Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 272(Pt 1): 132814, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38825281

RESUMO

In this study, a new eco-friendly urea-rich sodium alginate-based hydrogel with a slow-release nitrogen property was prepared, and its effectiveness was evaluated in the cultivation of tomato plants under different water stress levels. The structure and performance of the hydrogel were investigated by FTIR, XRD, TGA, DTG, and SEM. The swelling and release experiments showed that prepared urea-rich hydrogel exhibited a high-water holding capacity (412 ± 4 g/g) and showed a sustained and slow nitrogen release property. A greenhouse pot experiment was conducted using two hydrogel levels (0.1 and 0.5 wt%) under two water deficit levels (30 and 70 % based on required water irrigation). Germination tests indicated that the developed hydrogel fertilizer has no phytotoxicity and has a positive impact on the germination rate even under water deficit conditions. The application of hydrogel fertilizer at 0.5 wt% significantly (p > 0.05) enhanced plant growth parameters such as leaf number, chlorophyll content, stem diameter, and plant length compared to the control treatment. The magnitude of the responses to the hydrogel fertilizer application depended on the concentration of applied hydrogel fertilizer and stress severity with the most positive effects on the growth and yield of tomato observed at a level of 0.5 %. Tomato yield was significantly enhanced by 19.58 %-12.81 %, 18.58 %-22.02 %, and 39.38 %-43.18 % for the plant amended with hydrogel at 0.1-0.5 wt% and grown under water deficit levels of 0, 30, and 70 %, respectively, compared to the control treatment.


Assuntos
Alginatos , Fertilizantes , Hidrogéis , Nitrogênio , Solanum lycopersicum , Ureia , Água , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/crescimento & desenvolvimento , Alginatos/química , Ureia/química , Água/química , Hidrogéis/química , Nitrogênio/química , Germinação/efeitos dos fármacos
2.
RSC Adv ; 10(42): 24941-24950, 2020 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35517480

RESUMO

This study focuses on the design of highly hydrophobic polyester fabrics (PET) coated with organophilic graphene nanosheets (G-ODA) through a simple, cost-effective and scalable coating method. The organophilic graphene oxide was successfully synthesized by covalently grafting a long chain fatty amine on its surface and was fully characterized by various physicochemical techniques. G-ODA was coated at different loadings onto the PET fabric ranging from 1 to 7 wt% to produce uniformly dispersed PET@G-ODA fabrics with multifunctional performances. FTIR has confirmed the formation of strong interfacial interaction between the PET and G-ODA functional groups. Moreover, the produced PET@G-ODA fabrics resulted in achieving enhanced thermal stability as well as excellent water repellency compared to the pristine PET. Water contact angle measurements showed a tremendous enhancement of surface hydrophobicity up to 148° with 7 wt% loading of G-ODA. Tensile strength tests revealed that our fabric exhibited excellent mechanical properties compared to neat PET. In addition, the designed PET@G-ODA fabrics demonstrated excellent oil/water separation efficiency for different oil/water mixtures. The obtained results are very promising in terms of designing and producing functional PET fabrics with improved thermal and surface proprieties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...