RESUMO
Restoring extensively damaged endodontically treated teeth presents a challenging task due to the state of biomechanical deterioration affecting long-term prognosis. Therefore, the study aims to assess and compare the biomechanical performance of endocrowns and post core-crown restorations in anterior endodontically treated teeth with severe coronal structure loss. Following PRISMA guidelines, a systematic search was conducted using PubMed, Scopus, Web of Science, and Google Scholar for articles published from January 2014 to March 2024. Two independent reviewers screened and selected studies based on the predefined inclusion and exclusion criteria. The included studies were analyzed using the QUIN tool for risk of bias assessment in in-vitro studies. Additionally, the biomechanical outcomes were collected for qualitative comparative analysis. Twelve studies were included in this systematic review. In most studies, Endocrowns demonstrated comparable fatigue resistance under load to failure to post core-crown restorations. Endocrowns without ferrule exhibited a higher rate of debonding but had significantly more repairable failures. Conversely, post core-crown restorations demonstrated higher fracture resistance with the presence of ferrule, but were associated with more catastrophic failure patterns. Additionally, endocrowns generated lower stress levels in both the restorative material and the luting material compared to post core-crown restorations. Among the tested materials, lithium disilicate ceramics provided the best biomechanical properties. Overall, the studies included provided sufficient information for most evaluation criteria of the QUIN risk of bias assessment tool. Endocrowns are a viable and conservative approach for restoring endodontically treated anterior teeth, offering comparable biomechanical performance to traditional post core-crown restorations and less catastrophic failures. The findings of this systematic review suggest that endocrown restorations, especially with lithium disilicate ceramics and proper ferrule design, can improve fracture resistance and longevity of rehabilitated teeth, enhancing patient outcomes for severely damaged anterior endodontically treated teeth.
RESUMO
The literature presents insufficient data evaluating the displacement and micromotion effects resulting from the combined use of tooth-implant connections in fixed partial dentures. Analyzing the biomechanical behavior of tooth-implant fixed partial denture (FPD) prothesis is vital for achieving an optimum design and successful clinical implementation. The objective of this study was to determine the relative significance of connector design on the displacement and micromotion of tooth-implant-supported fixed dental prostheses under occlusal vertical loading. A unilateral Kennedy class I mandibular model was created using a 3D reconstruction from CT scan data. Eight simulated designs of tooth-implant fixed partial dentures (FPDs) were split into two groups: Group A with rigid connectors and Group B with non-rigid connectors. The models were subjected to a uniform vertical load of 100 N. Displacement, strain, and stress were computed using finite element analysis. The materials were defined as isotropic, homogeneous, and exhibiting linear elastic properties. This study focused on assessing the maximum displacement in various components, including the bridge, mandible, dentin, cementum, periodontal ligament (PDL), and implant. Displacement values were predominantly higher in Group B (non-rigid) compared to Group A (rigid) in all measured components of the tooth-implant FPDs. Accordingly, a statistically significant difference was observed between the two groups at the FPD bridge (p value = 0.021 *), mandible (p value = 0.021 *), dentin (p value = 0.043 *), cementum (p value = 0.043 *), and PDL (p value = 0.043 *). Meanwhile, there was an insignificant increase in displacement values recorded in the distal implant (p value = 0.083). This study highlighted the importance of connector design in the overall stability and performance of the prosthesis. Notably, the 4.7 mm × 10 mm implant in Group B showed a displacement nearly 92 times higher than its rigid counterpart in Group A. Overall, the 5.7 mm × 10 mm combination of implant length and diameter showcased the best performance in both groups. The findings demonstrate that wider implants with a proportional length offer greater resistance to displacement forces. In addition, the use of rigid connection design provides superior biomechanical performance in tooth-implant fixed partial dentures and reduces the risk of micromotion with its associated complications such as ligament overstretching and implant overload, achieving predictable prognosis and enhancing the stability of the protheses.
RESUMO
The aim of this study is to evaluate the effectiveness of the implant diameter and length on force dissemination of tooth-implant and implant retained fixed restorations. A finite analysis model was used via a 3D simulation of a unilateral mandibular Kennedy Class I arch. Through thresholding the resultant assembly, a region of interest was selected from the computed tomography (CT) scan. Details of the diameter (D) and length (L) of implant were introduced. Ds used were 3.7, 4.7, and 5.7, while Ls used were 10, 11.5, and 13. The constant was the use of rigid connectors in both designs (implant-implant and implant-tooth fixed partial dentures [FPDs]) and the mesial implant (D 3.7 and L 11.5). Stress in cancellous bone around mesial abutment, which is the second premolar in tooth-implant FPD and mesial implant in the implant-implant FPD, revealed that the stress was significantly lower in tooth-implant FPD when compared with implant-implant FPD (21.1 ± 0.00 vs 46.1 ± 0.00, P < .001). Stress distribution in the bone around any implant depends on several factors such as diameter, length, and tooth-implant vs implant-implant support. The implant diameter was more significant for improved stress distribution than implant length. A moderate increase in the length of the implant consequently reduced stress.