlying target for the diagnosis, treatment selection and prognosis of patients with GBM.


Asunto(s)
Autofagia , Biomarcadores de Tumor , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Glioblastoma , Proteínas con Dominio MARVEL , Microambiente Tumoral , Vía de Señalización Wnt , Humanos , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patología , Proteínas con Dominio MARVEL/metabolismo , Proteínas con Dominio MARVEL/genética , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Microambiente Tumoral/inmunología , Línea Celular Tumoral , Autofagia/genética , Pronóstico , Proliferación Celular , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Proteínas de la Mielina/genética , Proteínas de la Mielina/metabolismo , Movimiento Celular/genética , beta Catenina/metabolismo , beta Catenina/genética
13.
Cell Death Dis ; 15(4): 259, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38609375

RESUMEN

Radiotherapy effectiveness in breast cancer is limited by radioresistance. Nevertheless, the mechanisms behind radioresistance are not yet fully understood. RUVBL1 and RUVBL2, referred to as RUVBL1/2, are crucial AAA+ ATPases that act as co-chaperones and are connected to cancer. Our research revealed that RUVBL1, also known as pontin/TIP49, is excessively expressed in MMTV-PyMT mouse models undergoing radiotherapy, which is considered a murine spontaneous breast-tumor model. Our findings suggest that RUVBL1 enhances DNA damage repair and radioresistance in breast cancer cells both in vitro and in vivo. Mechanistically, we discovered that DTL, also known as CDT2 or DCAF2, which is a substrate adapter protein of CRL4, promotes the ubiquitination of RUVBL1 and facilitates its binding to RUVBL2 and transcription cofactor ß-catenin. This interaction, in turn, attenuates its binding to acetyltransferase Tat-interacting protein 60 (TIP60), a comodulator of nuclear receptors. Subsequently, ubiquitinated RUVBL1 promotes the transcriptional regulation of RUVBL1/2-ß-catenin on genes associated with the non-homologous end-joining (NHEJ) repair pathway. This process also attenuates TIP60-mediated H4K16 acetylation and the homologous recombination (HR) repair process. Expanding upon the prior study's discoveries, we exhibited that the ubiquitination of RUVBL1 by DTL advances the interosculation of RUVBL1/2-ß-catenin. And, it then regulates the transcription of NHEJ repair pathway protein. Resulting in an elevated resistance of breast cancer cells to radiation therapy. From the aforementioned, it is evident that targeting DTL-RUVBL1/2-ß-catenin provides a potential radiosensitization approach when treating breast cancer.


Asunto(s)
Neoplasias Mamarias Animales , beta Catenina , Animales , Ratones , ATPasas Asociadas con Actividades Celulares Diversas/genética , beta Catenina/genética , ADN Helicasas/genética , Regulación de la Expresión Génica , Ubiquitina , Ubiquitinación , Proteínas Nucleares
14.
J Exp Clin Cancer Res ; 43(1): 116, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637831

RESUMEN

BACKGROUND: Protein arginine methyltransferase 6 (PRMT6) plays a crucial role in various pathophysiological processes and diseases. Glioblastoma (GBM; WHO Grade 4 glioma) is the most common and lethal primary brain tumor in adults, with a prognosis that is extremely poor, despite being less common than other systemic malignancies. Our current research finds PRMT6 upregulated in GBM, enhancing tumor malignancy. Yet, the specifics of PRMT6's regulatory processes and potential molecular mechanisms in GBM remain largely unexplored. METHODS: PRMT6's expression and prognostic significance in GBM were assessed using glioma public databases, immunohistochemistry (IHC), and immunoblotting. Scratch and Transwell assays examined GBM cell migration and invasion. Immunoblotting evaluated the expression of epithelial-mesenchymal transition (EMT) and Wnt-ß-catenin pathway-related proteins. Dual-luciferase reporter assays and ChIP-qPCR assessed the regulatory relationship between PRMT6 and YTHDF2. An in situ tumor model in nude mice evaluated in vivo conditions. RESULTS: Bioinformatics analysis indicates high expression of PRMT6 and YTHDF2 in GBM, correlating with poor prognosis. Functional experiments show PRMT6 and YTHDF2 promote GBM migration, invasion, and EMT. Mechanistic experiments reveal PRMT6 and CDK9 co-regulate YTHDF2 expression. YTHDF2 binds and promotes the degradation of negative regulators APC and GSK3ß mRNA of the Wnt-ß-catenin pathway, activating it and consequently enhancing GBM malignancy. CONCLUSIONS: Our results demonstrate the PRMT6-YTHDF2-Wnt-ß-Catenin axis promotes GBM migration, invasion, and EMT in vitro and in vivo, potentially serving as a therapeutic target for GBM.


Asunto(s)
Glioblastoma , Glioma , Animales , Ratones , Glioblastoma/patología , beta Catenina/genética , beta Catenina/metabolismo , Activación Transcripcional , Ratones Desnudos , Línea Celular Tumoral , Factores de Transcripción/metabolismo , Glioma/patología , Vía de Señalización Wnt , Transición Epitelial-Mesenquimal/genética , Proliferación Celular/genética , Movimiento Celular , Regulación Neoplásica de la Expresión Génica
15.
Int J Biol Sci ; 20(6): 1965-1977, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38617544

RESUMEN

Osteoarthritis (OA) is the most prevalent degenerative joint disorder, causing physical impairments among the elderly. Core binding factor subunit ß (Cbfß) has a critical role in bone homeostasis and cartilage development. However, the function and mechanism of Cbfß in articular cartilage and OA remains unclear. We found that Cbfßf/fAggrecan-CreERT mice with Cbfß-deficiency in articular cartilage developed a spontaneous osteoarthritis-like phenotype with articular cartilage degradation. Immunofluorescence staining showed that Cbfßf/fAggrecan-CreERT mice exhibited a significant increase in the expression of articular cartilage degradation markers and inflammatory markers in the knee joints. RNA-sequencing analysis demonstrated that Cbfß orchestrated Hippo/Yap, TGFß/Smad, and Wnt/ß-catenin signaling pathways in articular cartilage, and Cbfß deficiency resulted in the abnormal expression of downstream genes involved in maintaining articular cartilage homeostasis. Immunofluorescence staining results showed Cbfß deficiency significantly increased active ß-catenin and TCF4 expression while reducing Yap, TGFß1, and p-Smad 2/3 expression. Western blot and qPCR validated gene expression changes in hip articular cartilage of Cbfß-deficient mice. Our results demonstrate that deficiency of Cbfß in articular cartilage leads to an OA-like phenotype via affecting Hippo/Yap, TGFß, and Wnt/ß-catenin signaling pathways, disrupting articular cartilage homeostasis and leading to the pathological process of OA in mice. Our results indicate that targeting Cbfß may be a potential therapeutic target for the design of novel and effective treatments for OA.


Asunto(s)
Cartílago Articular , Osteoartritis , Animales , Ratones , Agrecanos , beta Catenina/genética , Osteoartritis/genética , Fenotipo , Factor de Crecimiento Transformador beta , Vía de Señalización Wnt/genética
16.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1266-1274, 2024 Mar.
Artículo en Chino | MEDLINE | ID: mdl-38621974

RESUMEN

This paper investigates the intervention effect and mechanism of Banxia Xiexin Decoction(BXD) on colitis-associated colorectal cancer(CAC) infected with Fusobacterium nucleatum(Fn). C57BL/6 mice were randomly divided into a control group, Fn group, CAC group [azoxymethane(AOM)/dextran sulfate sodium salt(DSS)](AOM/DSS), model group, and BXD group. Except for the control and AOM/DSS groups, the mice in the other groups were orally administered with Fn suspension twice a week. The AOM/DSS group, model group, and BXD group were also injected with a single dose of 10 mg·kg~(-1) AOM combined with three cycles of 2.5% DSS taken intragastrically. The BXD group received oral administration of BXD starting from the second cycle until the end of the experiment. The general condition and weight changes of the mice were monitored during the experiment, and the disease activity index(DAI) was calculated. At the end of the experiment, the colon length and weight of the mice in each group were compared. Hematoxylin-eosin(HE) staining was used to observe the pathological changes in the colon tissue. Enzyme-linked immunosorbent assay(ELISA) was used to detect the levels of interleukin(IL)-2, IL-4, and IL-6 inflammatory factors in the serum. Immunohistochemistry(IHC) was used to detect the expression of Ki67, E-cadherin, and ß-catenin in the colon tissue. Western blot was used to detect the protein content of Wnt3a, ß-catenin, E-cadherin, annexin A1, cyclin D1, and glycogen synthase kinase-3ß(GSK-3ß) in the colon tissue. The results showed that compared with the control group, the Fn group had no significant lesions. The mice in the AOM/DSS group and model group had decreased body weight, increased DAI scores, significantly increased colon weight, and significantly shortened colon length, with more significant lesions in the model group. At the same time, the colon histology of the model group showed more severe adenomas, inflammatory infiltration, and cellular dysplasia. The levels of IL-4 and IL-6 in the serum were significantly increased, while the IL-2 content was significantly decreased. The IHC results showed low expression of E-cadherin and high expression of Ki67 and ß-catenin in the model group, with a decreased protein content of E-cadherin and GSK-3ß and an increased protein content of Wnt3a, ß-catenin, annexin A1, and cyclin D1. After intervention with BXD, the body weight of the mice increased; the DAI score decreased; the colon length increased, and the tumor decreased. The histopathology showed reduced tumor proliferation and reduced inflammatory infiltration. The levels of IL-6 and IL-4 in the serum were significantly decreased, while the IL-2 content was increased. Meanwhile, the expression of E-cadherin was upregulated, and that of Ki67 and ß-catenin was downregulated. The protein content of E-cadherin and GSK-3ß increased, while that of Wnt3a, ß-catenin, annexin A1, and cyclin D1 decreased. In conclusion, BXD can inhibit CAC infected with Fn, and its potential mechanism may be related to the inhibition of Fn binding to E-cadherin, the decrease in annexin A1 protein level, and the regulation of the Wnt/ß-catenin pathway.


Asunto(s)
Anexina A1 , Neoplasias Asociadas a Colitis , Colitis , Medicamentos Herbarios Chinos , Ratones , Animales , Colitis/complicaciones , Colitis/tratamiento farmacológico , Colitis/genética , beta Catenina/genética , beta Catenina/metabolismo , Ciclina D1/metabolismo , Fusobacterium nucleatum/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Antígeno Ki-67/metabolismo , Interleucina-2/metabolismo , Interleucina-4/metabolismo , Ratones Endogámicos C57BL , Cadherinas/metabolismo , Peso Corporal , Sulfato de Dextran/efectos adversos , Modelos Animales de Enfermedad , Azoximetano
17.
Sci Adv ; 10(14): eadk1031, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38569029

RESUMEN

Pathologic Wnt/ß-catenin signaling drives various cancers, leading to multiple approaches to drug this pathway. Appropriate patient selection can maximize success of these interventions. Wnt ligand addiction is a druggable vulnerability in RNF43-mutant/RSPO-fusion cancers. However, pharmacologically targeting the biogenesis of Wnt ligands, e.g., with PORCN inhibitors, has shown mixed therapeutic responses, possibly due to tumor heterogeneity. Here, we show that the tumor suppressor FBXW7 is frequently mutated in RNF43-mutant/RSPO-fusion tumors, and FBXW7 mutations cause intrinsic resistance to anti-Wnt therapies. Mechanistically, FBXW7 inactivation stabilizes multiple oncoproteins including Cyclin E and MYC and antagonizes the cytostatic effect of Wnt inhibitors. Moreover, although FBXW7 mutations do not mitigate ß-catenin degradation upon Wnt inhibition, FBXW7-mutant RNF43-mutant/RSPO-fusion cancers instead lose dependence on ß-catenin signaling, accompanied by dedifferentiation and loss of lineage specificity. These FBXW7-mutant Wnt/ß-catenin-independent tumors are susceptible to multi-cyclin-dependent kinase inhibition. An in-depth understanding of primary resistance to anti-Wnt/ß-catenin therapies allows for more appropriate patient selection and use of alternative mechanism-based therapies.


Asunto(s)
Neoplasias , beta Catenina , Humanos , Proteína 7 que Contiene Repeticiones F-Box-WD/genética , Proteína 7 que Contiene Repeticiones F-Box-WD/metabolismo , beta Catenina/genética , beta Catenina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Neoplasias/genética , Mutación , Línea Celular Tumoral , Aciltransferasas/genética , Aciltransferasas/metabolismo , Proteínas de la Membrana/metabolismo
18.
Commun Biol ; 7(1): 396, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561411

RESUMEN

Myocardial ischemia-reperfusion injury (MIRI) is involved in the pathogenesis of multiple cardiovascular diseases. This study elucidated the biological function of lysine acetyltransferase 5 (KAT5) in cardiomyocyte pyroptosis during MIRI. Oxygen-glucose deprivation/reoxygenation and left anterior descending coronary artery ligation were used to establish MIRI models. Here we show, KAT5 and STIP1 homology and U-box-containing protein 1 (STUB1) were downregulated, while large tumor suppressor kinase 2 (LATS2) was upregulated in MIRI models. KAT5/STUB1 overexpression or LATS2 silencing repressed cardiomyocyte pyroptosis. Mechanistically, KAT5 promoted STUB1 transcription via acetylation modulation, and subsequently caused ubiquitination and degradation of LATS2, which activated YAP/ß-catenin pathway. Notably, the inhibitory effect of STUB1 overexpression on cardiomyocyte pyroptosis was abolished by LATS2 overexpression or KAT5 depletion. Our findings suggest that KAT5 overexpression inhibits NLRP3-mediated cardiomyocyte pyroptosis to relieve MIRI through modulation of STUB1/LATS2/YAP/ß-catenin axis, providing a potential therapeutic target for MIRI.


Asunto(s)
Daño por Reperfusión Miocárdica , beta Catenina , Humanos , beta Catenina/genética , beta Catenina/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Miocitos Cardíacos/metabolismo , Piroptosis , Ubiquitinación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Lisina Acetiltransferasa 5/metabolismo
20.
Curr Med Sci ; 44(2): 406-418, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38619681

RESUMEN

OBJECTIVE: Uterine corpus endometrial carcinoma (UCEC), a kind of gynecologic malignancy, poses a significant risk to women's health. The precise mechanism underlying the development of UCEC remains elusive. Zinc finger protein 554 (ZNF554), a member of the Krüppel-associated box domain zinc finger protein superfamily, was reported to be dysregulated in various illnesses, including malignant tumors. This study aimed to examine the involvement of ZNF554 in the development of UCEC. METHODS: The expression of ZNF554 in UCEC tissues and cell lines were examined by qRT-PCR and Western blot assay. Cells with stably overexpressed or knocked-down ZNF554 were established through lentivirus infection. CCK-8, wound healing, and Transwell invasion assays were employed to assess cell proliferation, migration, and invasion. Propidium iodide (PI) staining combined with fluorescence-activated cell sorting (FACS) flow cytometer was utilized to detect cell cycle distribution. qRT-PCR and Western blotting were conducted to examine relative mRNA and protein levels. Chromatin immunoprecipitation assay and luciferase reporter assay were used to explore the regulatory role of ZNF554 in RNA binding motif 5 (RBM5). RESULTS: The expression of ZNF554 was found to be reduced in both UCEC samples and cell lines. Decreased expression of ZNF554 was associated with higher tumor stage, decreased overall survival, and reduced disease-free survival in UCEC. ZNF554 overexpression suppressed cell proliferation, migration, and invasion, while also inducing cell cycle arrest. In contrast, a decrease in ZNF554 expression resulted in the opposite effect. Mechanistically, ZNF554 transcriptionally regulated RBM5, leading to the deactivation of the Wingless (WNT)/ß-catenin signaling pathway. Moreover, the findings from rescue studies demonstrated that the inhibition of RBM5 negated the impact of ZNF554 overexpression on ß-catenin and p-glycogen synthase kinase-3ß (p-GSK-3ß). Similarly, the deliberate activation of RBM5 reduced the increase in ß-catenin and p-GSK-3ß caused by the suppression of ZNF554. In vitro experiments showed that ZNF554 overexpression-induced decreases in cell proliferation and migration were counteracted by RBM5 knockdown. Additionally, when RBM5 was overexpressed, it hindered the improvements in cell proliferation and migration caused by reducing the ZNF554 levels. CONCLUSION: ZNF554 functions as a tumor suppressor in UCEC. Furthermore, ZNF554 regulates UCEC progression through the RBM5/WNT/ß-catenin signaling pathway. ZNF554 shows a promise as both a prognostic biomarker and a therapeutic target for UCEC.


Asunto(s)
Neoplasias Endometriales , Vía de Señalización Wnt , Femenino , Humanos , beta Catenina/genética , beta Catenina/metabolismo , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Proteínas de Unión al ADN/genética , Neoplasias Endometriales/genética , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Supresoras de Tumor/genética , Vía de Señalización Wnt/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA