Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros













Intervalo de año de publicación
1.
Sci Rep ; 14(1): 4547, 2024 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-38402284

RESUMEN

The increasing number of plant mitochondrial DNA genomes (mtDNA) sequenced reveals the extent of transfer from both chloroplast DNA genomes (cpDNA) and nuclear DNA genomes (nDNA). This study created a library and assembled the chloroplast and mitochondrial genomes of the leafy sweet potato better to understand the extent of mitochondrial and chloroplast gene transfer. The full-length chloroplast genome of the leafy sweet potato (OM808940) is 161,387 bp, with 132 genes annotated, including 87 protein-coding genes, 8 rRNA genes, and 37 tRNA genes. The mitochondrial genome (OM808941) was 269,578 bp in length and contained 69 functional genes, including 39 protein-coding genes, 6 rRNA genes, and 24 tRNA genes. 68 SSR loci were found in the leafy sweet potato organelle genome, including 54 in the chloroplast genome and 14 in the mitochondria genome. In the sweet potato mitochondrial genome, most genes have RNA editing sites, and the conversion ratio from hydrophilic amino acids to hydrophobic amino acids is the highest, reaching 47.12%. Horizontal transfer occurs in the sweet potato organelle genome and nuclear genome. 40 mitochondrial genome segments share high homology with 14 chloroplast genome segments, 33 of which may be derived from chloroplast genome horizontal transfer. 171 mitochondrial genome sequences come from the horizontal transfer of nuclear genome. The phylogenetic analysis of organelle genes revealed that the leafy sweet potato was closely related to the tetraploid wild species Ipomoea tabascana and the wild diploid species Ipomoea trifida.


Asunto(s)
Genoma del Cloroplasto , Genoma Mitocondrial , Ipomoea batatas , Ipomoea , Ipomoea batatas/genética , Filogenia , Genoma Mitocondrial/genética , Ipomoea/genética , Genoma del Cloroplasto/genética , Cloroplastos/genética , Aminoácidos/genética , ARN de Transferencia/genética
2.
Int J Mol Sci ; 24(23)2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-38068872

RESUMEN

Malate dehydrogenase (MDH; EC 1.1.1.37) plays a vital role in plant growth and development as well as abiotic stress responses, and it is widely present in plants. However, the MDH family genes have not been explored in sweet potato. In this study, nine, ten, and ten MDH genes in sweet potato (Ipomoea batatas) and its two diploid wild relatives, Ipomoea trifida and Ipomoea triloba, respectively, were identified. These MDH genes were unevenly distributed on seven different chromosomes among the three species. The gene duplications and nucleotide substitution analysis (Ka/Ks) revealed that the MDH genes went through segmental duplications during their evolution under purifying selection. A phylogenetic and conserved structure divided these MDH genes into five subgroups. An expression analysis indicated that the MDH genes were omni-presently expressed in distinct tissues and responded to various abiotic stresses. A transcription factor prediction analysis proved that Dof, MADS-box, and MYB were the main transcription factors of sweet potato MDH genes. These findings provide molecular features of the MDH family in sweet potato and its two diploid wild relatives, which further supports functional characterizations.


Asunto(s)
Ipomoea batatas , Ipomoea , Ipomoea batatas/metabolismo , Filogenia , Diploidia , Malato Deshidrogenasa/genética , Malato Deshidrogenasa/metabolismo , Ipomoea/genética , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica de las Plantas
3.
Int J Mol Sci ; 24(13)2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37446107

RESUMEN

ACTINs are structural proteins widely distributed in plants. They are the main components of microfilaments and participate in many crucial physiological activities, including the maintenance of cell shape and cytoplasmic streaming. Meanwhile, ACTIN, as a housekeeping gene, is widely used in qRT-PCR analyses of plants. However, ACTIN family genes have not been explored in the sweet potato. In this study, we identified 30, 39, and 44 ACTINs in the cultivated hexaploid sweet potato (Ipomoea batatas, 2n = 6x = 90) and its two diploid relatives, Ipomoea trifida (2n = 2x = 30) and Ipomoea triloba (2n = 2x = 30), respectively, via analysis of their genome structure and by phylogenetic characterization. These ACTINs were divided into six subgroups according to their phylogenetic relationships with Arabidopsis thaliana. The physiological properties of the protein, chromosome localization, phylogenetic relationship, gene structure, promoter cis-elements, protein interaction networks, and expression patterns of these 113 ACTINs were systematically investigated. The results suggested that homologous ACTINs are differentiated in the sweet potato and its two diploid relatives, and play various vital roles in plant growth, tuberous root development, hormone crosstalk, and abiotic stress responses. Some stable ACTINs that could be used as internal reference genes were found in the sweet potato and its two diploid relatives, e.g., IbACTIN18, -20, and -16.2; ItfACTIN2.2, -16, and -10; ItbACTIN18 and -19.1. This work provides a comprehensive comparison and furthers our understanding of the ACTIN genes in the sweet potato and its two diploid relatives, thereby supplying a theoretical foundation for their functional study and further facilitating the molecular breeding of sweet potatoes.


Asunto(s)
Ipomoea batatas , Ipomoea , Ipomoea batatas/metabolismo , Actinas/genética , Actinas/metabolismo , Filogenia , Diploidia , Ipomoea/genética , Regulación de la Expresión Génica de las Plantas
4.
Genes (Basel) ; 14(7)2023 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-37510375

RESUMEN

Abscisic acid (ABA), a critical phytohormone that regulates plant development and stress response, is sensed by the ABA receptors PYR/PYL/RCAR (PYLs). The PYL genes have been widely studied in multiple plant species, while a systematic analysis of PYL genes in the genus Ipomoea remains unperformed. Here, a total of 13, 14, and 14 PYLs were identified in Ipomoea batatas, Ipomoea trifida, and Ipomoea triloba, respectively. Fragment duplication was speculated to play prominent roles in Ipomoea PYL gene expansions. These Ipomoea PYLs were classified into three subfamilies via phylogenetic analysis, which was supported by exon-intron structures and conserved motif analyses. Additionally, the interspecies collinearity analysis further depicted a potential evolutionary relationship between them. Moreover, qRT-PCR analysis showed that multiple IbPYLs are highly and differentially responsive to abiotic stress treatments, suggesting their potential roles in sweetpotato stress responses. Taken together, these data provide valuable insights into the PYLs in the genus Ipomoea, which may be useful for their further functional analysis of their defense against environmental changes.


Asunto(s)
Ipomoea batatas , Ipomoea , Ipomoea batatas/genética , Ipomoea batatas/metabolismo , Ipomoea/genética , Ipomoea/metabolismo , Filogenia , Estrés Fisiológico/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Ácido Abscísico/metabolismo
5.
BMC Plant Biol ; 23(1): 209, 2023 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-37085761

RESUMEN

BACKGROUND: Genes with valine glutamine (VQ) motifs play an essential role in plant growth, development, and resistance to biotic and abiotic stresses. However, little information on the VQ genes in sweetpotato and other Ipomoea species is available. RESULTS: This study identified 55, 58, 50 and 47 VQ genes from sweetpotato (I. batatas), I.triflida, I. triloba and I. nil, respectively. The phylogenetic analysis revealed that the VQ genes formed eight clades (I-VII), and the members in the same group exhibited similar exon-intron structure and conserved motifs distribution. The distribution of the VQ genes among the chromosomes of Ipomoea species was disproportional, with no VQ genes mapped on a few of each species' chromosomes. Duplication analysis suggested that segmental duplication significantly contributes to their expansion in sweetpotato, I.trifida, and I.triloba, while the segmental and tandem duplication contributions were comparable in I.nil. Cis-regulatory elements involved in stress responses, such as W-box, TGACG-motif, CGTCA-motif, ABRE, ARE, MBS, TCA-elements, LTR, and WUN-motif, were detected in the promoter regions of the VQ genes. A total of 30 orthologous groups were detected by syntenic analysis of the VQ genes. Based on the analysis of RNA-seq datasets, it was found that the VQ genes are expressed distinctly among different tissues and hormone or stress treatments. A total of 40 sweetpotato differentially expressed genes (DEGs) refer to biotic (sweetpotato stem nematodes and Ceratocystis fimbriata pathogen infection) or abiotic (cold, salt and drought) stress treatments were detected. Moreover, IbVQ8, IbVQ25 and IbVQ44 responded to the five stress treatments and were selected for quantitative reverse-transcription polymerase chain reaction (qRT-PCR) analysis, and the results were consistent with the transcriptome analysis. CONCLUSIONS: Our study may provide new insights into the evolution of VQ genes in the four Ipomoea genomes and contribute to the future molecular breeding of sweetpotatoes.


Asunto(s)
Ipomoea batatas , Ipomoea , Ipomoea/genética , Glutamina/genética , Valina/genética , Filogenia , Genoma , Ipomoea batatas/genética , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética
6.
Int J Mol Sci ; 24(4)2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36835500

RESUMEN

Phytochrome-interacting factors (PIFs) are essential for plant growth, development, and defense responses. However, research on the PIFs in sweet potato has been insufficient to date. In this study, we identified PIF genes in the cultivated hexaploid sweet potato (Ipomoea batatas) and its two wild relatives, Ipomoea triloba, and Ipomoea trifida. Phylogenetic analysis revealed that IbPIFs could be divided into four groups, showing the closest relationship with tomato and potato. Subsequently, the PIFs protein properties, chromosome location, gene structure, and protein interaction network were systematically analyzed. RNA-Seq and qRT-PCR analyses showed that IbPIFs were mainly expressed in stem, as well as had different gene expression patterns in response to various stresses. Among them, the expression of IbPIF3.1 was strongly induced by salt, drought, H2O2, cold, heat, Fusarium oxysporum f. sp. batatas (Fob), and stem nematodes, indicating that IbPIF3.1 might play an important role in response to abiotic and biotic stresses in sweet potato. Further research revealed that overexpression of IbPIF3.1 significantly enhanced drought and Fusarium wilt tolerance in transgenic tobacco plants. This study provides new insights for understanding PIF-mediated stress responses and lays a foundation for future investigation of sweet potato PIFs.


Asunto(s)
Fusarium , Ipomoea batatas , Ipomoea , Fitocromo , Ipomoea batatas/metabolismo , Fusarium/metabolismo , Filogenia , Fitocromo/metabolismo , Sequías , Peróxido de Hidrógeno/metabolismo , Ipomoea/genética , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas
7.
Int J Mol Sci ; 23(24)2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36555491

RESUMEN

Sugar Will Eventually be Exported Transporter (SWEET) proteins are key transporters in sugar transportation. They are involved in the regulation of plant growth and development, hormone crosstalk, and biotic and abiotic stress responses. However, SWEET family genes have not been explored in the sweet potato. In this study, we identified 27, 27, and 25 SWEETs in cultivated hexaploid sweet potato (Ipomoea batatas, 2n = 6x = 90) and its two diploid relatives, Ipomoea trifida (2n = 2x = 30) and Ipomoea triloba (2n = 2x = 30), respectively. These SWEETs were divided into four subgroups according to their phylogenetic relationships with Arabidopsis. The protein physiological properties, chromosome localization, phylogenetic relationships, gene structures, promoter cis-elements, protein interaction networks, and expression patterns of these 79 SWEETs were systematically investigated. The results suggested that homologous SWEETs are differentiated in sweet potato and its two diploid relatives and play various vital roles in plant growth, tuberous root development, carotenoid accumulation, hormone crosstalk, and abiotic stress response. This work provides a comprehensive comparison and furthers our understanding of the SWEET genes in the sweet potato and its two diploid relatives, thereby supplying a theoretical foundation for their functional study and further facilitating the molecular breeding of sweet potato.


Asunto(s)
Ipomoea batatas , Ipomoea , Ipomoea batatas/metabolismo , Filogenia , Diploidia , Ipomoea/genética , Genoma de Planta , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
8.
An Acad Bras Cienc ; 94(3): e20210672, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36228301

RESUMEN

The anthocyanins are pigments responsible for a wide range of colours in plants, from blue, red and purple, play essential biological roles as well as their genes are evolutionarily conserved. Purple sweet potatoes have anthocyanins as the predominant colour, even though they are present in orange roots masked by carotenoids. Several studies have focused on molecular aspects of anthocyanin genes, mainly in wild Ipomoea species, although the structure and segregation analysis of those genes in sweet potato hexaploid species are still unknown. Based on an "exon-primed intron-crossing" (EPIC) approach, fourteen pairs of primers were designed, on five structural anthocyanin genes as candidates. The strategy exploits the Intron Length Polymorphism (ILP) from Candidate Genes (CG), resulting in 93% of successful markers giving scorable and reproducible alleles. The results allowed to define partial structure and sequence of the introns and exons from the selected CG, and to determine patterns of sequence variation. The evaluation of marker dosage and allelic segregations in an Ipomoea batatas (L.) Lam mapping population identified several alleles for linkage analysis. The study validated the utility of ILP-CG markers for genetic diversity and conservation applicability and a successful amplification gradient across wild Ipomoea species validated their transferability.


Asunto(s)
Ipomoea batatas , Ipomoea , Antocianinas/genética , Carotenoides , Mapeo Cromosómico , Variación Genética/genética , Genómica , Ipomoea/genética , Ipomoea batatas/química , Ipomoea batatas/genética
9.
Int J Mol Sci ; 23(19)2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-36232853

RESUMEN

Stress-associated protein (SAP) genes-encoding A20/AN1 zinc-finger domain-containing proteins-play pivotal roles in regulating stress responses, growth, and development in plants. They are considered suitable candidates to improve abiotic stress tolerance in plants. However, the SAP gene family in sweetpotato (Ipomoea batatas) and its relatives is yet to be investigated. In this study, 20 SAPs in sweetpotato, and 23 and 26 SAPs in its wild diploid relatives Ipomoea triloba and Ipomoea trifida were identified. The chromosome locations, gene structures, protein physiological properties, conserved domains, and phylogenetic relationships of these SAPs were analyzed systematically. Binding motif analysis of IbSAPs indicated that hormone and stress responsive cis-acting elements were distributed in their promoters. RT-qPCR or RNA-seq data revealed that the expression patterns of IbSAP, ItbSAP, and ItfSAP genes varied in different organs and responded to salinity, drought, or ABA (abscisic acid) treatments differently. Moreover, we found that IbSAP16 driven by the 35 S promoter conferred salinity tolerance in transgenic Arabidopsis. These results provided a genome-wide characterization of SAP genes in sweetpotato and its two relatives and suggested that IbSAP16 is involved in salinity stress responses. Our research laid the groundwork for studying SAP-mediated stress response mechanisms in sweetpotato.


Asunto(s)
Arabidopsis , Ipomoea batatas , Ipomoea , Ácido Abscísico/metabolismo , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Choque Térmico/metabolismo , Hormonas/metabolismo , Ipomoea/genética , Ipomoea batatas/genética , Ipomoea batatas/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Tolerancia a la Sal/genética , Estrés Fisiológico/genética , Zinc/metabolismo , Dedos de Zinc/genética
10.
Plant Cell Rep ; 41(11): 2159-2171, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35943560

RESUMEN

KEY MESSAGE: A novel interspecific somatic hybrid combining drought tolerance and high quality of sweet potato and Ipomoea triloba L. was obtained and its genetic and epigenetic variations were studied. Somatic hybridization can be used to overcome the cross-incompatibility between sweet potato (Ipomoea batatas (L.) Lam.) and its wild relatives and transfer useful and desirable genes from wild relatives to cultivated plants. However, most of the interspecific somatic hybrids obtained to date cannot produce storage roots and do not exhibit agronomic characters. In the present study, a novel interspecific somatic hybrid, named XT1, was obtained through protoplast fusion between sweet potato cv. Xushu 18 and its wild relative I. triloba. This somatic hybrid produced storage roots and exhibited significantly higher drought tolerance and quality compared with its cultivated parent Xushu 18. Transcriptome and real-time quantitative PCR (qRT-PCR) analyses revealed that the well-known drought stress-responsive genes in XT1 and I. triloba were significantly up-regulated under drought stress. The genomic structural reconstructions between the two genomes of the fusion parents in XT1 were confirmed using genomic in situ hybridization (GISH) and specific nuclear and cytoplasmic DNA markers. The DNA methylation variations were characterized by methylation-sensitive amplified polymorphism (MSAP). This study not only reveals the significance of somatic hybridization in the genetic improvement of sweet potato but also provides valuable materials and knowledge for further investigating the mechanism of storage root formation in sweet potato.


Asunto(s)
Ipomoea batatas , Ipomoea , Ipomoea batatas/genética , Ipomoea/genética , Sequías , Transcriptoma
11.
Plant Physiol Biochem ; 188: 109-122, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36029691

RESUMEN

B-box (BBX) proteins constitute a class of transcription factors that play vital roles in the regulation of photoperiod flowering, photomorphogenesis, and the response to biotic and abiotic stresses. In this paper, a total of 32 BBX genes were identified in Ipomoea trifida, a wild ancestor of sweetpotato. Chromosome localization analysis showed that these 32 ItfBBX genes were distributed unevenly across 12 chromosomes. The ItfBBX gene family members were classified into five groups according to their phylogenetic relationships and structural features. Predictions of cis-elements revealed that the promoter sequences of the ItfBBX genes contain light response, stress response, hormone response and other elements. Synteny analysis revealed evidence of 26 segmental duplication events and only one tandem duplication event. Tissue-specific and abiotic stress-response expression profiles were analysed, and the results were confirmed via RT-qPCR. Overall, ItfBBX genes may play vital roles in the stress response. We chose IbBBX28 for further study and revealed that IbBBX28 negatively regulates the flowering time of IbBBX28-overexpressing Arabidopsis under long-day conditions. Our study provides references for characterizing the function of BBX genes in sweetpotato.


Asunto(s)
Arabidopsis , Ipomoea batatas , Ipomoea , Arabidopsis/genética , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Genoma de Planta/genética , Ipomoea/genética , Ipomoea batatas/genética , Ipomoea batatas/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética
12.
Genes (Basel) ; 13(8)2022 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-36011339

RESUMEN

The sweet potato (Ipomoea batatas (L.) Lam.) is an important and widely grown crop, and the nitrogenase reductase (nifH) gene is the most widely sequenced marker gene used to identify nitrogen-fixing bacteria and archaea. There have been many examples of the isolation of the diazotrophic endophytes in sweet potatoes, and there has been no report on whether sweet potatoes and their wild ancestors harbored nifH genes. In this study, a comprehensive analysis of nifH genes has been conducted on these species by using bioinformatics and molecular biology methods. A total of 20, 19 and 17 nifH genes were identified for the first time in sweet potatoes, I. trifida and I. triloba, respectively. Based on a phylogenetic analysis, all of the nifH genes, except for g10233.t1, itf14g14040.t1 and itb14g15470.t1, were clustered into five independent clades: I, II, III, IV and V. The nifH genes clustered in the same phylogenetic branch showed a more similar distribution of conserved motifs and exons-introns than those of the other ones. All of the identified genes were further mapped on the 15 chromosomes of the sweet potato, I. trifida and I. triloba. No segmental duplication was detected in each genome of three Ipomoea species, and 0, 8 and 7 tandemly duplicated gene pairs were detected in the genome of the sweet potato, I. trifida and I. triloba, respectively. Synteny analysis between the three Ipomoea species revealed that there were 7, 7 and 8 syntenic gene pairs of nifH genes detected between the sweet potato and I. trifida, between the sweet potato and I. triloba and between I. trifida and I. triloba, respectively. All of the duplicated and syntenic nifH genes were subjected to purifying selection inside duplicated genomic elements during speciation, except for the tandemly duplicated gene pair itf11g07340.t2_itf11g07340.t3, which was subjected to positive selection. Different expression profiles were detected in the sweet potato, I. trifida and I. triloba. According to the above results, four nifH genes of the sweet potato (g950, g16683, g27094 and g33987) were selected for quantitative real-time polymerase chain reaction (qRT-PCR) analysis in two sweet potato cultivars (Eshu 15 and Long 9) under nitrogen deficiency (N0) and normal (N1) conditions. All of them were upregulated in the N1 treatment and were consistent with the analysis of the RNA-seq data. We hope that these results will provide new insights into the nifH genes in the sweet potato and its wild ancestors and will contribute to the molecular breeding of sweet potatoes in the future.


Asunto(s)
Ipomoea batatas , Ipomoea , Ipomoea/genética , Ipomoea/metabolismo , Ipomoea batatas/genética , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Filogenia
13.
Genes (Basel) ; 13(6)2022 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-35741805

RESUMEN

Expansins play important roles in root growth and development, but investigation of the expansin gene family has not yet been reported in Ipomoea trifida, and little is known regarding storage root (SR) development. In this work, we identified a total of 37 expansins (ItrEXPs) in our previously reported SR-forming I. trifida strain Y22 genome, which included 23 ItrEXPAs, 4 ItrEXPBs, 2 ItrEXLAs and 8 ItrEXLBs. The phylogenetic relationship, genome localization, subcellular localization, gene and protein structure, promoter cis-regulating elements, and protein interaction network were systematically analyzed to reveal the possible roles of ItrEXPs in the SR development of I. trifida. The gene expression profiling in Y22 SR development revealed that ItrEXPAs and ItrEXLBs were down-regulated, and ItrEXPBs were up-regulated while ItrEXLAs were not obviously changed during the critical period of SR expansion, and might be beneficial to SR development. Combining the tissue-specific expression in young SR transverse sections of Y22 and sweetpotato tissue, we deduced that ItrEXLB05, ItrEXLB07 and ItrEXLB08 might be the key genes for initial SR formation and enlargement, and ItrEXLA02 might be the key gene for root growth and development. This work provides new insights into the functions of the expansin gene family members in I. trifida, especially for EXLA and EXLB subfamilies genes in SR development.


Asunto(s)
Ipomoea batatas , Ipomoea , Diploidia , Regulación de la Expresión Génica de las Plantas/genética , Ipomoea/genética , Ipomoea/metabolismo , Ipomoea batatas/genética , Filogenia
14.
Int J Mol Sci ; 23(6)2022 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-35328509

RESUMEN

Calcium-dependent protein kinase (CDPKs) is one of the calcium-sensing proteins in plants. They are likely to play important roles in growth and development and abiotic stress responses. However, these functions have not been explored in sweet potato. In this study, we identified 39 CDPKs in cultivated hexaploid sweet potato (Ipomoea batatas, 2n = 6x = 90), 35 CDPKs in diploid relative Ipomoea trifida (2n = 2x = 30), and 35 CDPKs in Ipomoea triloba (2n = 2x = 30) via genome structure analysis and phylogenetic characterization, respectively. The protein physiological property, chromosome localization, phylogenetic relationship, gene structure, promoter cis-acting regulatory elements, and protein interaction network were systematically investigated to explore the possible roles of homologous CDPKs in the growth and development and abiotic stress responses of sweet potato. The expression profiles of the identified CDPKs in different tissues and treatments revealed tissue specificity and various expression patterns in sweet potato and its two diploid relatives, supporting the difference in the evolutionary trajectories of hexaploid sweet potato. These results are a critical first step in understanding the functions of sweet potato CDPK genes and provide more candidate genes for improving yield and abiotic stress tolerance in cultivated sweet potato.


Asunto(s)
Ipomoea batatas , Ipomoea , Diploidia , Regulación de la Expresión Génica de las Plantas , Crecimiento y Desarrollo , Ipomoea/genética , Ipomoea batatas/genética , Filogenia , Estrés Fisiológico/genética
15.
Genome ; 65(6): 331-339, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35254885

RESUMEN

Cultivated sweetpotato [Ipomoea batatas (L.) Lam.] from the family Convolvulaceae is a hexaploid species with 2n = 6x = 90 and has been controversial regarding its nature as an autopolyploid arising within a species or an allopolyploid forming between species. Here, we developed oligonucleotide-based painting probes for two chromosomes of I. nil, a model diploid Ipomoea species. Using these probes, we revealed the pairing behavior of homoeologous chromosomes in I. batatas and its two possible polyploid ancestral species, tetraploid I. tabascana (2n = 4x = 60) and hexaploid I. trifida (2n = 6x = 90). Chromosome painting analysis revealed a high percentage of quadrivalent formation in zygotene-pachytene cells of I. tabascana, which supported that I. tabascana was an autotetraploid likely derived by doubling of structurally similar and homologous genomes rather than a hybrid between I. batatas and I. trifida (2x). A high frequency of hexavalent/bivalent and tetravalent pairing was observed in I. trifida (6x) and I. batatas. However, the percentage of hexavalent pairing in I. trifida (6x) was far higher than that in I. batatas. Thus, the present results tend to support that I. trifida (6x) is an autohexaploid, while I. batatas is more likely to be a segmental allohexaploid.


Asunto(s)
Ipomoea batatas , Ipomoea , Pintura Cromosómica , Genómica , Ipomoea/genética , Ipomoea batatas/genética , Poliploidía
16.
New Phytol ; 234(4): 1185-1194, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35064679

RESUMEN

The origin of sweetpotato, a hexaploid species, is poorly understood, partly because the identity of its tetraploid progenitor remains unknown. In this study, we identify, describe and characterize a new species of Ipomoea that is sweetpotato's closest tetraploid relative known to date and probably a direct descendant of its tetraploid progenitor. We integrate morphological, phylogenetic, and genomic analyses of herbarium and germplasm accessions of the hexaploid sweetpotato, its closest known diploid relative Ipomoea trifida, and various tetraploid plants closely related to them from across the American continent. We identify wild autotetraploid plants from Ecuador that are morphologically distinct from Ipomoea batatas and I. trifida, but monophyletic and sister to I. batatas in phylogenetic analysis of nuclear data. We describe this new species as Ipomoea aequatoriensis T. Wells & P. Muñoz sp. nov., distinguish it from hybrid tetraploid material collected in Mexico; and show that it likely played a direct role in the origin of sweetpotato's hexaploid genome. This discovery transforms our understanding of sweetpotato's origin.


Asunto(s)
Ipomoea batatas , Ipomoea , Genoma de Planta , Ipomoea/genética , Ipomoea batatas/genética , Filogenia , Tetraploidía
17.
BMC Genomics ; 22(1): 262, 2021 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-33849443

RESUMEN

BACKGROUND: Sweetpotato (Ipomoea batatas [L.] Lam.) is an important food crop. However, the genetic information of the nuclear genome of this species is difficult to determine accurately because of its large genome and complex genetic background. This drawback has limited studies on the origin, evolution, genetic diversity and other relevant studies on sweetpotato. RESULTS: The chloroplast genomes of 107 sweetpotato cultivars were sequenced, assembled and annotated. The resulting chloroplast genomes were comparatively analysed with the published chloroplast genomes of wild species of sweetpotato. High similarity and certain specificity were found among the chloroplast genomes of Ipomoea spp. Phylogenetic analysis could clearly distinguish wild species from cultivars. Ipomoea trifida and Ipomoea tabascana showed the closest relationship with the cultivars, and different haplotypes of ycf1 could be used to distinguish the cultivars from their wild relatives. The genetic structure was analyzed using variations in the chloroplast genome. Compared with traditional nuclear markers, the chloroplast markers designed based on the InDels on the chloroplast genome showed significant advantages. CONCLUSIONS: Comparative analysis of chloroplast genomes of 107 cultivars and several wild species of sweetpotato was performed to help analyze the evolution, genetic structure and the development of chloroplast DNA markers of sweetpotato.


Asunto(s)
Genoma del Cloroplasto , Ipomoea batatas , Ipomoea , Genoma de Planta , Ipomoea/genética , Ipomoea batatas/genética , Filogenia
18.
Arq. Inst. Biol ; 88: e00182020, 2021. ilus
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1357872

RESUMEN

Sweet potato, Ipomoea batatas (L.) Lam (Convolvulaceae), is an essential crop for food security in developing countries. Euscepes postfasciatus (Fairmaire) (Coleoptera: Curculionidae) is one of the main pests of I. batatas in tropical and subtropical regions. It feeds on the tuberous roots of I. batatas and induces perforations tunnel-shaped with excrement. The objective of this study was to register, for the first time, the occurrence of E. postfasciatus in I. batatas in the municipality of Diamantina, Minas Gerais, Brazil. Individuals of E. postfasciatus were found in the larval, pupal and adult stages feeding on the roots, in the genotypes, Brasilândia Branca, Rubisol, UFVJM01, UFVJM02, UFVJM03, UFVJM04, UFVJM08, UFVJM18, UFVJM91, UFVJM291 and UFVJM526 in a greenhouse at the Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM). Euscepes postfasciatus injuries formed superficial and deep galleries with the presence of excrement and unpleasant odor. The record of E. postfasciatus in I. batatas in the municipality of Diamantina is important to develop local strategies for integrated pest management of the crop in the region.(AU)


Asunto(s)
Ipomoea , Gorgojos , Clima Tropical , Escarabajos , Plagas Agrícolas , Abastecimiento de Alimentos
19.
Nat Genet ; 52(11): 1256-1264, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33128049

RESUMEN

Despite advances in sequencing technologies, assembly of complex plant genomes remains elusive due to polyploidy and high repeat content. Here we report PolyGembler for grouping and ordering contigs into pseudomolecules by genetic linkage analysis. Our approach also provides an accurate method with which to detect and fix assembly errors. Using simulated data, we demonstrate that our approach is of high accuracy and outperforms three existing state-of-the-art genetic mapping tools. Particularly, our approach is more robust to the presence of missing genotype data and genotyping errors. We used our method to construct pseudomolecules for allotetraploid lawn grass utilizing PacBio long reads in combination with restriction site-associated DNA sequencing, and for diploid Ipomoea trifida and autotetraploid potato utilizing contigs assembled from Illumina reads in combination with genotype data generated by single-nucleotide polymorphism arrays and genotyping by sequencing, respectively. We resolved 13 assembly errors for a published I. trifida genome assembly and anchored eight unplaced scaffolds in the published potato genome.


Asunto(s)
Algoritmos , Cromosomas de las Plantas , Ligamiento Genético , Genoma de Planta , Poliploidía , Simulación por Computador , Genotipo , Ipomoea/genética , Fitomejoramiento , Poaceae/genética , Análisis por Matrices de Proteínas , Solanum tuberosum/genética
20.
Mol Phylogenet Evol ; 146: 106768, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32081764

RESUMEN

Molecular phylogenies are used as a basis for making inferences about macroevolutionary history. However, a robust phylogeny does not contain the information that is necessary to make many of these inferences. Complex methodologies that incorporate important assumptions about the nature of evolutionary history are therefore required. Here, we explore the implications of these assumptions for making inferences about the macroevolutionary history of Ipomoea - a large pantropical genus of flowering plants that contains the sweet potato (Ipomoea batatas), a crop of global economic importance. We focus on assumptions that underlie inferences of divergence times, and diversification parameters (speciation rates, extinction rates, and net diversification rates). These are among the most fundamental variables in macroevolutionary research. We use a series of novel approaches to explore the implications of these assumptions for inferring the age of Ipomoea, the ages of major clades within Ipomoea, whether there are significant differences in diversification parameters among clades within Ipomoea, and whether the storage root of I. batatas evolved in pre-human times. We show that inferring an age estimate for Ipomoea and major clades within Ipomoea is highly problematic. Inferred divergence times are sensitive to uncertain fossil calibrations and differing assumptions about among-branch-substitution-rate-variation. Despite this uncertainty, we are able to make robust inferences about patterns of variation in diversification parameters within Ipomoea, and that the storage root of I. batatas evolved in pre-human times. Taken together, this study presents novel and generalizable insights into the implications of methodological assumptions for making inferences about macroevolutionary history. Further, by presenting novel findings relating to the temporal dynamics of evolution in Ipomoea, as well as more specifically to I. batatas, this study makes a valuable contribution to our understanding of tropical plant evolution, and the evolutionary context in which economically important crops evolve.


Asunto(s)
Evolución Biológica , Ipomoea/clasificación , Productos Agrícolas , Fósiles , Especiación Genética , Ipomoea/genética , Ipomoea batatas , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA