Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(51): e2307950120, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38085777

RESUMO

The hydroxylation of C-H bonds can be carried out by the high-valent CoIII,IV2(µ-O)2 complex 2a supported by the tetradentate tris(2-pyridylmethyl)amine ligand via a CoIII2(µ-O)(µ-OH) intermediate (3a). Complex 3a can be independently generated either by H-atom transfer (HAT) in the reaction of 2a with phenols as the H-atom donor or protonation of its conjugate base, the CoIII2(µ-O)2 complex 1a. Resonance Raman spectra of these three complexes reveal oxygen-isotope-sensitive vibrations at 560 to 590 cm-1 associated with the symmetric Co-O-Co stretching mode of the Co2O2 diamond core. Together with a Co•••Co distance of 2.78(2) Å previously identified for 1a and 2a by Extended X-ray Absorption Fine Structure (EXAFS) analysis, these results provide solid evidence for their "diamond core" structural assignments. The independent generation of 3a allows us to investigate HAT reactions of 2a with phenols in detail, measure the redox potential and pKa of the system, and calculate the O-H bond strength (DO-H) of 3a to shed light on the C-H bond activation reactivity of 2a. Complex 3a is found to be able to transfer its hydroxyl ligand onto the trityl radical to form the hydroxylated product, representing a direct experimental observation of such a reaction by a dinuclear cobalt complex. Surprisingly, reactivity comparisons reveal 2a to be 106-fold more reactive in oxidizing hydrocarbon C-H bonds than corresponding FeIII,IV2(µ-O)2 and MnIII,IV2(µ-O)2 analogs, an unexpected outcome that raises the prospects for using CoIII,IV2(µ-O)2 species to oxidize alkane C-H bonds.

2.
Angew Chem Int Ed Engl ; 60(38): 20991-20998, 2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34292639

RESUMO

In this study, a methyl group on the classic tetramethylcyclam (TMC) ligand framework is replaced with a benzylic group to form the metastable [FeIV (Osyn )(Bn3MC)]2+ (2-syn; Bn3MC=1-benzyl-4,8,11-trimethyl-1,4,8,11-tetraazacyclotetradecane) species at -40 °C. The decay of 2-syn with time at 25 °C allows the unprecedented monitoring of the steps involved in the intramolecular hydroxylation of the ligand phenyl ring to form the major FeIII -OAr product 3. At the same time, the FeII (Bn3MC)2+ (1) precursor to 2-syn is re-generated in a 1:2 molar ratio relative to 3, accounting for the first time for all the electrons involved and all the Fe species derived from 2-syn as shown in the following balanced equation: 3 [FeIV (O)(LPh )]2+ (2-syn)→2 [FeIII (LOAr )]2+ (3)+[FeII (LPh )]2+ (1)+H2 O. This system thus serves as a paradigm for aryl hydroxylation by FeIV =O oxidants described thus far. It is also observed that 2-syn can be intercepted by certain hydrocarbon substrates, thereby providing a means to assess the relative energetics of aliphatic and aromatic C-H hydroxylation in this system.


Assuntos
Hidrocarbonetos Aromáticos/química , Compostos de Ferro/síntese química , Oxigênio/química , Hidroxilação , Compostos de Ferro/química , Estrutura Molecular
3.
J Biol Inorg Chem ; 24(4): 533-545, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31172289

RESUMO

Oxoiron(IV) motifs are found in important intermediates in many enzymatic cycles that involve oxidations. Over half of the reported synthetic nonheme oxoiron(IV) analogs incorporate heterocyclic donors, with a majority of them comprising pyridines. Herein, we report 1H-NMR studies of oxoiron(IV) complexes containing pyridines that are arranged in different configurations relative to the Fe = O unit and give rise to paramagnetically shifted resonances that differ by as much as 50 ppm. The strong dependence of 1H-NMR shifts on the different configurations and orientation of pyridines relative to the oxoiron(IV) unit demonstrates how unpaired electronic spin density of the iron center affects the chemical shifts of these protons.


Assuntos
Hidrogênio/química , Ferro/química , Oxigênio/química , Piridinas/química , Teoria da Densidade Funcional , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Conformação Molecular
4.
Dalton Trans ; 48(26): 9603-9616, 2019 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-30778494

RESUMO

Alkylation of d- or l-phenylalanine or valine alkyl esters was carried out using methyl or phenyl Grignard reagents. Subsequent condensation with salicylaldehyde, 3,5-di-tert-butylsalicylaldehyde, or 5-fluorosalicylaldehyde formed tridentate, X2L type, Schiff base ligands. Chiral shift NMR confirmed retention of stereochemistry during synthesis. X-ray crystal structures of four of the ligands show either inter- or intramolecular hydrogen bonding interactions. The ligands coordinate to the titanium reagents Ti(NMe2)4 or TiCl(NMe2)3 by protonolysis and displacement of two equivalents of HNMe2. The crystal structure of one example of Ti(X2L)Cl(NMe2) was determined and the complex has a distorted square pyramidal geometry with an axial NMe2 ligand. The bis-dimethylamide complexes are active catalysts for the ring closing hydroamination of di- and trisubstituted aminoallenes. The reaction of hepta-4,5-dienylamine at 135 °C with 5 mol% catalyst gives a mixture of 6-ethyl-2,3,4,5-tetrahydropyridine (40-72%) and both Z- and E-2-propenyl-pyrrolidine (25-52%). The ring closing reaction of 6-methyl-hepta-4,5-dienylamine at 135 °C with 5 mol% catalyst gives exclusively 2-(2-methyl-propenyl)-pyrrolidine. The pyrrolidine products are obtained with enantiomeric excesses up to 17%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...