Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.618
Filtrar
1.
Sci Total Environ ; 924: 171722, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38490423

RESUMEN

In environmental risk assessment of substances, the 14-day growth inhibition test following OECD test guideline 239 is employed to assess toxicity in the macrophyte Myriophyllum spicatum. Currently, this test evaluates physiological parameters and does not allow the identification of the mode of action (MoA) by which adverse effects are induced. However, for an improved ecotoxicity assessment of substances, knowledge about their ecotoxic MoA in non-target organisms is required. It has previously been suggested that the identification of gene expression changes can contribute to MoA identification. Therefore, we developed a shortened three-day assay for M. spicatum including the transcriptomic assessment of global gene expression changes and applied this assay to two model substances, the herbicide and photosynthesis inhibitor bentazone and the pharmaceutical and HMG-CoA reductase inhibitor atorvastatin. Due to the lack of a reference genome for M. spicatum we performed a de novo transcriptome assembly followed by a functional annotation to use the toxicogenomic results for MoA discrimination. The gene expression changes induced by low effect concentrations of these substances were used to identify differentially expressed genes (DEGs) and impaired biological functions for the respective MoA. We observed both concentration-dependent numbers and differentiated patterns of DEGs for both substances. While bentazone impaired genes involved in the response to reactive oxygen species as well as light response, and also genes involved in developmental processes, atorvastatin exposure led to a differential regulation of genes related to brassinosteroid response as well as potential metabolic shifts between the mevalonate and methyl erythritol 4-phosphate pathway. Based on these responses, we identified biomarker candidates for the assessment of MoA in M. spicatum. Utilizing the shortened assay developed in this study, the investigation of the identified biomarker candidates may contribute to the development of future MoA-specific screening approaches in the ecotoxicological hazard prediction using aquatic non-standard model organisms.


Asunto(s)
Benzotiadiazinas , Magnoliopsida , Saxifragales , Contaminantes Químicos del Agua , Atorvastatina/farmacología , Toxicogenética , Magnoliopsida/fisiología , Biomarcadores , Contaminantes Químicos del Agua/toxicidad
2.
Plant Biol (Stuttg) ; 26(3): 349-368, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38407440

RESUMEN

Floral colours represent a highly diverse communication signal mainly involved in flower visitors' attraction and guidance, but also flower discrimination, filtering non-pollinators and discouraging floral antagonists. The divergent visual systems and colour preferences of flower visitors, as well as the necessity of cues for flower detection and discrimination, foster the diversity of floral colours and colour patterns. Despite the bewildering diversity of floral colour patterns, a recurrent component is a yellow UV-absorbing floral centre, and it is still not clear why this pattern is so frequent in angiosperms. The pollen, anther, stamen, and androecium mimicry (PASAM) hypothesis suggests that the system composed of the flowers possessing such yellow UV-absorbing floral reproductive structures, the flowers displaying central yellow UV-absorbing structures as floral guides, and the pollen-collecting, as well as pollen-eating, flower visitors responding to such signals constitute the world's most speciose mimicry system. In this review, we call the attention of researchers to some hypothetical PASAM systems around the globe, presenting some fascinating examples that illustrate their huge diversity. We will also present new and published data on pollen-eating and pollen-collecting pollinators' responses to PASAM structures supporting the PASAM hypothesis and will discuss how widespread these systems are around the globe. Ultimately, our goal is to promote the idea that PASAM is a plausible first approach to understanding floral colour patterns in angiosperms.


Asunto(s)
Magnoliopsida , Polinización , Polinización/fisiología , Reproducción , Flores/fisiología , Polen/fisiología , Magnoliopsida/fisiología
3.
Plant Cell Environ ; 47(2): 497-510, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37905689

RESUMEN

The phytohormone abscisic acid (ABA) is synthesised by plants during drought to close stomata and regulate desiccation tolerance pathways. Conifers and some angiosperms with embolism-resistant xylem show a peaking-type (p-type) response in ABA levels, in which ABA levels increase early in drought then decrease as drought progresses, declining to pre-stressed levels. The mechanism behind this dynamic remains unknown. Here, we sought to characterise the mechanism driving p-type ABA dynamics in the conifer Callitris rhomboidea and the highly drought-resistant angiosperm Umbellularia californica. We measured leaf water potentials (Ψl ), stomatal conductance, ABA, conjugates and phaseic acid (PA) levels in potted plants during a prolonged but non-fatal drought. Both species displayed a p-type ABA dynamic during prolonged drought. In branches collected before and after the peak in endogenous ABA levels in planta, that were rehydrated overnight and then bench dried, ABA biosynthesis was deactivated beyond leaf turgor loss point. Considerable conversion of ABA to conjugates was found to occur during drought, but not catabolism to PA. The mechanism driving the decline in ABA levels in p-type species may be conserved across embolism-resistant seed plants and is mediated by sustained conjugation of ABA and the deactivation of ABA accumulation as Ψl becomes more negative than turgor loss.


Asunto(s)
Embolia , Magnoliopsida , Tracheophyta , Estomas de Plantas/fisiología , Sequías , Hojas de la Planta/metabolismo , Ácido Abscísico/metabolismo , Agua/metabolismo , Magnoliopsida/fisiología
4.
Plant Physiol ; 194(2): 732-740, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-37850913

RESUMEN

Vapor pressure difference between the leaf and atmosphere (VPD) is the most important regulator of daytime transpiration, yet the mechanism driving stomatal responses to an increase in VPD in angiosperms remains unresolved. Here, we sought to characterize the mechanism driving stomatal closure at high VPD in an angiosperm species, particularly testing whether abscisic acid (ABA) biosynthesis could explain the observation of a trigger point for stomatal sensitivity to an increase in VPD. We tracked leaf gas exchange and modeled leaf water potential (Ψl) in leaves exposed to a range of step-increases in VPD in the herbaceous species Senecio minimus Poir. (Asteraceae). We found that mild increases in VPD in this species did not induce stomatal closure because modeled Ψl did not decline below a threshold close to turgor loss point (Ψtlp), but when leaves were exposed to a large increase in VPD, stomata closed as modeled Ψl declined below Ψtlp. Leaf ABA levels were higher in leaves exposed to a step-increase in VPD that caused Ψl to transiently decline below Ψtlp and in which stomata closed compared with leaves in which stomata did not close. We conclude that the stomata of S. minimus are insensitive to VPD until Ψl declines to a threshold that triggers the biosynthesis of ABA and that this mechanism might be common to angiosperms.


Asunto(s)
Magnoliopsida , Estomas de Plantas , Estomas de Plantas/fisiología , Presión de Vapor , Magnoliopsida/fisiología , Ácido Abscísico/farmacología , Hojas de la Planta/fisiología , Agua , Transpiración de Plantas/fisiología
5.
Dev Cell ; 58(5): 335-337, 2023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-36917929

RESUMEN

In a recent issue of Nature, Huang et al. identify and show how to overcome the barriers to successful pollen germination after interspecific crosses.1 Their findings answer a long-standing question about reproductive barriers in flowering plants and open the door to harnessing genetic diversity of distant relatives for crop improvement.


Asunto(s)
Cruzamientos Genéticos , Flores , Germinación , Magnoliopsida , Polen , Polinización , Flores/genética , Magnoliopsida/genética , Magnoliopsida/fisiología , Polen/genética , Polinización/genética , Polinización/fisiología , Reproducción , Germinación/fisiología , Hibridación Genética
6.
Ann Bot ; 131(7): 1097-1106, 2023 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-36661261

RESUMEN

BACKGROUND AND AIMS: The abundance or decline of fern populations in response to environmental change has been found to be largely dependent on specific physiological properties that distinguish ferns from angiosperms. Many studies have focused on water use efficiency and stomatal behaviours, but the effects of nutrition acquirement and utilization strategies on niche competition between ferns and flowering plants are rarely reported. METHODS: We collected 34 ferns and 42 angiosperms from the Botanic Garden of Hokkaido University for nitrogen (N), sulphur (S), NO3- and SO42- analysis. We then used a hydroponic system to compare the different N and S utilization strategies between ferns and angiosperms under N deficiency conditions. KEY RESULTS: Ferns had a significantly higher NO3--N concentration and NO3--N/N ratio than angiosperms, although the total N concentration in ferns was remarkably lower than that in the angiosperms. Meanwhile, a positive correlation between N and S was found, indicating that nutrient concentration is involved in assimilation. Pteris cretica, a fern species subjected to further study, maintained a slow growth rate and lower N requirement in response to low N stress, while both the biomass and N concentration in wheat (Triticum aestivum) responded quickly to N deficiency conditions. CONCLUSIONS: The different nutritional strategies employed by ferns and angiosperms depended mainly on the effects of phylogenetic and evolutionary diversity. Ferns tend to adopt an opportunistic strategy of limiting growth rate to reduce N demand and store more pooled nitrate, whereas angiosperms probably utilize N nutrition to ensure as much development as possible under low N stress. Identifying the effects of mineral nutrition on the evolutionary results of ecological competition between plant species remains a challenge.


Asunto(s)
Helechos , Magnoliopsida , Magnoliopsida/fisiología , Filogenia , Helechos/fisiología , Evolución Biológica , Triticum
7.
Plant Physiol ; 191(3): 1634-1647, 2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-36691320

RESUMEN

Circadian regulation plays a vital role in optimizing plant responses to the environment. However, while circadian regulation has been extensively studied in angiosperms, very little is known for lycophytes and ferns, leaving a gap in our understanding of the evolution of circadian rhythms across the plant kingdom. Here, we investigated circadian regulation in gas exchange through stomatal conductance and photosynthetic efficiency in a phylogenetically broad panel of 21 species of lycophytes and ferns over a 46 h period under constant light and a selected few under more natural conditions with day-night cycles. No rhythm was detected under constant light for either lycophytes or ferns, except for two semi-aquatic species of the family Marsileaceae (Marsilea azorica and Regnellidium diphyllum), which showed rhythms in stomatal conductance. Furthermore, these results indicated the presence of a light-driven stomatal control for ferns and lycophytes, with a possible passive fine-tuning through leaf water status adjustments. These findings support previous evidence for the fundamentally different regulation of gas exchange in lycophytes and ferns compared to angiosperms, and they suggest the presence of alternative stomatal regulations in Marsileaceae, an aquatic family already well known for numerous other distinctive physiological traits. Overall, our study provides evidence for heterogeneous circadian regulation across plant lineages, highlighting the importance of broad taxonomic scope in comparative plant physiology studies.


Asunto(s)
Helechos , Magnoliopsida , Marsileaceae , Helechos/fisiología , Estomas de Plantas/fisiología , Hojas de la Planta/genética , Plantas , Magnoliopsida/fisiología , Ritmo Circadiano
8.
Ann Bot ; 130(6): 869-882, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36215097

RESUMEN

BACKGROUND AND AIMS: Aquatic carnivorous plants have typical rootless linear shoots bearing traps and exhibit steep physiological polarity with rapid apical growth. The aim was to analyse auxin and cytokinin metabolites in traps, leaves/shoots and shoot apices in several species of genera Aldrovanda and Utricularia to elucidate how the hormonal profiles reflect the specific organ functions and polarity. METHODS: The main auxin and cytokinin metabolites were analysed in miniature samples (>2 mg dry weight) of different organs of Aldrovanda vesiculosa and six Utricularia species using ultraperformance liquid chromatography coupled with triple quadrupole mass spectrometry. KEY RESULTS: Total contents of biologically active forms (free bases, ribosides) of all four main endogenously occurring cytokinin types were consistently higher in traps than in leaves in four Utricularia species with monomorphic shoots and/or higher than in shoots in two Utricularia species with dimorphic shoots. In Aldrovanda traps, the total content of different cytokinin forms was similar to or lower than that in shoots. In U. australis leaves, feeding on prey increased all cytokinin forms, while no consistent differences occurred in Aldrovanda. In four aquatic Utricularia species with monomorphic shoots, the content of four auxin forms was usually higher in traps than in leaves. Zero IAA content was determined in U. australis leaves from a meso-eutrophic site or when prey-fed. CONCLUSIONS: Different cytokinin and auxin profiles estimated in traps and leaves/shoots of aquatic carnivorous plants indicate an association with different dominant functions of these organs: nutrient uptake by traps versus photosynthetic function of traps. Interplay of cytokinins and auxins regulates apical dominance in these plants possessing strong polarity.


Asunto(s)
Droseraceae , Lamiales , Magnoliopsida , Citocininas/metabolismo , Planta Carnívora , Ácidos Indolacéticos/metabolismo , Magnoliopsida/fisiología , Droseraceae/fisiología
9.
Glob Chang Biol ; 28(22): 6640-6652, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36054311

RESUMEN

Predicting the consequences of climate change is of utmost importance to mitigate impacts on vulnerable ecosystems; plant hydraulic traits are particularly useful proxies for predicting functional disruptions potentially occurring in the near future. This study assessed the current and future regional patterns of leaf water potential at turgor loss point (Ψtlp ) by measuring and projecting the Ψtlp of 166 vascular plant species (159 angiosperms and 7 gymnosperms) across a large climatic range spanning from alpine to Mediterranean areas in NE Italy. For angiosperms, random forest models predicted a consistent shift toward more negative values in low-elevation areas, whereas for gymnosperms the pattern was more variable, particularly in the alpine sector (i.e., Alps and Prealps). Simulations were also developed to evaluate the number of threatened species under two Ψtlp plasticity scenarios (low vs. high plasticity), and it was found that in the worst-case scenario approximately 72% of the angiosperm species and 68% of gymnosperms within a location were at risk to exceed their physiological plasticity. The different responses to climate change by specific clades might produce reassembly in natural communities, undermining the resilience of natural ecosystems to climate change.


Asunto(s)
Cambio Climático , Magnoliopsida , Cycadopsida , Sequías , Ecosistema , Magnoliopsida/fisiología , Hojas de la Planta/fisiología , Agua/fisiología
10.
New Phytol ; 235(5): 2054-2065, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35611604

RESUMEN

The length of time a flower remains open and functional - floral longevity - governs important reproductive processes influencing pollination and mating and varies considerably among angiosperm species. However, little is known about large-scale biogeographic patterns and the correlates of floral longevity. Using published data on floral longevity from 818 angiosperm species in 134 families and 472 locations world-wide, we present the first global quantification of the latitudinal pattern of floral longevity and the relationships between floral longevity and a range of biotic and abiotic factors. Floral longevity exhibited a significant phylogenetic signal and was longer at higher latitudes in both northern and southern hemispheres, even after accounting for elevation. This latitudinal variation was associated with several biotic and abiotic variables. The mean temperature of the flowering season had the highest predictive power for floral longevity, followed by pollen number per flower. Surprisingly, compatibility status, flower size, pollination mode, and growth form had no significant effects on flower longevity. Our results suggest that physiological processes associated with floral maintenance play a key role in explaining latitudinal variation in floral longevity across global ecosystems, with potential implications for floral longevity under global climate change and species distributions.


Asunto(s)
Ecosistema , Magnoliopsida , Flores/fisiología , Magnoliopsida/fisiología , Filogenia , Polen/fisiología , Polinización/fisiología
11.
Plant Physiol ; 190(1): 44-59, 2022 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-35604105

RESUMEN

To survive in the nutrient-poor habitats, carnivorous plants capture small organisms comprising complex substances not suitable for immediate reuse. The traps of carnivorous plants, which are analogous to the digestive systems of animals, are equipped with mechanisms for the breakdown and absorption of nutrients. Such capabilities have been acquired convergently over the past tens of millions of years in multiple angiosperm lineages by modifying plant-specific organs including leaves. The epidermis of carnivorous trap leaves bears groups of specialized cells called glands, which acquire substances from their prey via digestion and absorption. The digestive glands of carnivorous plants secrete mucilage, pitcher fluids, acids, and proteins, including digestive enzymes. The same (or morphologically distinct) glands then absorb the released compounds via various membrane transport proteins or endocytosis. Thus, these glands function in a manner similar to animal cells that are physiologically important in the digestive system, such as the parietal cells of the stomach and intestinal epithelial cells. Yet, carnivorous plants are equipped with strategies that deal with or incorporate plant-specific features, such as cell walls, epidermal cuticles, and phytohormones. In this review, we provide a systematic perspective on the digestive and absorptive capacity of convergently evolved carnivorous plants, with an emphasis on the forms and functions of glands.


Asunto(s)
Planta Carnívora , Magnoliopsida , Animales , Transporte Biológico , Magnoliopsida/fisiología , Hojas de la Planta/fisiología , Polisacáridos
12.
Am J Bot ; 109(6): 856-873, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35435252

RESUMEN

PREMISE: Comparative anatomy is necessary to identify the extremes of combinations of functionally relevant structural traits, to ensure that physiological data cover xylem anatomical diversity adequately, and thus achieve a global understanding of xylem structure-function relations. A key trait relationship is that between xylem vessel diameter and wall thickness of both the single vessel and the double vessel+adjacent imperforate tracheary element (ITE). METHODS: We compiled a comparative data set with 1093 samples, 858 species, 350 genera, 86 families, and 33 orders. We used broken linear regression and an algorithm to explore changes in parameter values from linear regressions using subsets of the data set to identify a threshold, at 90-µm vessel diameter, in the wall thickness-diameter relationship. RESULTS: Below 90 µm diameter for vessels, virtually any wall thickness could be associated with virtually any diameter. Below this threshold, selection is free to favor a very wide array of combinations, such as very thick walls and narrow vessels in ITE-free herbs, or very thin-walled, wide vessels in evergreen dryland pioneers. Above 90 µm, there was a moderate positive relationship. CONCLUSIONS: Our analysis shows that the space of vessel wall thickness-diameter combinations is very wide, with selection apparently eliminating individuals with vessel walls "too thin" for their diameter. Most importantly, our survey revealed poorly studied plant hydraulic syndromes (functionally significant trait combinations). These data suggest that the full span of trait combinations, and thus the minimal set of hydraulic syndromes requiring study to span woody plant functional diversity adequately, remains to be documented.


Asunto(s)
Magnoliopsida , Ambiente , Magnoliopsida/fisiología , Síndrome , Agua , Madera/anatomía & histología , Xilema/fisiología
13.
Ann Bot ; 130(2): 215-230, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-35350072

RESUMEN

BACKGROUND AND AIMS: An individual plant consists of different-sized shoots, each of which consists of different-sized leaves. To predict plant-level physiological responses from the responses of individual leaves, modelling this within-shoot leaf size variation is necessary. Within-plant leaf trait variation has been well investigated in canopy photosynthesis models but less so in plant allometry. Therefore, integration of these two different approaches is needed. METHODS: We focused on an established leaf-level relationship that the area of an individual leaf lamina is proportional to the product of its length and width. The geometric interpretation of this equation is that different-sized leaf laminas from a single species share the same basic form. Based on this shared basic form, we synthesized a new length-times-width equation predicting total shoot leaf area from the collective dimensions of leaves that comprise a shoot. Furthermore, we showed that several previously established empirical relationships, including the allometric relationships between total shoot leaf area, maximum individual leaf length within the shoot and total leaf number of the shoot, can be unified under the same geometric argument. We tested the model predictions using five species, all of which have simple leaves, selected from diverse taxa (Magnoliids, monocots and eudicots) and from different growth forms (trees, erect herbs and rosette herbs). KEY RESULTS: For all five species, the length-times-width equation explained within-species variation of total leaf area of a shoot with high accuracy (R2 > 0.994). These strong relationships existed despite leaf dimensions scaling very differently between species. We also found good support for all derived predictions from the model (R2 > 0.85). CONCLUSIONS: Our model can be incorporated to improve previous models of allometry that do not consider within-shoot size variation of individual leaves, providing a cross-scale linkage between individual leaf-size variation and shoot-size variation.


Asunto(s)
Magnoliopsida , Hojas de la Planta , Magnoliopsida/fisiología , Fotosíntesis/fisiología , Hojas de la Planta/fisiología , Fenómenos Fisiológicos de las Plantas , Brotes de la Planta , Árboles/fisiología
14.
Ann Bot ; 130(3): 345-354, 2022 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-34871356

RESUMEN

BACKGROUND AND AIMS: We conducted a comprehensive analysis of the functional traits of leaves (leaflets) of cycads. The aim of this study was to clarify the functional divergence between the earlier origin Cycadaceae and the later differentiated Zamiaceae, and the differences in trait associations between cycads and angiosperms. METHODS: We selected 20 Cycadaceae species and 21 Zamiaceae species from the same cycad garden in South China, and measured their leaf structure, economic traits, mechanical resistance (Fp) and leaf water potential at the turgor loss point (πtlp). In addition, we compiled a dataset of geographical distribution along with climatic variables for these cycad species, and some leaf traits of tropical-sub-tropical angiosperm woody species from the literature for comparison. KEY RESULTS: The results showed significantly contrasting leaf trait syndromes between the two families, with Zamiaceae species exhibiting thicker leaves, higher carbon investments and greater Fp than Cycadaceae species. Leaf thickness (LT) and πtlp were correlated with mean climatic variables in their native distribution ranges, indicating their evolutionary adaptation to environmental conditions. Compared with the leaves of angiosperms, the cycad leaves were thicker and tougher, and more tolerant to desiccation. Greater Fp was associated with a higher structural investment in both angiosperms and cycads; however, cycads showed lower Fp at a given leaf mass per area or LT than angiosperms. Enhancement of Fp led to more negative πtlp in angiosperms, but the opposite trend was observed in cycads. CONCLUSIONS: Our results reveal that variations in leaf traits of cycads are mainly influenced by taxonomy and the environment of their native range. We also demonstrate similar leaf functional associations in terms of economics, but different relationships with regard to mechanics and drought tolerance between cycads and angiosperms. This study expands our understanding of the ecological strategies and likely responses of cycads to future climate change.


Asunto(s)
Magnoliopsida , Zamiaceae , Carbono , Cycadopsida , Sequías , Magnoliopsida/fisiología , Hojas de la Planta/fisiología , Agua/fisiología
15.
Plant Cell ; 34(1): 579-596, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-34735009

RESUMEN

The self-incompatibility (SI) system with the broadest taxonomic distribution in angiosperms is based on multiple S-locus F-box genes (SLFs) tightly linked to an S-RNase termed type-1. Multiple SLFs collaborate to detoxify nonself S-RNases while being unable to detoxify self S-RNases. However, it is unclear how such a system evolved, because in an ancestral system with a single SLF, many nonself S-RNases would not be detoxified, giving low cross-fertilization rates. In addition, how the system has been maintained in the face of whole-genome duplications (WGDs) or lost in other lineages remains unclear. Here we show that SLFs from a broad range of species can detoxify S-RNases from Petunia with a high detoxification probability, suggestive of an ancestral feature enabling cross-fertilization and subsequently modified as additional SLFs evolved. We further show, based on its genomic signatures, that type-1 was likely maintained in many lineages, despite WGD, through deletion of duplicate S-loci. In other lineages, SI was lost either through S-locus deletions or by retaining duplications. Two deletion lineages regained SI through type-2 (Brassicaceae) or type-4 (Primulaceae), and one duplication lineage through type-3 (Papaveraceae) mechanisms. Thus, our results reveal a highly dynamic process behind the origin, maintenance, loss, and regain of SI.


Asunto(s)
Evolución Biológica , Células Germinativas de las Plantas/fisiología , Magnoliopsida/fisiología , Autoincompatibilidad en las Plantas con Flores , Autoincompatibilidad en las Plantas con Flores/genética
16.
Plant Cell Environ ; 45(2): 296-311, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34800300

RESUMEN

Recent results suggest that metabolism-mediated stomatal closure mechanisms are important to regulate differentially the stomatal speediness between ferns and angiosperms. However, evidence directly linking mesophyll metabolism and the slower stomatal conductance (gs ) in ferns is missing. Here, we investigated the effect of exogenous application of abscisic acid (ABA), sucrose and mannitol on stomatal kinetics and carried out a metabolic fingerprinting analysis of ferns and angiosperms leaves harvested throughout a diel course. Fern stomata did not respond to ABA in the time period analysed. No differences in the relative decrease in gs was observed between ferns and the angiosperm following provision of sucrose or mannitol. However, ferns have slower gs responses to these compounds than angiosperms. Metabolomics analysis highlights that ferns have a higher accumulation of secondary rather than primary metabolites throughout the diel course, with the opposite being observed in angiosperms. Our results indicate that metabolism-mediated stomatal closure mechanisms underpin the differential stomatal speediness regulation among ferns and angiosperms, in which the slower stomatal closure in ferns is associated with the lack of ABA-responsiveness, to a reduced capacity to respond to mesophyll-derived sucrose and to a higher carbon allocation toward secondary metabolism, which likely modulates both photosynthesis-gs and growth-stress tolerance trade-offs.


Asunto(s)
Ácido Abscísico/farmacología , Helechos/fisiología , Magnoliopsida/fisiología , Manitol/farmacología , Reguladores del Crecimiento de las Plantas/farmacología , Estomas de Plantas/fisiología , Sacarosa/farmacología , Helechos/metabolismo , Cinética , Magnoliopsida/metabolismo
17.
Braz. j. biol ; 82: 1-12, 2022. graf
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1468508

RESUMEN

The aim of this research was to evaluate the effect of abscisic acid (ABA) on gas exchange and the activity of antioxidant enzymes of Ormosia arborea (Vell.) Harms seedlings under water deficit and its influence on the recovery potential of the seedlings. The experiment was conducted using four treatments, being daily irrigation or water restriction without and with 10 μM ABA. Seedlings under water deficit + ABA showed greater adjustment to drought, and when re-irrigated, they restored photosynthetic metabolism and water potential. ABA minimizes the reduction in the photosynthetic metabolism and water potential of the leaf, however, it does not increase the antioxidant activity of the O. arborea seedlings under water deficit. These results suggest that this species exhibits plasticity, which enables it to survive also in environments subjected to temporary water deficit regardless of the supplementation of ABA. We suggest that other doses of ABA be researched to expand the beneficial effect of ABA on this species.


O objetivo deste trabalho foi avaliar o efeito do ácido abscísico (ABA) nas trocas gasosas e na atividade de enzimas antioxidantes de mudas de Ormosia arborea (Vell.) Harms sob deficiência hídrica e sua influência no potencial de recuperação das mudas. O experimento foi conduzido com quatro tratamentos, sendo eles irrigação diária ou restrição hídrica sem e com 10 μM ABA. As mudas sob déficit hídrico + ABA apresentaram maior ajuste à seca e ao serem re-irrigadas restabeleceram o metabolismo fotossintético e o potencial hídrico. O ABA minimizou a redução do metabolismo fotossintético e do potencial da água na folha, porém, não aumentou a atividade antioxidante de mudas de O. arborea sob déficit hídrico. Esses resultados sugerem que esta espécie apresenta plasticidade fisiológica, o que lhe permite sobreviver em ambientes sujeitos a déficit hídrico temporário, independente da suplementação de ABA. Sugerimos que outras doses de ABA sejam avaliadas para ampliar os efeitos benéficos do ABA sobre esta espécie.


Asunto(s)
Antioxidantes/análisis , Deshidratación , Magnoliopsida/fisiología , Magnoliopsida/metabolismo , Reactivadores Enzimáticos/administración & dosificación , Activación Enzimática
18.
Nat Commun ; 12(1): 6995, 2021 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-34848714

RESUMEN

Plant genetic sex determinants that mediate the transition to dioecy are predicted to be diverse, as this type of mating system independently evolved multiple times in angiosperms. Wild Vitis species are dioecious with individuals producing morphologically distinct female or male flowers; whereas, modern domesticated Vitis vinifera cultivars form hermaphrodite flowers capable of self-pollination. Here, we identify the VviPLATZ1 transcription factor as a key candidate female flower morphology factor that localizes to the Vitis SEX-DETERMINING REGION. The expression pattern of this gene correlates with the formation reflex stamens, a prominent morphological phenotype of female flowers. After generating CRISPR/Cas9 gene-edited alleles in a hermaphrodite genotype, phenotype analysis shows that individual homozygous lines produce flowers with reflex stamens. Taken together, our results demonstrate that loss of VviPLATZ1 function is a major factor that controls female flower morphology in Vitis.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Flores/fisiología , Magnoliopsida/fisiología , Fenotipo , Proteínas de Plantas/metabolismo , Vitis/fisiología , Alelos , Diferenciación Celular , Proteínas de Unión al ADN/genética , Domesticación , Flores/citología , Flores/genética , Edición Génica , Regulación de la Expresión Génica de las Plantas , Genotipo , Homocigoto , Proteínas de Plantas/genética , Reproducción
20.
Plant J ; 108(6): 1609-1623, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34647389

RESUMEN

Mycoheterotrophic and parasitic plants are heterotrophic and parasitize on fungi and plants, respectively, to obtain nutrients. Large-scale comparative genomics analysis has not been conducted in mycoheterotrophic or parasitic plants or between these two groups of parasites. We assembled a chromosome-level genome of the fully mycoheterotrophic plant Gastrodia elata (Orchidaceae) and performed comparative genomic analyses on the genomes of G. elata and four orchids (initial mycoheterotrophs), three parasitic plants (Cuscuta australis, Striga asiatica, and Sapria himalayana), and 36 autotrophs from various angiosperm lineages. It was found that while in the hemiparasite S. asiatica and initial mycoheterotrophic orchids, approximately 4-5% of the conserved orthogroups were lost, the fully heterotrophic G. elata and C. australis both lost approximately 10% of the conserved orthogroups, indicating that increased heterotrophy is positively associated with gene loss. Importantly, many genes that are essential for autotrophs, including those involved in photosynthesis, the circadian clock, flowering time regulation, immunity, nutrient uptake, and root and leaf development, were convergently lost in both G. elata and C. australis. The high-quality genome of G. elata will facilitate future studies on the physiology, ecology, and evolution of mycoheterotrophic plants, and our findings highlight the critical role of gene loss in the evolution of plants with heterotrophic lifestyles.


Asunto(s)
Gastrodia/genética , Genes de Plantas , Genoma de Planta , Procesos Heterotróficos/genética , Cromosomas de las Plantas , Relojes Circadianos/genética , Evolución Molecular , Flores/genética , Flores/fisiología , Gastrodia/fisiología , Genómica , Intrones , Magnoliopsida/genética , Magnoliopsida/fisiología , Anotación de Secuencia Molecular , Familia de Multigenes , Fotosíntesis/genética , Inmunidad de la Planta/genética , Striga/genética , Striga/fisiología , Simbiosis/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA