Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 23(1): 121, 2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36859186

RESUMO

It is crucial to understand how targeted traits in a hybrid breeding program are influenced by gene activity and combining ability. During the three growing seasons of 2015, 2016, and 2017, a field study was conducted with twelve cotton genotypes, comprised of four testers and eight lines. Thirty-two F1 crosses were produced in the 2015 breeding season using the line x tester mating design. The twelve genotypes and their thirty-two F1 crosses were then evaluated in 2016 and 2017. The results demonstrated highly significant differences among cotton genotypes for all the studied traits, showing a wide range of genetic diversity in the parent genotypes. Additionally, the line-x-tester interaction was highly significant for all traits, suggesting the impact of both additive and non-additive variations in gene expression. Furthermore, the thirty-two cotton crosses showed high seed cotton output, lint cotton yield, and fiber quality, such as fiber length values exceeding 31 mm and a fiber strength above 10 g/tex. Accordingly, selecting lines and testers with high GCA effects and crosses with high SCA effects would be an effective approach to improve the desired traits in cotton and develop new varieties with excellent yield and fiber quality.


Assuntos
Gossypium , Melhoramento Vegetal , Egito , Fenótipo , Hábitos
2.
BMC Plant Biol ; 22(1): 462, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36167520

RESUMO

To generate high-yielding cultivars with favorable fiber quality traits, cotton breeders can use information about combining ability and gene activity within a population to locate elite parents and potential F1 crosses. To this end, in the current study, twelve cotton parents (eight genotypes as female parents and four testers) and their F1 crosses obtained utilizing the linex tester mating design were evaluated for their general and specialized combining abilities (GCA and SCA, respectively) of yield traits. The findings showed that for all the investigated variables, variances owing to genotypes, parents, crosses, and parent vs cross showed extremely significant (P ≤ 0.01) differences. Additionally, throughout the course of two growing seasons, the mean squares for genotypes (parents and crosses) showed strong significance for all the variables under study. The greatest and most desired means for all the examined qualities were in the parent G.94, Pima S6, and tester G.86. The best crossings for the qualities examined were G.86 (G.89 × G.86), G.93 × Suvin, and G.86 × Suvin. The parents' Suvin, G89x G86 and TNB were shown to have the most desired general combining ability effects for seed cotton yield/plant, lint yield/plant, boll weight, number of bolls/plants, and lint index, while Suvin, G.96 and pima S6 were preferred for favored lint percentage. For seed cotton yield, lint percentage, boll weight, and number of bolls per plant per year, the cross-G.86 x (G.89 × G.86) displayed highly significant specific combining ability impacts. The crosses G.86 × Suvin, Kar x TNB, G.93 × Suvin, and G.93 × TNB for all the studied traits for each year and their combined were found to have highly significant positive heterotic effects relative to better parent, and they could be used in future cotton breeding programs for improving the studied traits.


Assuntos
Gossypium , Iodeto de Potássio , Fibra de Algodão , Cruzamentos Genéticos , Egito , Gossypium/genética , Vigor Híbrido , Melhoramento Vegetal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...