Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20.143
Filtrar
1.
Microb Cell Fact ; 23(1): 170, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38867249

RESUMEN

BACKGROUND: The gram-positive bacterium Bacillus subtilis is widely used for industrial enzyme production. Its ability to secrete a wide range of enzymes into the extracellular medium especially facilitates downstream processing since cell disruption is avoided. Although various heterologous enzymes have been successfully secreted with B. subtilis, the secretion of cytoplasmic enzymes with high molecular weight is challenging. Only a few studies report on the secretion of cytoplasmic enzymes with a molecular weight > 100 kDa. RESULTS: In this study, the cytoplasmic and 120 kDa ß-galactosidase of Paenibacillus wynnii (ß-gal-Pw) was expressed and secreted with B. subtilis SCK6. Different strategies were focused on to identify the best secretion conditions. Tailormade codon-optimization of the ß-gal-Pw gene led to an increase in extracellular ß-gal-Pw production. Consequently, the optimized gene was used to test four signal peptides and two promoters in different combinations. Differences in extracellular ß-gal-Pw activity between the recombinant B. subtilis strains were observed with the successful secretion being highly dependent on the specific combination of promoter and signal peptide used. Interestingly, signal peptides of both the general secretory- and the twin-arginine translocation pathway mediated secretion. The highest extracellular activity of 55.2 ± 6 µkat/Lculture was reached when secretion was mediated by the PhoD signal peptide and expression was controlled by the PAprE promoter. Production of extracellular ß-gal-Pw was further enhanced 1.4-fold in a bioreactor cultivation to 77.5 ± 10 µkat/Lculture with secretion efficiencies of more than 80%. CONCLUSION: For the first time, the ß-gal-Pw was efficiently secreted with B. subtilis SCK6, demonstrating the potential of this strain for secretory production of cytoplasmic, high molecular weight enzymes.


Asunto(s)
Bacillus subtilis , Peso Molecular , Paenibacillus , beta-Galactosidasa , Bacillus subtilis/genética , Bacillus subtilis/enzimología , Bacillus subtilis/metabolismo , beta-Galactosidasa/metabolismo , beta-Galactosidasa/genética , Paenibacillus/enzimología , Paenibacillus/genética , Citoplasma/metabolismo , Regiones Promotoras Genéticas , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Señales de Clasificación de Proteína
2.
J Oleo Sci ; 73(6): 857-863, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38825539

RESUMEN

The hybridization of lipids with graphene is expected to produce a promising, novel biomaterial. However, there are limited examples of the covalent introduction of lipid molecules, especially the immobilization of lipid molecules, onto graphene on a substrate. Therefore, we investigated the hybridization of a silane coupling agent having phospholipid moieties with graphene oxide on substrates prepared by photo-oxidation using chlorine dioxide. Three silane coupling agents with different carbon chain lengths (C4, C6, C8) were synthesized and phospholipid molecules were introduced onto graphene on a substrate. Phospholipid-immobilized graphene on a grid for TEM (transmission electron microscope) was used for EM analysis of proteins (glyceraldehyde 3-phosphate dehydrogenase and ß-galactosidase), enabling the observation of sufficient particles compared to the conventional graphene grid.


Asunto(s)
Grafito , Fosfolípidos , Silanos , Grafito/química , Fosfolípidos/química , Silanos/química , beta-Galactosidasa/metabolismo , Microscopía Electrónica de Transmisión , Oxidación-Reducción , Materiales Biocompatibles/química , Materiales Biocompatibles/síntesis química
3.
Sci Rep ; 14(1): 14346, 2024 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-38906947

RESUMEN

This study investigated the first-ever reported use of freshwater Nannochloropsis for the bioremediation of dairy processing side streams and co-generation of valuable products, such as ß-galactosidase enzyme. In this study, N. limnetica was found to grow rapidly on both autoclaved and non-autoclaved whey-powder media (referred to dairy processing by-product or DPBP) without the need of salinity adjustment or nutrient additions, achieving a biomass concentration of 1.05-1.36 g L-1 after 8 days. The species secreted extracellular ß-galactosidase (up to 40.84 ± 0.23 U L-1) in order to hydrolyse lactose in DPBP media into monosaccharides prior to absorption into biomass, demonstrating a mixotrophic pathway for lactose assimilation. The species was highly effective as a bioremediation agent, being able to remove > 80% of total nitrogen and phosphate in the DPBP medium within two days across all cultures. Population analysis using flow cytometry and multi-channel/multi-staining methods revealed that the culture grown on non-autoclaved medium contained a high initial bacterial load, comprising both contaminating bacteria in the medium and phycosphere bacteria associated with the microalgae. In both autoclaved and non-autoclaved DPBP media, Nannochloropsis cells were able to establish a stable microalgae-bacteria interaction, suppressing bacterial takeover and emerging as dominant population (53-80% of total cells) in the cultures. The extent of microalgal dominance, however, was less prominent in the non-autoclaved media. High initial bacterial loads in these cultures had mixed effects on microalgal performance, promoting ß-galactosidase synthesis on the one hand while competing for nutrients and retarding microalgal growth on the other. These results alluded to the need of effective pre-treatment step to manage bacterial population in microalgal cultures on DPBP. Overall, N. limnetica cultures displayed competitive ß-galactosidase productivity and propensity for efficient nutrient removal on DPBP medium, demonstrating their promising nature for use in the valorisation of dairy side streams.


Asunto(s)
Microalgas , Suero Lácteo , beta-Galactosidasa , beta-Galactosidasa/metabolismo , Microalgas/metabolismo , Microalgas/enzimología , Suero Lácteo/metabolismo , Lactosa/metabolismo , Estramenopilos/enzimología , Estramenopilos/metabolismo , Agua Dulce/microbiología , Biodegradación Ambiental , Biomasa , Nitrógeno/metabolismo
4.
Sci Rep ; 14(1): 13185, 2024 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-38851838

RESUMEN

Delivery of active protein especially enzyme is one of the major therapeutic challenge. Replacing or substituted invalid/improper acting protein offer fast and effective treatment of disease. Herein, we describe the synthesis and properties of biotinylated peptidomimetics consisting of oxoacid-modified 2,3, L-diaminopropionic acid residues with guanidine groups on its side chains. Electrophoretic analysis showed that the obtained compounds interact with FITC-labeled streptavidin or a streptavidin-ß-galactosidase hybrid in an efficient manner. Complexes formed by the abovementioned molecules are able to cross the cell membranes of cancer or healthy cells and show promising compatibility with live cells. Analysis of ß-galactosidase activity inside the cells revealed surprisingly high levels of active enzyme in complex-treated cells compared to controls. This observation was confirmed by immunochemical studies in which the presence of ß-galactosidase was detected in the membrane and vesicles of the cells.


Asunto(s)
beta-Alanina , beta-Galactosidasa , Humanos , beta-Alanina/análogos & derivados , beta-Alanina/química , beta-Alanina/metabolismo , beta-Galactosidasa/metabolismo , Polímeros/química , Peptidomiméticos/química , Estreptavidina/química , Estreptavidina/metabolismo , Membrana Celular/metabolismo
5.
Int J Pharm ; 659: 124277, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38802027

RESUMEN

The application of 3D printing technology in the delivery of macromolecules, such as proteins and enzymes, is limited by the lack of suitable inks. In this study, we report the development of novel inks for 3D printing of constructs containing proteins while maintaining the activity of the proteins during and after printing. Different ink formulations containing Pluronic F-127 (20-35 %, w/v), trehalose (2-10 %, w/v) or mannitol, poly (ethylene glycol) diacrylate (PEGDA) (0 or 10 %, w/w), and diphenyl(2,4,6-trimethylbenzoyl) phosphine oxide (TPO, 0 or 0.2 mg/mL) were prepared for 3D-microextrusion printing. The F2 formulation that contained ß-galactosidase (ß-gal) as a model enzyme, Pluronic F-127 (30 %), and trehalose (10 %) demonstrated the desired viscosity, printability, and dose flexibility. The shear-thinning property of the F2 formulation enabled the printing of ß-gal containing constructs with a good peak force during extrusion. After 3D printing, the enzymatic activity of the ß-gal in the constructs was maintained for an extended period, depending on the construct design and storage conditions. For instance, there was a 50 % reduction in ß-gal activity in the two-layer constructs, but only a 20 % reduction in the four-layer construct (i.e., 54.5 ± 1.2 % and 82.7 ± 9.9 %, respectively), after 4 days of storage. The ß-gal activity in constructs printed from the F2 formulation was maintained for up to 20 days when stored in sealed bags at room temperatures (21 ± 2 °C), but not when stored unsealed in the same conditions (e.g., ∼60 % activity loss within 7 days). The ß-gal from constructs printed from F2 started to release within 5 min and reached 100 % after 20 min. With the design flexibility offered by the 3D printing, the ß-gal release from the constructs was delayed to 3 h by printing a backing layer of ß-gal-free F5 ink on the constructs printed from the F2 ink. Finally, ovalbumin as an alternative protein was also incorporated in similar ink compositions. Ovalbumin exhibited a release profile like that of the ß-gal, and the release can also be modified with different shape design and/or ink composition. In conclusion, ink formulations that possess desirable properties for 3D printing of protein-containing constructs while maintaining the protein activity during and after printing were developed.


Asunto(s)
Tinta , Poloxámero , Polietilenglicoles , Impresión Tridimensional , Trehalosa , beta-Galactosidasa , beta-Galactosidasa/química , Poloxámero/química , Polietilenglicoles/química , Trehalosa/química , Viscosidad , Excipientes/química , Sistemas de Liberación de Medicamentos/métodos , Manitol/química , Tecnología Farmacéutica/métodos , Fosfinas/química
6.
Analyst ; 149(13): 3575-3584, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38758107

RESUMEN

A restriction endonuclease (RE) is an enzyme that can recognize a specific DNA sequence and cleave that DNA into fragments with double-stranded breaks. This sequence-specific cleaving ability and its ease of use have made REs commonly used tools in molecular biology since their first isolation and characterization in 1970s. While artificial REs still face many challenges in large-scale synthesis and precise activity control for practical use, searching for new REs in natural samples remains a viable route to expanding the RE pool for fundamental research and industrial applications. In this paper, we propose a new strategy to search for REs in an efficient manner. We constructed a host bacterial cell to link the genotype of REs to the phenotype of ß-galactosidase expression based on the bacterial SOS response, and used a high-throughput microfluidic platform to isolate, detect and sort the REs in microfluidic drops at a frequency of ∼800 drops per second. We employed this strategy to screen for the XbaI gene from the constructed libraries of varied sizes. In a single round of sorting, a 90-fold target enrichment was achieved within 1 h. Compared to conventional RE-screening methods, the direct screening approach that we propose excels at efficient search of desirable REs in natural samples - especially unculturable samples - and can be tailored to high-throughput screening of a wide range of genotoxic targets.


Asunto(s)
Enzimas de Restricción del ADN , Escherichia coli , Respuesta SOS en Genética , Escherichia coli/genética , Escherichia coli/enzimología , Enzimas de Restricción del ADN/metabolismo , Ensayos Analíticos de Alto Rendimiento/métodos , Técnicas Analíticas Microfluídicas/métodos , Técnicas Analíticas Microfluídicas/instrumentación , Desoxirribonucleasas de Localización Especificada Tipo II/metabolismo , Desoxirribonucleasas de Localización Especificada Tipo II/química , beta-Galactosidasa/metabolismo , beta-Galactosidasa/genética
7.
Int J Biol Macromol ; 270(Pt 1): 132312, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38744370

RESUMEN

This study aimed to immobilize ß-galactosidase (ß-GAL) into enhanced polystyrene (PS) electrospun nanofiber membranes (ENMs) with functionalized graphene oxide (GO). Initially, GO sheets were functionalized by salinization with 3-aminopropyl triethoxysilane (APTES). Then the ENMs (PS, PS/GO, and PS/GO-APTES) were prepared and characterized. Then, the ß-GAL was immobilized in the different ENMs to produce the ß-GAL-bound nanocomposites (PS-GAL, PS/GO-GAL, and PS/GO-APTES-GAL). Immobilization of ß-GAL into PS/GO-APTES significantly improved enzyme adsorption by up to 87 %. Also, PS/GO-APTES-GAL improved the enzyme activity, where the highest enzyme activity was obtained at enzyme concentrations of 4 mg/L, 50 °C, and pH 4.5. Likewise, the storage stability and reusability of immobilized ß-GAL were improved. Furthermore, this process led to enhanced catalytic behavior and transgalactosylation efficiency, where GOS synthesis (72 %) and lactose conversion (81 %) increased significantly compared to the free enzyme. Overall, the immobilized ß-GAL produced in this study showed potential as an effective biocatalyst in the food industry.


Asunto(s)
Enzimas Inmovilizadas , Grafito , Nanofibras , Oligosacáridos , beta-Galactosidasa , beta-Galactosidasa/química , beta-Galactosidasa/metabolismo , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Nanofibras/química , Grafito/química , Oligosacáridos/química , Galactosa/química , Concentración de Iones de Hidrógeno , Estabilidad de Enzimas , Silanos/química , Biocatálisis , Poliestirenos/química , Temperatura , Catálisis
8.
ACS Appl Bio Mater ; 7(5): 3154-3163, 2024 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-38695332

RESUMEN

ß-Galactosidase (ß-Gala) is an essential biomarker enzyme for early detection of breast tumors and cellular senescence. Creating an accurate way to monitor ß-Gala activity is critical for biological research and early cancer detection. This work used fluorometric, colorimetric, and paper-based color sensing approaches to determine ß-Gala activity effectively. Via the sensing performance, the catalytic activity of ß-Gala resulted in silicon nanoparticles (SiNPs), fluorescent indicators obtained via a one-pot hydrothermal process. As a standard enzymatic hydrolysis product of the substrate, kaempferol 3-O-ß-d-galactopyranoside (KOßDG) caused the fluorometric signal to be attenuated on kaempferol-silicon nanoparticles (K-SiNPs). The sensing methods demonstrated a satisfactory linear response in sensing ß-Gala and a low detection limit. The findings showed the low limit of detection (LOD) as 0.00057 and 0.098 U/mL for fluorometric and colorimetric, respectively. The designed probe was then used to evaluate the catalytic activity of ß-Gala in yogurt and human serum, with recoveries ranging from 98.33 to 107.9%. The designed sensing approach was also applied to biological sample analysis. In contrast, breast cancer cells (MCF-7) were used as a model to test the in vitro toxicity and molecular fluorescence imaging potential of K-SiNPs. Hence, our fluorescent K-SiNPs can be used in the clinic to diagnose breast cellular carcinoma, since they can accurately measure the presence of invasive ductal carcinoma in serologic tests.


Asunto(s)
Neoplasias de la Mama , Quempferoles , Ensayo de Materiales , Nanopartículas , Silicio , beta-Galactosidasa , Humanos , beta-Galactosidasa/metabolismo , Silicio/química , Células MCF-7 , Nanopartículas/química , Quempferoles/química , Quempferoles/farmacología , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/patología , Tamaño de la Partícula , Colorimetría , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/síntesis química , Femenino , Estructura Molecular
9.
Appl Microbiol Biotechnol ; 108(1): 354, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38819482

RESUMEN

Whey is a byproduct of dairy industries, the aqueous portion which separates from cheese during the coagulation of milk. It represents approximately 85-95% of milk's volume and retains much of its nutrients, including functional proteins and peptides, lipids, lactose, minerals, and vitamins. Due to its composition, mainly proteins and lactose, it can be considered a raw material for value-added products. Whey-derived products are often used to supplement food, as they have shown several physiological effects on the body. Whey protein hydrolysates are reported to have different activities, including antihypertensive, antioxidant, antithrombotic, opioid, antimicrobial, cytomodulatory, and immuno-modulatory. On the other hand, galactooligosaccharides obtained from lactose can be used as prebiotic for beneficial microorganisms for the human gastrointestinal tract. All these compounds can be obtained through physicochemical, microbial, or enzymatic treatments. Particularly, enzymatic processes have the advantage of being highly selective, more stable than chemical transformations, and less polluting, making that the global enzyme market grow at accelerated rates. The sources and different products associated with the most used enzymes are particularly highlighted in this review. Moreover, we discuss metagenomics as a tool to identify novel proteolytic enzymes, from both cultivable and uncultivable microorganisms, which are expected to have new interesting activities. Finally enzymes for the transformation of whey sugar are reviewed. In this sense, carbozymes with ß-galactosidase activity are capable of lactose hydrolysis, to obtain free monomers, and transgalactosylation for prebiotics production. KEY POINTS: • Whey can be used to obtain value-added products efficiently through enzymatic treatments • Proteases transform whey proteins into biopeptides with physiological activities • Lactose can be transformed into prebiotic compounds using ß-galactosidases.


Asunto(s)
Hidrolisados de Proteína , Proteína de Suero de Leche , Proteína de Suero de Leche/metabolismo , Hidrolisados de Proteína/metabolismo , Hidrolisados de Proteína/química , Prebióticos , Humanos , Suero Lácteo/química , Suero Lácteo/metabolismo , Lactosa/metabolismo , beta-Galactosidasa/metabolismo , beta-Galactosidasa/genética
10.
Int J Biol Macromol ; 270(Pt 1): 132101, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38734354

RESUMEN

Aspergillus oryzae ß-D-galactosidase (ß-Gal) efficiently hydrolyzes sesaminol triglucoside into sesaminol, which has higher biological activity. However, ß-Gal is difficult to be separate from the reaction mixture and limited by stability. To resolve these problems, ß-Gal was immobilized on amino-functionalized magnetic nanoparticles mesoporous silica pre-activated with glutaraldehyde (Fe3O4@mSiO2-ß-Gal), which was used for the first time to prepare sesaminol. Under the optimal conditions, the immobilization yield and recovered activity of ß-Gal were 57.9 ± 0.3 % and 46.5 ± 0.9 %, and the enzymatic loading was 843 ± 21 Uenzyme/gsupport. The construction of Fe3O4@mSiO2-ß-Gal was confirmed by various characterization methods, and the results indicated it was suitable for heterogeneous enzyme-catalyzed reactions. Fe3O4@mSiO2-ß-Gal was readily separable under magnetic action and displayed improved activity in extreme pH and temperature conditions. After 45 days of storage at 4 °C, the activity of Fe3O4@mSiO2-ß-Gal remained at 92.3 ± 2.8 %, which was 1.29 times than that of free enzyme, and its activity remained above 85 % after 10 cycles. Fe3O4@mSiO2-ß-Gal displayed higher affinity and catalytic efficiency. The half-life was 1.41 longer than free enzymes at 55.0 °C. Fe3O4@mSiO2-ß-Gal was employed as a catalyst to prepare sesaminol, achieving a 96.7 % conversion yield of sesaminol. The excellent stability and catalytic efficiency provide broad benefits and potential for biocatalytic industry applications.


Asunto(s)
Aspergillus oryzae , Enzimas Inmovilizadas , Glutaral , Dióxido de Silicio , beta-Galactosidasa , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , beta-Galactosidasa/química , beta-Galactosidasa/metabolismo , Aspergillus oryzae/enzimología , Dióxido de Silicio/química , Glutaral/química , Dioxoles/química , Dioxoles/farmacología , Nanopartículas de Magnetita/química , Porosidad , Temperatura , Concentración de Iones de Hidrógeno , Estabilidad de Enzimas , Furanos
11.
FEBS Open Bio ; 14(6): 888-905, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38726771

RESUMEN

The development of the Escherichia coli K-12 laboratory strains JM83, JM109 and XL1-Blue was instrumental in early gene technology. We report the comprehensive genome sequence analysis of JM83 and XL1-Blue using Illumina and Oxford Nanopore technologies and a comparison with both the wild-type sequence (MG1655) and the genome of JM109 deposited at GenBank. Our investigation provides insight into the way how the genomic background that allows blue/white colony selection-by complementing a functionally inactive ω-fragment of ß-galactosidase (LacZ) with its α-peptide encoded on the cloning vector-has been implemented independently in these three strains using classical bacterial genetics. In fact, their comparative analysis reveals recurrent motifs: (i) inactivation of the native enzyme via large deletions of chromosomal regions encompassing the lac locus, or a chemically induced frameshift deletion at the beginning of the lacZ cistron, and (ii) utilization of a defective prophage (ϕ80), or an F'-plasmid, to provide the lacZ∆M15 allele encoding its ω-fragment. While the genetic manipulations of the E. coli strains involved repeated use of mobile genetic elements as well as harsh chemical or physical mutagenesis, the individual modified traits appear remarkably stable as they can be found even in distantly related laboratory strains, beyond those investigated here. Our detailed characterization at the genome sequence level not only offers clues about the mechanisms of classical gene transduction and transposition but should also guide the future fine-tuning of E. coli strains for gene cloning and protein expression, including phage display techniques, utilizing advanced tools for site-specific genome engineering.


Asunto(s)
Escherichia coli , Genoma Bacteriano , Genoma Bacteriano/genética , Escherichia coli/genética , beta-Galactosidasa/genética , beta-Galactosidasa/metabolismo , Clonación Molecular/métodos , Genómica/métodos
12.
ACS Appl Mater Interfaces ; 16(20): 26870-26885, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38739846

RESUMEN

Pathogen detection has become a major research area all over the world for water quality surveillance and microbial risk assessment. Therefore, designing simple and sensitive detection kits plays a key role in envisaging and evaluating the risk of disease outbreaks and providing quality healthcare settings. Herein, we have designed a facile and low-cost colorimetric sensing strategy for the selective and sensitive determination of ß-galactosidase producing pathogens. The hexagonal boron nitride quantum dots (h-BN QDs) were established as a nanozyme that showed prominent peroxidase-like activity, which catalyzes 3,3',5,5'-tetramethylbenzidine (TMB) oxidation by H2O2. The h-BN QDs were embedded on a layer-by-layer assembled agarose biopolymer. The ß-galactosidase enzyme partially degrades ß-1,4 glycosidic bonds of agarose polymer, resulting in accessibility of h-BN QDs on the solid surface. This assay can be conveniently conducted and analyzed by monitoring the blue color formation due to TMB oxidation within 30 min. The nanocomposite was stable for more than 90 days and was showing TMB oxidation after incubating it with Escherichia coli (E. coli). The limit of detection was calculated to be 1.8 × 106 and 1.5 × 106 CFU/mL for E. coli and Klebsiella pneumonia (K. pneumonia), respectively. Furthermore, this novel sensing approach is an attractive platform that was successfully applied to detect E. coli in spiked water samples and other food products with good accuracy, indicating its practical applicability for the detection of pathogens in real samples.


Asunto(s)
Bencidinas , Compuestos de Boro , Colorimetría , Escherichia coli , Puntos Cuánticos , beta-Galactosidasa , Puntos Cuánticos/química , Colorimetría/métodos , beta-Galactosidasa/metabolismo , beta-Galactosidasa/química , Escherichia coli/aislamiento & purificación , Escherichia coli/enzimología , Compuestos de Boro/química , Bencidinas/química , Peróxido de Hidrógeno/química , Peróxido de Hidrógeno/análisis , Peroxidasa/química , Peroxidasa/metabolismo , Límite de Detección , Oxidación-Reducción , Klebsiella pneumoniae/enzimología , Klebsiella pneumoniae/aislamiento & purificación
13.
Sci Rep ; 14(1): 11442, 2024 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769440

RESUMEN

The global supply of fluoropolymers and fluorinated solvents is decreasing due to environmental concerns regarding polyfluoroalkyl substances. CYTOP has been used for decades primarily as a component of a femtoliter chamber array for digital bioanalysis; however, its supply has recently become scarce, increasing the urgency of fabricating a femtoliter chamber array using alternative materials. In this study, we investigated the feasibility of fabricating a femtoliter chamber array using four types of fluoropolymers in stable supply as candidate substitutes and verified their applicability for digital bioanalysis. Among these candidates, Fluorine Sealant emerged as a viable option for fabricating femtoliter chamber arrays using a conventional photolithography process. To validate its efficacy, we performed various digital bioanalysis using FP-A-based chamber arrays with model enzymes such as CRISPR-Cas, horseradish peroxidase, and ß-galactosidase. The results demonstrated the similar performance to that of CYTOP, highlighting the broader utility of FP-A in digital bioanalysis. Our findings underscore the potential of FP-A to enhance the versatility of digital bioanalysis and foster the ongoing advancement of innovative diagnostic technologies.


Asunto(s)
Polímeros , Polímeros/química , Peroxidasa de Rábano Silvestre/metabolismo , Peroxidasa de Rábano Silvestre/química , beta-Galactosidasa/metabolismo
14.
Biosens Bioelectron ; 259: 116369, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38781695

RESUMEN

Accurate and effective detection is essential to against bacterial infection and contamination. Novel biosensors, which detect bacterial bioproducts and convert them into measurable signals, are attracting attention. We developed an artificial intelligence (AI)-assisted smartphone-based colorimetric biosensor for the visualized, rapid, sensitive detection of pathogenic bacteria by measuring the bacteria secreted hyaluronidase (HAase). The biosensor consists of the chlorophenol red-ß-D-galactopyranoside (CPRG)-loaded hyaluronic acid (HA) hydrogel as the bioreactor and the ß-galactosidase (ß-gal)-loaded agar hydrogel as the signal generator. The HAase degrades the bioreactor and subsequently determines the release of CPRG, which could further react with ß-gal to generate signal colors. The self-developed YOLOv5 algorithm was utilized to analyze the signal colors acquired by smartphone. The biosensor can provide a report within 60 min with an ultra-low limit of detection (LoD) of 10 CFU/mL and differentiate between gram-positive (G+) and gram-negative (G-) bacteria. The proposed biosensor was successfully applied in various areas, especially the evaluation of infections in clinical samples with 100% sensitivity. We believe the designed biosensor has the potential to represent a new paradigm of "ASSURED" bacterial detection, applicable for broad biomedical uses.


Asunto(s)
Técnicas Biosensibles , Colorimetría , Teléfono Inteligente , Técnicas Biosensibles/métodos , Técnicas Biosensibles/instrumentación , Colorimetría/instrumentación , Límite de Detección , Humanos , Inteligencia Artificial , beta-Galactosidasa/química , Bacterias/aislamiento & purificación
15.
Food Chem ; 452: 139557, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38728895

RESUMEN

ß-Galactosidase (ß-gal), an enzyme related to cell wall degradation, plays an important role in regulating cell wall metabolism and reconstruction. However, activatable fluorescence probes for the detection and imaging of ß-gal fluctuations in plants have been less exploited. Herein, we report an activatable fluorescent probe based on intramolecular charge transfer (ICT), benzothiazole coumarin-bearing ß-galactoside (BC-ßgal), to achieve distinct in situ imaging of ß-gal in plant cells. It exhibits high sensitivity and selectivity to ß-gal with a fast response (8 min). BC-ßgal can be used to efficiently detect the alternations of intracellular ß-gal levels in cabbage root cells with considerable imaging integrity and imaging contrast. Significantly, BC-ßgal can assess ß-gal activity in cabbage roots under heavy metal stress (Cd2+, Cu2+, and Pb2+), revealing that ß-gal activity is negatively correlated with the severity of heavy metal stress. Our work thus facilitates the study of ß-gal biological mechanisms.


Asunto(s)
Brassica , Colorantes Fluorescentes , Metales Pesados , Raíces de Plantas , beta-Galactosidasa , beta-Galactosidasa/metabolismo , beta-Galactosidasa/química , Brassica/química , Brassica/metabolismo , Brassica/enzimología , Raíces de Plantas/química , Raíces de Plantas/metabolismo , Colorantes Fluorescentes/química , Metales Pesados/metabolismo , Metales Pesados/análisis , Imagen Óptica , Proteínas de Plantas/metabolismo
16.
Spectrochim Acta A Mol Biomol Spectrosc ; 317: 124411, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38728851

RESUMEN

The advancement of biological imaging techniques critically depends on the development of novel near-infrared (NIR) fluorescent probes. In this study, we introduce a designed NIR fluorescent probe, NRO-ßgal, which exhibits a unique off-on response mechanism to ß-galactosidase (ß-gal). Emitting a fluorescence peak at a wavelength of 670 nm, NRO-ßgal showcases a significant Stokes shift of 85 nm, which is indicative of its efficient energy transfer and minimized background interference. The probe achieves a remarkably low in vitro detection limit of 0.2 U/L and demonstrates a rapid response within 10 min, thereby underscoring its exceptional sensitivity, selectivity, and operational swiftness. Such superior analytical performance broadens the horizon for its application in intricate biological imaging studies. To validate the practical utility of NRO-ßgal in bio-imaging, we employed ovarian cancer cell and mouse models, where the probe's efficacy in accurately delineating tumor cells was examined. The results affirm NRO-ßgal's capability to provide sharp, high-contrast images of tumor regions, thereby significantly enhancing the precision of surgical tumor resection. Furthermore, the probe's potential for real-time monitoring of enzymatic activity in living tissues underscores its utility as a powerful tool for diagnostics in oncology and beyond.


Asunto(s)
Colorantes Fluorescentes , Neoplasias Ováricas , beta-Galactosidasa , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Femenino , beta-Galactosidasa/metabolismo , Animales , Neoplasias Ováricas/diagnóstico por imagen , Neoplasias Ováricas/patología , Humanos , Línea Celular Tumoral , Ratones , Espectroscopía Infrarroja Corta/métodos , Imagen Óptica/métodos , Ratones Desnudos , Límite de Detección , Espectrometría de Fluorescencia
17.
Biomacromolecules ; 25(5): 3055-3062, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38693874

RESUMEN

Polymersomes, nanosized polymeric vesicles, have attracted significant interest in the areas of artificial cells and nanomedicine. Given their size, their visualization via confocal microscopy techniques is often achieved through the physical incorporation of fluorescent dyes, which however present challenges due to potential leaching. A promising alternative is the incorporation of molecules with aggregation-induced emission (AIE) behavior that are capable of fluorescing exclusively in their assembled state. Here, we report on the use of AIE polymersomes as artificial organelles, which are capable of undertaking enzymatic reactions in vitro. The ability of our polymersome-based artificial organelles to provide additional functionality to living cells was evaluated by encapsulating catalytic enzymes such as a combination of glucose oxidase/horseradish peroxidase (GOx/HRP) or ß-galactosidase (ß-gal). Via the additional incorporation of a pyridinium functionality, not only the cellular uptake is improved at low concentrations but also our platform's potential to specifically target mitochondria expands.


Asunto(s)
Glucosa Oxidasa , Peroxidasa de Rábano Silvestre , beta-Galactosidasa , Glucosa Oxidasa/química , Humanos , beta-Galactosidasa/química , beta-Galactosidasa/metabolismo , Peroxidasa de Rábano Silvestre/química , Peroxidasa de Rábano Silvestre/metabolismo , Orgánulos/metabolismo , Colorantes Fluorescentes/química , Polímeros/química , Fluorescencia , Células HeLa , Mitocondrias/metabolismo
18.
Food Res Int ; 183: 114175, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38760120

RESUMEN

Lactose hydrolysed concentrated milk was prepared using ß-galactosidase enzyme (4.76U/mL) with a reaction period of 12 h at 4 °C. Addition of polysaccharides (5 % maltodextrin/ß-cyclodextrin) to concentrated milk either before or after lactose hydrolysis did not result in significant differences (p > 0.05) in degree of hydrolysis (% DH) of lactose and residual lactose content (%). Three different inlet temperatures (165 °C, 175 °C and 185 °C) were used for the preparation of powders which were later characterised based on physico-chemical and maillard browning characteristics. Moisture content, solubility and available lysine content of the powders decreased significantly, whereas, browning parameters i.e., browning index, 5-hydroxymethylfurfural, furosine content increased significantly (p < 0.05) with an increase in inlet air temperature. The powder was finally prepared with 5 % polysaccharide and an inlet air temperature of 185 °C which reduced maillard browning. Protein-polysaccharide interactions were identified using Fourier Transform infrared spectroscopy, fluorescence spectroscopy and determination of free amino groups in the powder samples. Maltodextrin and ß-cyclodextrin containing powder samples exhibited lower free amino groups and higher degree of graft value as compared to control sample which indicated protein-polysaccharide interactions. Results obtained from Fourier Transform infrared spectroscopy also confirmed strong protein-polysaccharide interactions, moreover a significant decrease in fluorescence intensity was also observed in the powder samples. These interactions between the proteins and polysaccharides reduced the maillard browning in powders.


Asunto(s)
Furaldehído , Lactosa , Reacción de Maillard , Leche , Polisacáridos , Polvos , Lactosa/química , Polisacáridos/química , Leche/química , Animales , Espectroscopía Infrarroja por Transformada de Fourier , Furaldehído/análogos & derivados , Furaldehído/química , beta-Galactosidasa/metabolismo , beta-Ciclodextrinas/química , Hidrólisis , Secado por Pulverización , Temperatura , Lisina/química , Lisina/análogos & derivados , Solubilidad , Espectrometría de Fluorescencia , Proteínas de la Leche/química , Manipulación de Alimentos/métodos
19.
Int J Biol Macromol ; 268(Pt 2): 131766, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38657932

RESUMEN

The biological function of terminal galactose on glycoprotein is an open field of research. Although progress had being made on enzymes that can remove the terminal galactose on glycoproteins, there is a lack of report on galactosidases that can work directly on living cells. In this study, a unique beta 1,4 galactosidase was isolated from Elizabethkingia meningoseptica (Em). It exhibited favorable stability at various temperatures (4-37 °C) and pH (5-8) levels and can remove ß-1, 4 linked galactoses directly from glycoproteins. Using Alanine scanning, we found that two acidic residues (Glu-468, and Glu-531) in the predicted active pocket are critical for galactosidase activity. In addition, we also demonstrated that it could cleave galactose residues present on living cell surface. As this enzyme has a potential application for living cell glycan editing, we named it emGalaseE or glycan-editing galactosidase I (csgeGalaseI). In summary, our findings lay the groundwork for further investigation by presenting a simple and effective approach for the removal of galactose moieties from cell surface.


Asunto(s)
Flavobacteriaceae , Galactosa , Flavobacteriaceae/enzimología , Galactosa/metabolismo , Galactosa/química , Concentración de Iones de Hidrógeno , Secuencia de Aminoácidos , Estabilidad de Enzimas , Membrana Celular/metabolismo , Galactosidasas/metabolismo , Galactosidasas/química , beta-Galactosidasa/metabolismo , beta-Galactosidasa/química , Temperatura , Especificidad por Sustrato
20.
Food Chem ; 450: 139331, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-38621310

RESUMEN

The sensitive detection of foodborne pathogenic and rapid antibiotic susceptibility testing (AST) is of great significance. This paper reports the enzyme-triggered in situ synthesis of yellow emitting silicon nanoparticles (SiNPs) and the detection of Escherichia coli (E. coli) O157:H7 in food samples and the rapid AST. The rapid counting of E. coli O157:H7 has been achieved through direct visual observation, equipment detection, and smartphone digitalization. A simple detection platform based on smartphone senses and cotton swabs has been established. Meanwhile, rapid AST based on enzyme-catalyzed SiNPs can intuitively obtain colorimetric samples. This paper established a system for bacterial enzyme-triggered in situ synthesis of SiNPs, with high responsiveness, luminescence ratio, and specificity. The detection limit for E. coli O157:H7 can reach 100 CFU/mL during 5 h, and the recovery efficiency ranges from 90.14% to 110.16%, which makes it a promising strategy for the rapid detection of E. coli O157:H7 and AST.


Asunto(s)
Escherichia coli O157 , Nanopartículas , Silicio , beta-Galactosidasa , Escherichia coli O157/efectos de los fármacos , Escherichia coli O157/aislamiento & purificación , Nanopartículas/química , Silicio/química , Silicio/farmacología , beta-Galactosidasa/metabolismo , beta-Galactosidasa/química , Pruebas de Sensibilidad Microbiana , Contaminación de Alimentos/análisis , Colorimetría , Antibacterianos/farmacología , Antibacterianos/química , Microbiología de Alimentos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...