Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 67(11): 9613-9627, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38776401

RESUMO

The development of antibacterial drugs with new mechanisms of action is crucial in combating the rise of antibiotic-resistant infections. Bacterial carbonic anhydrases (CAs, EC 4.2.1.1) have been validated as promising antibacterial targets against pathogens such as Helicobacter pylori, Neisseria gonorrhoeae, and vancomycin-resistant enterococci. A multitarget strategy is proposed to design penicillin-based CA inhibitor hybrids for tackling resistance by targeting multiple bacterial pathways, thereby resensitizing drug-resistant strains to clinical antibiotics. The sulfonamide derivatives potently inhibited the CAs from N. gonorrhoeae and Escherichia coli with KI values in the range of 7.1-617.2 nM. Computational simulations with the main penicillin-binding protein (PBP) of N. gonorrhoeae indicated that these hybrid derivatives maintained the mechanism of action of the lead ß-lactams. A subset of derivatives showed potent PBP-related antigonococcal effects against multidrug-resistant N. gonorrhoeae strains, with several compounds significantly outperforming both the lead ß-lactam and CA inhibitor drugs (MIC values in the range 0.25 to 0.5 µg/mL).


Assuntos
Antibacterianos , Inibidores da Anidrase Carbônica , Anidrases Carbônicas , Testes de Sensibilidade Microbiana , Neisseria gonorrhoeae , Neisseria gonorrhoeae/efeitos dos fármacos , Neisseria gonorrhoeae/enzimologia , Inibidores da Anidrase Carbônica/farmacologia , Inibidores da Anidrase Carbônica/química , Inibidores da Anidrase Carbônica/síntese química , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Anidrases Carbônicas/metabolismo , Penicilinas/farmacologia , Penicilinas/química , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Relação Estrutura-Atividade , Humanos , Sulfonamidas/farmacologia , Sulfonamidas/química , Sulfonamidas/síntese química , Estrutura Molecular , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia
2.
RSC Adv ; 14(2): 1513-1526, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38174234

RESUMO

The structure-activity relationship of a new tert-butylphenylthiazole series, with a pyrimidine linker, was investigated. We wished to expand knowledge of this novel class of antibiotics by generating 21 new derivatives bearing ≥2 heteroatoms in their side chains. Their activity was examined against isolates of methicillin-resistant Staphylococcus aureus (MRSA), Clostridium difficile, Escherichia coli, Neisseria gonorrhoeae, and Candida albicans. Two compounds with 1,2-diaminocyclohexane as a nitrogenous side chain showed promising activity against the highly infectious MRSA USA300 strain, with a minimum inhibitory concentration (MIC) of 4 µg mL-1. One of these two compounds demonstrated potent activity against C. difficile, with a MIC of 4 µg mL-1. Moderate activities against a C. difficile strain with a MIC of 8 µg mL-1 were noted. Some new compounds possessed antifungal activity against a wild fluconazole-resistant C. albicans strain, with MIC values of 4-16 µg mL-1. ADME and metabolism-simulation studies were performed for the most promising compound and compared with lead compounds. Our results revealed that one compound possessed greater penetration of bacterial membranes and metabolic resistance, which aided a longer duration of action against MRSA.

3.
J Enzyme Inhib Med Chem ; 38(1): 2284119, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37994421

RESUMO

Carbonic anhydrases (CAs) from the pathogenic bacteria Nesseria gonorrhoeae and vancomycin-resistant enterococci (VRE) have recently been validated as antibacterial drug targets. Here we explored the inhibition of the α-CA from N. gonorrhoeae (α-NgCA), of α- and γ-class enzymes from Enterococcus faecium (α-EfCA and γ-EfCA) with a panel of aliphatic, heterocyclic and aryl-alkyl primary/secondary monothiocarbamates (MTCs). α-NgCA was inhibited in vitro with KIs ranging from 0.367 to 0.919 µM. The compounds inhibited the α-EfCA and γ-EfCA with KI ranges of 0.195-0.959 µM and of 0.149-1.90 µM, respectively. Some MTCs were also investigated for their inhibitory effects on the growth of clinically-relevant N. gonorrhoeae and VRE strains. No inhibitory effects on the growth of VRE were noted for all MTCs, whereas one compound (13) inhibited the growth N. gonorrhoeae strains at concentrations ranging from 16 to 64 µg/mL. This suggests that compound 13 may be a potential antibacterial agent against N. gonorrhoeae.


Assuntos
Anidrases Carbônicas , Enterococos Resistentes à Vancomicina , Bactérias , Antibacterianos/farmacologia , Inibidores da Anidrase Carbônica/farmacologia
4.
RSC Med Chem ; 14(10): 2089-2099, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37859711

RESUMO

Cryptococcal infections remain a major cause of mortality worldwide due to the ability of Cryptococci to pass through the blood-brain barrier (BBB) causing lethal meningitis. The limited number of available therapeutics, which exhibit limited availability, severe toxicity and low tolerability, necessitates the development of new therapeutics. Investigating the antifungal activity of a novel series of naphthylthiazoles provided trans-diaminocyclohexyl derivative 18 with many advantageous attributes as a potential therapeutic for cryptococcal meningitis. Briefly, the antimycotic activity of 18 against cryptococcal strains was highly comparable to that of amphotericin-B and fluconazole with MIC values as low as 1 µg mL-1. Moreover, compound 18 possessed additional advantages over fluconazole; it significantly reduced the intracellular burden of Cryptococci and markedly inhibited cryptococcal biofilm formation. Initial PK assessment of 18 indicated its ability to reach the CNS after oral administration with high permeability, and it maintained therapeutic plasma concentrations for 18 h. Its antifungal activity extended to other clinically relevant strains, such as fluconazole-resistant C. auris.

5.
Pathog Dis ; 812023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-37852672

RESUMO

The rapid occurrence of gonococcal resistance to all classes of antibiotics could lead to untreatable gonorrhea. Thus, development of novel anti-Neisseria gonorrhoeae drugs is urgently needed. Neisseria gonorrhoeae FA1090 is the most used in gonococcal infection mouse models because of its natural resistance to streptomycin. Streptomycin inhibits the urogenital commensal flora that permits gonococcal colonization. However, this strain is drug-susceptible and cannot be used to investigate the efficacy of novel agents against multidrug-resistant N. gonorrhoeae. Hence, to test the in vivo efficacy of new therapeutics against N. gonorrhoeae resistant to the frontline antibiotics, azithromycin, or ceftriaxone, we constructed streptomycin-resistant mutants of N. gonorrhoeae CDC-181 (azithromycin-resistant) and WHO-X (ceftriaxone-resistant). We identified the inoculum size needed to successfully colonize mice. Both mutants, CDC-181-rpsLA128G and WHO-X-rpsLA128G, colonized the genital tract of mice for 14 days with 100% colonization observed for at least 7 days. CDC-181-rpsLA128G demonstrated better colonization of the murine genital tract compared to WHO-X-rpsLA128G. Lower inoculum of WHO-X-rpsLA128G (105 and 106 CFU) colonized mice better than higher inoculum. Overall, our results indicate that CDC-181-rpsLA128G and WHO-X-rpsLA128G can colonize the lower genital tract of mice and are suitable to be used in mouse models to investigate the efficacy of antigonococcal agents.


Assuntos
Gonorreia , Neisseria gonorrhoeae , Animais , Camundongos , Feminino , Ceftriaxona , Azitromicina/farmacologia , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Gonorreia/tratamento farmacológico , Gonorreia/epidemiologia , Estreptomicina , Modelos Animais de Doenças
6.
Sci Rep ; 13(1): 14468, 2023 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-37660222

RESUMO

Drug-resistant Neisseria gonorrhoeae represents a major threat to public health; without new effective antibiotics, untreatable gonococcal infections loom as a real possibility. In a previous drug-repurposing study, we reported that salicylic acid had good potency against azithromycin-resistant N. gonorrhoeae. We now report that the anti-gonococcal activity in this scaffold is easily lost by inopportune substitution, but that select substituted naphthyl analogs (3b, 3o and 3p) have superior activity to salicylic acid itself. Furthermore, these compounds retained potency against multiple ceftriaxone- and azithromycin-resistant strains, exhibited rapid bactericidal activity against N. gonorrhoeae, and showed high tolerability to mammalian cells (CC50 > 128 µg/mL). Promisingly, these compounds also show very weak growth inhibition of commensal vaginal bacteria.


Assuntos
Gonorreia , Neisseria gonorrhoeae , Animais , Feminino , Ácido Salicílico/farmacologia , Azitromicina , Gonorreia/tratamento farmacológico , Bactérias , Mamíferos
7.
Eur J Med Chem ; 261: 115789, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37717380

RESUMO

The cytoplasmic steps of peptidoglycan synthesis represent an important targeted pathway for development of new antibiotics. Herein, we report the synthesis of novel 3-oxopyrazolidin-4-carboxamide derivatives with variable amide side chains as potential antibacterial agents targeting MurA enzyme, the first committed enzyme in these cytosolic steps. Compounds 15 (isoindoline-1,3-dione-5-yl), 16 (4-(1H-pyrazol-4-yl)phenyl), 20 (5-cyanothiazol-2-yl), 21 and 31 (5-nitrothiazol-2-yl derivatives) exhibited the most potent MurA inhibition, with IC50 values of 9.8-12.2 µM. Compounds 15, 16 and 21 showed equipotent inhibition of the C115D MurA mutant developed by fosfomycin-resistant Escherichia coli. NMR binding studies revealed that some of the MurA residues targeted by 15 also interacted with fosfomycin, but not all, indicating an overlapping but not identical binding site. The antibacterial activity of the compounds against E. coli ΔtolC suggests that inhibition of MurA accounts for the observed effect on bacterial growth, considering that a few potent MurA inhibitors could not penetrate the bacterial outer membrane and were therefore inactive as proven by the bacterial cell uptake assay. The most promising compounds were also evaluated against a panel of Gram-positive bacteria. Remarkably, compounds 21 and 31 (MurA IC50 = 9.8 and 10.2 µM respectively) exhibited a potent activity against Clostridioides difficile strains with MIC values ranging from 0.125 to 1 µg/mL, and were also shown to be bactericidal with MBC values between 0.25 and 1 µg/mL. Furthermore, both compounds were shown to have a limited activity against human normal intestinal flora and showed high safety towards human colon cells (Caco-2) in vitro. The thiolactone derivative (compound 5) exhibited an interesting broad spectrum antibacterial activity despite its weak MurA inhibition. Altogether, the presented series provides a promising class of antibiotics that merits further investigation.


Assuntos
Alquil e Aril Transferases , Fosfomicina , Humanos , Fosfomicina/farmacologia , Escherichia coli , Células CACO-2 , Antibacterianos/farmacologia , Antibacterianos/química , Inibidores Enzimáticos/química , Testes de Sensibilidade Microbiana
8.
RSC Adv ; 13(29): 19695-19709, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37425632

RESUMO

Antimicrobial resistance has become a concern as a worldwide threat. A novel scaffold of phenylthiazoles was recently evaluated against multidrug-resistant Staphylococci to control the emergence and spread of antimicrobial resistance, showing good results. Several structural modifications are needed based on the structure-activity relationships (SARs) of this new antibiotic class. Previous studies revealed the existence of two key structural features essential for the antibacterial activity, the guanidine head and lipophilic tail. In this study, a new series of twenty-three phenylthiazole derivatives were synthesized utilizing the Suzuki coupling reaction to explore the lipophilic part. The in vitro antibacterial activity was evaluated against a range of clinical isolates. The three most promising compounds, 7d, 15d and 17d, with potent MIC values against MRSA USA300 were selected for further antimicrobial evaluation. The tested compounds exhibited potent results against the tested MSSA, MRSA, and VRSA strains (concentration: 0.5 to 4 µg mL-1). Compound 15d inhibited MRSA USA400 at a concentration of 0.5 µg mL-1 (one-fold more potent than vancomycin) and showed low MIC values against ten clinical isolates, including linezolid-resistant strain MRSA NRS119 and three vancomycin-resistant isolates VRSA 9/10/12. Moreover, compound 15d retained its potent antibacterial activity using the in vivo model by the burden reduction of MRSA USA300 in skin-infected mice. The tested compounds also showed good toxicity profiles and were found to be highly tolerable to Caco-2 cells at concentrations of up to 16 µg mL-1, with 100% of the cells remaining viable.

9.
Int J Antimicrob Agents ; 62(3): 106906, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37392947

RESUMO

INTRODUCTION AND OBJECTIVES: The emergence of Candida auris has created a global health challenge. Azole antifungals are the most affected antifungal class because of the extraordinary capability of C. auris to develop resistance against these drugs. Here, we used a combinatorial therapeutic approach to sensitize C. auris to azole antifungals. METHODS AND RESULTS: We have demonstrated the capability of the HIV protease inhibitors lopinavir and ritonavir, at clinically relevant concentrations, to be used with azole antifungals to treat C. auris infections both in vitro and in vivo. Both lopinavir and ritonavir exhibited potent synergistic interactions with the azole antifungals, particularly with itraconazole against 24/24 (100%) and 31/34 (91%) of tested C. auris isolates, respectively. Furthermore, ritonavir significantly interfered with the fungal efflux pump, resulting in a significant increase in Nile red fluorescence by 44%. In a mouse model of C. auris systemic infection, ritonavir boosted the activity of lopinavir to work synergistically with fluconazole and itraconazole and significantly reduced the kidney fungal burden by a 1.2 log (∼94%) and 1.6 log (∼97%) CFU, respectively. CONCLUSION: Our results urge further comprehensive assessment of azoles and HIV protease inhibitors as a novel drug regimen for the treatment of serious invasive C. auris infections.


Assuntos
Candidíase , Inibidores da Protease de HIV , Animais , Camundongos , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Ritonavir/uso terapêutico , Azóis/farmacologia , Azóis/uso terapêutico , Itraconazol/farmacologia , Itraconazol/uso terapêutico , Lopinavir/farmacologia , Lopinavir/uso terapêutico , Candida auris , Inibidores da Protease de HIV/farmacologia , Inibidores da Protease de HIV/uso terapêutico , Candidíase/tratamento farmacológico , Candidíase/microbiologia , Testes de Sensibilidade Microbiana , Farmacorresistência Fúngica
10.
ACS Med Chem Lett ; 14(4): 487-492, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37077393

RESUMO

Vancomycin-resistant enterococci (VRE), Enterococcus faecium and Enterococcus faecalis, are high-priority drug-resistant pathogens in need of new therapeutic approaches. VRE originate in the gastrointestinal tract of carriers and can lead to more problematic downstream infections in the healthcare setting. Having a carrier of VRE admitted into a healthcare setting increases the risk to other patients for acquiring an infection. One strategy to eliminate the downstream infections is decolonization of VRE from carriers. Here, we report the activity of a set of carbonic anhydrase inhibitors in the in vivo VRE gastrointestinal decolonization mouse model. The molecules encompass a range of antimicrobial potency and intestinal permeability, and these factors were shown to influence the in vivo efficacy for VRE gut decolonization. Overall, carbonic anhydrase inhibitors exhibited superior VRE decolonization efficacy compared to the current drug of choice, linezolid.

11.
RSC Med Chem ; 14(2): 367-377, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36846365

RESUMO

With the continuous and alarming threat of exhausting the current antimicrobial arsenals, efforts are urgently needed to develop new effective ones. In this study, the antibacterial efficacy of a set of structurally related acetylenic-diphenylurea derivatives carrying the aminoguanidine moiety was tested against a panel of multidrug-resistant Gram-positive clinical isolates. Compound 18 was identified with a superior bacteriological profile than the lead compound I. Compound 18 demonstrated an excellent antibacterial profile in vitro: low MIC values, extended post-antibiotic effect, refractory ability to resistance development upon extended repeated exposure, and high tolerability towards mammalian cells. Finally, when assessed in a MRSA skin infection animal model, compound 18 showed considerable healing and less inflammation, decrease in the bacterial loads in skin lesions, and it surpassed fusidic acid in controlling the systemic dissemination of S. aureus. Collectively, compound 18 represents a promising lead anti-MRSA agent that merits further investigation for the development of new anti-staphylococcal therapeutics.

12.
Eur J Med Chem ; 247: 115040, 2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36584632

RESUMO

Antibiotic-resistant bacteria represent a serious threat to modern medicine and human life. Only a minority of antibacterial agents are active against Gram-negative bacteria. Hence, the development of novel antimicrobial agents will always be a vital need. In an effort to discover new therapeutics against Gram-negative bacteria, we previously reported a structure-activity-relationship (SAR) study on 1,2-disubstituted benzimidazole derivatives. Compound III showed a potent activity against tolC-mutant Escherichia coli with an MIC value of 2 µg/mL, representing a promising lead for further optimization. Building upon this study, herein, 49 novel benzimidazole compounds were synthesized to investigate their antibacterial activity against Gram-negative bacteria. Our design focused on three main goals, to address the low permeability of our compounds and improve their cellular accumulation, to expand the SAR study to the unexplored ring C, and to optimize the lead compound (III) by modification of the methanesulfonamide moiety. Compounds (25a-d, 25f-h, 25k, 25l, 25p, 25r, 25s, and 26b) exhibited potent activity against tolC-mutant E. coli with MIC values ranging from 0.125 to 4 µg/mL, with compound 25d displaying the highest potency among the tested compounds with an MIC value of 0.125 µg/mL. As its predecessor, III, compound 25d exhibited an excellent safety profile without any significant cytotoxicity to mammalian cells. Time-kill kinetics assay indicated that 25d exhibited a bacteriostatic activity and significantly reduced E. coli JW55031 burden as compared to DMSO. Additionally, combination of 25d with colistin partially restored its antibacterial activity against Gram-negative bacterial strains (MIC values ranging from 4 to 16 µg/mL against E. coli BW25113, K. pneumoniae, A. baumannii, and P. aeruginosa). Furthermore, formulation of III and 25d as lipidic nanoparticles (nanocapsules) resulted in moderate enhancement of their antibacterial activity against Gram-negative bacterial strains (A. Baumannii, N. gonorrhoeae) and compound 25d demonstrated superior activity to the lead compound III. These findings establish compound 25d as a promising candidate for treatment of Gram-negative bacterial infections and emphasize the potential of nano-formulations in overcoming poor cellular accumulation in Gram-negative bacteria where further optimization and investigation are warranted to improve the potency and broaden the spectrum of our compounds.


Assuntos
Anti-Infecciosos , Escherichia coli , Animais , Humanos , Antibacterianos/farmacologia , Bactérias Gram-Negativas , Benzimidazóis/farmacologia , Pseudomonas aeruginosa , Testes de Sensibilidade Microbiana , Bactérias Gram-Positivas , Mamíferos
13.
Molecules ; 27(16)2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36014324

RESUMO

A new class of alkynyl isoquinoline antibacterial compounds, synthesized via Sonogashira coupling, with strong bactericidal activity against a plethora of Gram-positive bacteria including methicillin- and vancomycin-resistant Staphylococcus aureus (S. aureus) strains is presented. HSN584 and HSN739, representative compounds in this class, reduce methicillin-resistant S. aureus (MRSA) load in macrophages, whilst vancomycin, a drug of choice for MRSA infections, was unable to clear intracellular MRSA. Additionally, both HSN584 and HSN739 exhibited a low propensity to develop resistance. We utilized comparative global proteomics and macromolecule biosynthesis assays to gain insight into the alkynyl isoquinoline mechanism of action. Our preliminary data show that HSN584 perturb S. aureus cell wall and nucleic acid biosynthesis. The alkynyl isoquinoline moiety is a new scaffold for the development of potent antibacterial agents against fatal multidrug-resistant Gram-positive bacteria.


Assuntos
Anti-Infecciosos , Staphylococcus aureus Resistente à Meticilina , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Bactérias , Isoquinolinas/farmacologia , Testes de Sensibilidade Microbiana , Proteoma , Staphylococcus aureus
14.
J Enzyme Inhib Med Chem ; 37(1): 1838-1844, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35758212

RESUMO

Vancomycin-resistant enterococci (VRE), consisting of pathogenic Enterococcus faecalis and E. faecium, is a leading cause of hospital-acquired infections (HAIs). We recently repurposed the FDA-approved human carbonic anhydrase (CA) inhibitor acetazolamide (AZM) against VRE agent with the likely mechanism of action for the molecules being inhibition of one, or both, of the bacterial CA isoforms expressed in VRE. To elucidate how inhibitor binding to the enzymes relates to MIC, we further characterised the inhibition constants (Ki) against the E. faecium α-CA (Efα-CA) and γ-CA (Efγ-CA), as well as against human CA I (hCAI) and human CA II (hCAII) to assess selectivity. We have also utilised homology modelling and molecular dynamics (MD) simulations to gain a better understanding of the potential interactions the molecules are making with the targets. In this paper, we elaborate on the SAR for the AZM analogs as it pertains to MIC and Ki for each CA.


Assuntos
Anidrases Carbônicas , Infecções por Bactérias Gram-Positivas , Enterococos Resistentes à Vancomicina , Acetazolamida , Antibacterianos/farmacologia , Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/química , Enterococcus faecalis , Infecções por Bactérias Gram-Positivas/microbiologia , Humanos , Testes de Sensibilidade Microbiana , Relação Estrutura-Atividade , Vancomicina/farmacologia
15.
J Med Chem ; 65(9): 6612-6630, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35482444

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) infections are still difficult to treat, despite the availability of many FDA-approved antibiotics. Thus, new compound scaffolds are still needed to treat MRSA. The oxadiazole-containing compound, HSGN-94, has been shown to reduce lipoteichoic acid (LTA) in S. aureus, but the mechanism that accounts for LTA biosynthesis inhibition remains uncharacterized. Herein, we report the elucidation of the mechanism by which HSGN-94 inhibits LTA biosynthesis via utilization of global proteomics, activity-based protein profiling, and lipid analysis via multiple reaction monitoring (MRM). Our data suggest that HSGN-94 inhibits LTA biosynthesis via direct binding to PgcA and downregulation of PgsA. We further show that HSGN-94 reduces the MRSA load in skin infection (mouse) and decreases pro-inflammatory cytokines in MRSA-infected wounds. Collectively, HSGN-94 merits further consideration as a potential drug for staphylococcal infections.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Animais , Antibacterianos/química , Camundongos , Testes de Sensibilidade Microbiana , Oxidiazóis/metabolismo , Oxidiazóis/farmacologia , Oxidiazóis/uso terapêutico , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus
16.
PLoS One ; 17(4): e0266764, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35446884

RESUMO

Neisseria gonorrhoeae has been classified by the U.S. Centers for Disease Control and Prevention as an urgent threat due to the rapid development of antibiotic resistance to currently available antibiotics. Therefore, there is an urgent need to find new antibiotics to treat gonococcal infections. In our previous study, the gold-containing drug auranofin demonstrated potent in vitro activity against clinical isolates of N. gonorrhoeae, including multidrug-resistant strains. Therefore, the aim of this study was to investigate the in vivo activity of auranofin against N. gonorrhoeae using a murine model of vaginal infection. A significant reduction in N. gonorrhoeae recovered from the vagina was observed for infected mice treated with auranofin compared to the vehicle over the course of treatment. Relative to the vehicle, after three and five days of treatment with auranofin, a 1.04 (91%) and 1.40 (96%) average log10-reduction of recovered N. gonorrhoeae was observed. In conclusion, auranofin has the potential to be further investigated as a novel, safe anti-gonococcal agent to help meet the urgent need for new antimicrobial agents for N. gonorrhoeae infection.


Assuntos
Gonorreia , Infecções do Sistema Genital , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Auranofina/farmacologia , Auranofina/uso terapêutico , Modelos Animais de Doenças , Feminino , Ouro/uso terapêutico , Gonorreia/tratamento farmacológico , Gonorreia/microbiologia , Humanos , Masculino , Camundongos , Testes de Sensibilidade Microbiana , Neisseria gonorrhoeae , Infecções do Sistema Genital/tratamento farmacológico
17.
Eur J Med Chem ; 234: 114204, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35279608

RESUMO

A set of structurally related diphenylurea derivatives bearing aminoguanidine moiety were synthesized, and their antibacterial activity was assessed against a panel of multi-drug resistant Gram-positive clinical isolates. Two compounds 6 and 24 were identified with better bacteriological profile than the lead compound I. The multi-step resistance development studies indicated that MRSA are less likely to develop resistance toward diphenylurea compounds. Moreover, these compounds demonstrated a prolonged post-antibiotic effect than that of vancomycin. Furthermore, compounds 6 and 24 were able to re-sensitize VRSA to vancomycin, resulting in 8- to more than 32-fold improvement in vancomycin MIC values against clinical VRSA isolates. Finally, when assessed in an in vivo skin infection mouse model, the efficacy of compound 24 was very comparable to that of the commercially available fusidic acid ointment. Additionally, the diphenylurea 24 did not have a pronounced effect on the animal weights along the experiment indicating its safety and tolerability to mice. Taken together, these results indicate that the diphenylurea scaffold merits further investigation as a promising anti-staphylococcal treatment option.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Meticilina/farmacologia , Camundongos , Testes de Sensibilidade Microbiana , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus , Relação Estrutura-Atividade , Vancomicina/farmacologia , Staphylococcus aureus Resistente à Vancomicina
18.
Microb Pathog ; 164: 105454, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35189278

RESUMO

Gonococcal infections represent an urgent public health threat worldwide due to the increasing incidence of infections that has been accompanied by an increase in bacterial resistance to most antibiotics. This has resulted in a dwindling number of effective treatment options. Undoubtedly, there is a critical need to develop new, effective anti-gonococcal agents. In an effort to discover new anti-gonococcal therapeutics, we previously identified acetazolamide, a carbonic anhydrase inhibitor, as a novel inhibitor of Neisseria gonorrhoeae. Acetazolamide exhibited potent anti-gonococcal activity in vitro as it inhibited growth of strains of N. gonorrhoeae at concentrations that ranged from 0.5 to 4 µg/mL. The aim of this study was to investigate the in vivo efficacy of acetazolamide in a mouse model of N. gonorrhoeae genital tract infection. Compared to vehicle-treated mice, acetazolamide significantly reduced the gonococcal burden by 90% in the vagina of infected mice after three days of treatment. These results indicate that acetazolamide warrants further investigation as a promising treatment option to supplement the limited pipeline of anti-gonococcal therapeutics.


Assuntos
Gonorreia , Acetazolamida/farmacologia , Acetazolamida/uso terapêutico , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Modelos Animais de Doenças , Feminino , Gonorreia/tratamento farmacológico , Gonorreia/microbiologia , Camundongos , Neisseria gonorrhoeae
19.
J Enzyme Inhib Med Chem ; 37(1): 1-8, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34894954

RESUMO

Recently, inorganic anions and sulphonamides, two of the main classes of zinc-binding carbonic anhydrase inhibitors (CAIs), were investigated for inhibition of the α-class carbonic anhydrase (CA, EC 4.2.1.1) from Neisseria gonorrhoeae, NgCA. As an extension to our previous studies, we report that dithiocarbamates (DTCs) derived from primary or secondary amines constitute a class of efficient inhibitors of NgCA. KIs ranging between 83.7 and 827 nM were measured for a series of 31 DTCs that incorporated various aliphatic, aromatic, and heterocyclic scaffolds. A subset of DTCs were selected for antimicrobial testing against N. gonorrhoeae, and three molecules displayed minimum inhibitory concentration (MIC) values less than or equal to 8 µg/mL. As NgCA was recently validated as an antibacterial drug target, the DTCs may lead to development of novel antigonococcal agents.


Assuntos
Antibacterianos/farmacologia , Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/metabolismo , Neisseria gonorrhoeae/efeitos dos fármacos , Tiocarbamatos/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Inibidores da Anidrase Carbônica/síntese química , Inibidores da Anidrase Carbônica/química , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Estrutura Molecular , Neisseria gonorrhoeae/enzimologia , Relação Estrutura-Atividade , Tiocarbamatos/síntese química , Tiocarbamatos/química
20.
J Enzyme Inhib Med Chem ; 37(1): 51-61, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34894972

RESUMO

Neisseria gonorrhoeae is a high-priority pathogen of concern due to the growing prevalence of resistance development against approved antibiotics. Herein, we report the anti-gonococcal activity of ethoxzolamide, the FDA-approved human carbonic anhydrase inhibitor. Ethoxzolamide displayed an MIC50, against a panel of N. gonorrhoeae isolates, of 0.125 µg/mL, 16-fold more potent than acetazolamide, although both molecules exhibited almost similar potency against the gonococcal carbonic anhydrase enzyme (NgCA) in vitro. Acetazolamide displayed an inhibition constant (Ki) versus NgCA of 74 nM, while Ethoxzolamide's Ki was estimated to 94 nM. Therefore, the increased anti-gonococcal potency of ethoxzolamide was attributed to its increased permeability in N. gonorrhoeae as compared to that of acetazolamide. Both drugs demonstrated bacteriostatic activity against N. gonorrhoeae, exhibited post-antibiotic effects up to 10 hours, and resistance was not observed against both. Taken together, these results indicate that acetazolamide and ethoxzolamide warrant further investigation for translation into effective anti-N. gonorrhoeae agents.


Assuntos
Acetazolamida/farmacologia , Antibacterianos/farmacologia , Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/metabolismo , Etoxzolamida/farmacologia , Neisseria gonorrhoeae/efeitos dos fármacos , Acetazolamida/síntese química , Acetazolamida/química , Antibacterianos/síntese química , Antibacterianos/química , Inibidores da Anidrase Carbônica/síntese química , Inibidores da Anidrase Carbônica/química , Relação Dose-Resposta a Droga , Etoxzolamida/síntese química , Etoxzolamida/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Neisseria gonorrhoeae/enzimologia , Relação Estrutura-Atividade , Estados Unidos , United States Food and Drug Administration
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...