Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Nat Cell Biol ; 26(7): 1154-1164, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38849541

RESUMO

Transfer RNA dynamics contribute to cancer development through regulation of codon-specific messenger RNA translation. Specific aminoacyl-tRNA synthetases can either promote or suppress tumourigenesis. Here we show that valine aminoacyl-tRNA synthetase (VARS) is a key player in the codon-biased translation reprogramming induced by resistance to targeted (MAPK) therapy in melanoma. The proteome rewiring in patient-derived MAPK therapy-resistant melanoma is biased towards the usage of valine and coincides with the upregulation of valine cognate tRNAs and of VARS expression and activity. Strikingly, VARS knockdown re-sensitizes MAPK-therapy-resistant patient-derived melanoma in vitro and in vivo. Mechanistically, VARS regulates the messenger RNA translation of valine-enriched transcripts, among which hydroxyacyl-CoA dehydrogenase mRNA encodes for a key enzyme in fatty acid oxidation. Resistant melanoma cultures rely on fatty acid oxidation and hydroxyacyl-CoA dehydrogenase for their survival upon MAPK treatment. Together, our data demonstrate that VARS may represent an attractive therapeutic target for the treatment of therapy-resistant melanoma.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Melanoma , Animais , Humanos , Camundongos , Aminoacil-tRNA Sintetases/metabolismo , Aminoacil-tRNA Sintetases/genética , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Melanoma/genética , Melanoma/patologia , Melanoma/enzimologia , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Biossíntese de Proteínas , Inibidores de Proteínas Quinases/farmacologia , Valina/metabolismo , Valina/genética , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Cell Rep ; 43(6): 114325, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38870014

RESUMO

The sensitivity of malignant tissues to T cell-based immunotherapies depends on the presence of targetable human leukocyte antigen (HLA) class I ligands. Peptide-intrinsic factors, such as HLA class I affinity and proteasomal processing, have been established as determinants of HLA ligand presentation. However, the role of gene and protein sequence features as determinants of epitope presentation has not been systematically evaluated. We perform HLA ligandome mass spectrometry to evaluate the contribution of 7,135 gene and protein sequence features to HLA sampling. This analysis reveals that a number of predicted modifiers of mRNA and protein abundance and turnover, including predicted mRNA methylation and protein ubiquitination sites, inform on the presence of HLA ligands. Importantly, integration of such "hard-coded" sequence features into a machine learning approach augments HLA ligand predictions to a comparable degree as experimental measures of gene expression. Our study highlights the value of gene and protein features for HLA ligand predictions.


Assuntos
Antígenos de Histocompatibilidade Classe I , Humanos , Ligantes , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Classe I/genética , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Sequência de Aminoácidos , Aprendizado de Máquina , Peptídeos/metabolismo , Peptídeos/química
4.
Oncogene ; 43(27): 2053-2062, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38802646

RESUMO

The cancer peptidome has long been known to be altered by genetic mutations. However, more recently, non-genetic polypeptide mutations have also been related to cancer cells. These non-genetic mutations occur post-t30ranscriptionally, leading to the modification of the peptide primary structure, while the corresponding genes remain unchanged. Three main processes participate in the production of these aberrant proteins: mRNA alternative splicing, mRNA editing, and mRNA aberrant translation. In this review, we summarize the molecular mechanisms underlying these processes and the recent findings on the functions of the aberrant proteins, as well as their exploitability as new therapeutic targets due to their specific enrichment in cancer cells. These non-genetic aberrant polypeptides represent a source of novel cancer cell targets independent from their level of mutational burden, still to be exhaustively explored.


Assuntos
Processamento Alternativo , Neoplasias , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Processamento Alternativo/genética , Mutação , Peptídeos/genética , Peptídeos/metabolismo , Edição de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Biossíntese de Proteínas/genética , Animais
5.
Mol Cell ; 84(10): 1904-1916.e7, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38759626

RESUMO

Many types of human cancers suppress the expression of argininosuccinate synthase 1 (ASS1), a rate-limiting enzyme for arginine production. Although dependency on exogenous arginine can be harnessed by arginine-deprivation therapies, the impact of ASS1 suppression on the quality of the tumor proteome is unknown. We therefore interrogated proteomes of cancer patients for arginine codon reassignments (substitutants) and surprisingly identified a strong enrichment for cysteine (R>C) in lung tumors specifically. Most R>C events did not coincide with genetically encoded R>C mutations but were likely products of tRNA misalignments. The expression of R>C substitutants was highly associated with oncogenic kelch-like epichlorohydrin (ECH)-associated protein 1 (KEAP1)-pathway mutations and suppressed by intact-KEAP1 in KEAP1-mutated cancer cells. Finally, functional interrogation indicated a key role for R>C substitutants in cell survival to cisplatin, suggesting that regulatory codon reassignments endow cancer cells with more resilience to stress. Thus, we present a mechanism for enriching lung cancer proteomes with cysteines that may affect therapeutic decisions.


Assuntos
Arginina , Cisteína , Proteína 1 Associada a ECH Semelhante a Kelch , Neoplasias Pulmonares , Proteoma , Humanos , Cisteína/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteoma/metabolismo , Arginina/metabolismo , Mutação , Argininossuccinato Sintase/metabolismo , Argininossuccinato Sintase/genética , Cisplatino/farmacologia , Linhagem Celular Tumoral , Proteômica/métodos , Regulação Neoplásica da Expressão Gênica , Sobrevivência Celular/efeitos dos fármacos , RNA de Transferência/metabolismo , RNA de Transferência/genética
6.
Science ; 384(6697): 785-792, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38753784

RESUMO

In response to excessive DNA damage, human cells can activate p53 to induce apoptosis. Cells lacking p53 can still undergo apoptosis upon DNA damage, yet the responsible pathways are unknown. We observed that p53-independent apoptosis in response to DNA damage coincided with translation inhibition, which was characterized by ribosome stalling on rare leucine-encoding UUA codons and globally curtailed translation initiation. A genetic screen identified the transfer RNAse SLFN11 and the kinase GCN2 as factors required for UUA stalling and global translation inhibition, respectively. Stalled ribosomes activated a ribotoxic stress signal conveyed by the ribosome sensor ZAKα to the apoptosis machinery. These results provide an explanation for the frequent inactivation of SLFN11 in chemotherapy-unresponsive tumors and highlight ribosome stalling as a signaling event affecting cell fate in response to DNA damage.


Assuntos
Apoptose , Dano ao DNA , Biossíntese de Proteínas , Ribossomos , Proteína Supressora de Tumor p53 , Humanos , Linhagem Celular Tumoral , Códon/genética , Leucina/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Ribossomos/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/metabolismo
7.
EMBO Rep ; 25(5): 2220-2238, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38600345

RESUMO

Perturbation of protein phosphorylation represents an attractive approach to cancer treatment. Besides kinase inhibitors, protein phosphatase inhibitors have been shown to have anti-cancer activity. A prime example is the small molecule LB-100, an inhibitor of protein phosphatases 2A/5 (PP2A/PP5), enzymes that affect cellular physiology. LB-100 has proven effective in pre-clinical models in combination with immunotherapy, but the molecular underpinnings of this synergy remain understood poorly. We report here a sensitivity of the mRNA splicing machinery to phosphorylation changes in response to LB-100 in colorectal adenocarcinoma. We observe enrichment for differentially phosphorylated sites within cancer-critical splicing nodes of U2 snRNP, SRSF and hnRNP proteins. Altered phosphorylation endows LB-100-treated colorectal adenocarcinoma cells with differential splicing patterns. In PP2A-inhibited cells, over 1000 events of exon skipping and intron retention affect regulators of genomic integrity. Finally, we show that LB-100-evoked alternative splicing leads to neoantigens that are presented by MHC class 1 at the cell surface. Our findings provide a potential explanation for the pre-clinical and clinical observations that LB-100 sensitizes cancer cells to immune checkpoint blockade.


Assuntos
Neoplasias do Colo , Splicing de RNA , Humanos , Processamento Alternativo/efeitos dos fármacos , Antígenos de Neoplasias/metabolismo , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/imunologia , Linhagem Celular Tumoral , Neoplasias do Colo/genética , Neoplasias do Colo/imunologia , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Inibidores Enzimáticos/farmacologia , Fosforilação , Proteína Fosfatase 2/metabolismo , Splicing de RNA/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Processamento de Serina-Arginina/metabolismo , Fatores de Processamento de Serina-Arginina/genética , Piperazinas/farmacologia
8.
Cancer Cell ; 42(4): 623-645.e10, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38490212

RESUMO

Genes limiting T cell antitumor activity may serve as therapeutic targets. It has not been systematically studied whether there are regulators that uniquely or broadly contribute to T cell fitness. We perform genome-scale CRISPR-Cas9 knockout screens in primary CD8 T cells to uncover genes negatively impacting fitness upon three modes of stimulation: (1) intense, triggering activation-induced cell death (AICD); (2) acute, triggering expansion; (3) chronic, causing dysfunction. Besides established regulators, we uncover genes controlling T cell fitness either specifically or commonly upon differential stimulation. Dap5 ablation, ranking highly in all three screens, increases translation while enhancing tumor killing. Loss of Icam1-mediated homotypic T cell clustering amplifies cell expansion and effector functions after both acute and intense stimulation. Lastly, Ctbp1 inactivation induces functional T cell persistence exclusively upon chronic stimulation. Our results functionally annotate fitness regulators based on their unique or shared contribution to traits limiting T cell antitumor activity.


Assuntos
Sistemas CRISPR-Cas , Neoplasias , Humanos , Linfócitos T CD8-Positivos , Neoplasias/genética
9.
J Exp Med ; 220(11)2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37642941

RESUMO

Targeting the PI3K-AKT-mTOR pathway is a promising therapeutic strategy for breast cancer treatment. However, low response rates and development of resistance to PI3K-AKT-mTOR inhibitors remain major clinical challenges. Here, we show that MYC activation drives resistance to mTOR inhibitors (mTORi) in breast cancer. Multiomic profiling of mouse invasive lobular carcinoma (ILC) tumors revealed recurrent Myc amplifications in tumors that acquired resistance to the mTORi AZD8055. MYC activation was associated with biological processes linked to mTORi response and counteracted mTORi-induced translation inhibition by promoting translation of ribosomal proteins. In vitro and in vivo induction of MYC conferred mTORi resistance in mouse and human breast cancer models. Conversely, AZD8055-resistant ILC cells depended on MYC, as demonstrated by the synergistic effects of mTORi and MYCi combination treatment. Notably, MYC status was significantly associated with poor response to everolimus therapy in metastatic breast cancer patients. Thus, MYC is a clinically relevant driver of mTORi resistance that may stratify breast cancer patients for mTOR-targeted therapies.


Assuntos
Neoplasias da Mama , Humanos , Animais , Camundongos , Feminino , Neoplasias da Mama/tratamento farmacológico , Inibidores de MTOR , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Serina-Treonina Quinases TOR
10.
BMC Cancer ; 23(1): 502, 2023 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-37270525

RESUMO

BACKGROUND: Cancer immunotherapy is implemented by identifying antigens that are presented on the cell surface of cancer cells and illicit T-cell response (Schumacher and Schreiber, Science 348:69-74, 2015; Waldman et al., Nat Rev Immunol 20:651-668, 2020; Zhang et al., Front Immunol 12:672,356, 2021b). Classical candidates of such antigens are the peptides resulting from genetic alterations and are named "neoantigen" (Schumacher and Schreiber, Science 348:69-74, 2015). Neoantigens have been widely catalogued across several human cancer types (Tan et al., Database (Oxford) 2020;2020b; Vigneron et al., Cancer Immun 13:15, 2013; Yi et al., iScience 24:103,107, 2021; Zhang et al., BMC Bioinformatics 22:40, 2021a). Recently, a new class of inducible antigens has been identified, namely Substitutants, that are produced as a result of aberrant protein translation (Pataskar et al., Nature 603:721-727, 2022). MAIN: Catalogues of Substitutant expression across human cancer types, their specificity and association to gene expression signatures remain elusive for the scientific community's access. As a solution, we present ABPEPserver, an online database and analytical platform that can visualize a large-scale tumour proteomics analysis of Substitutant expression across eight tumour types sourced from the CPTAC database (Edwards et al., J Proteome Res 14:2707-2713, 2015). Functionally, ABPEPserver offers the analysis of gene-association signatures of Substitutant peptides, a comparison of enrichment between tumour and tumour-adjacent normal tissues, and a list of peptides that serve as candidates for immunotherapy design. ABPEPserver will significantly enhance the exploration of aberrant protein production in human cancer, as exemplified in a case study. CONCLUSION: ABPEPserver is designed on an R SHINY platform to catalogue Substitutant peptides in human cancer. The application is available at https://rhpc.nki.nl/sites/shiny/ABPEP/ . The code is available under GNU General public license from GitHub ( https://github.com/jasminesmn/ABPEPserver ).


Assuntos
Neoplasias , Humanos , Neoplasias/genética , Neoplasias/terapia , Peptídeos , Antígenos , Imunoterapia , Documentação
11.
Cell Rep Med ; 4(2): 100941, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36812891

RESUMO

By restoring tryptophan, indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors aim to reactivate anti-tumor T cells. However, a phase III trial assessing their clinical benefit failed, prompting us to revisit the role of IDO1 in tumor cells under T cell attack. We show here that IDO1 inhibition leads to an adverse protection of melanoma cells to T cell-derived interferon-gamma (IFNγ). RNA sequencing and ribosome profiling shows that IFNγ shuts down general protein translation, which is reversed by IDO1 inhibition. Impaired translation is accompanied by an amino acid deprivation-dependent stress response driving activating transcription factor-4 (ATF4)high/microphtalmia-associated transcription factor (MITF)low transcriptomic signatures, also in patient melanomas. Single-cell sequencing analysis reveals that MITF downregulation upon immune checkpoint blockade treatment predicts improved patient outcome. Conversely, MITF restoration in cultured melanoma cells causes T cell resistance. These results highlight the critical role of tryptophan and MITF in the melanoma response to T cell-derived IFNγ and uncover an unexpected negative consequence of IDO1 inhibition.


Assuntos
Melanoma , Triptofano , Humanos , Melanoma/patologia , Interferon gama/metabolismo , Linfócitos T/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/genética
12.
Mol Cell ; 83(3): 469-480, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36521491

RESUMO

mRNA translation is a highly conserved and tightly controlled mechanism for protein synthesis and is well known to be altered by oncogenes to promote cancer development. This distorted mRNA translation is accompanied by the vulnerability of cancer to inhibitors of key mRNA translation components. Novel studies also suggest that these alternations could be utilized for immunotherapy. Ribosome heterogeneity and alternative responses to nutrient shortages, which aid cancer growth and spread, are proposed to elicit aberrant protein production but may also result in previously unidentified therapeutic targets, such as the presentation of cancer-specific peptides at the surface of cancer cells (neoepitopes). This review will assess the driving forces in tRNA and ribosome function that underlie proteome diversification due to alterations in mRNA translation in cancer cells.


Assuntos
Neoplasias , Proteoma , Proteoma/genética , Proteoma/metabolismo , Biossíntese de Proteínas , Ribossomos/genética , Ribossomos/metabolismo , Peptídeos/genética , RNA de Transferência/genética , RNA de Transferência/metabolismo , Neoplasias/genética , Neoplasias/metabolismo
13.
Mol Cell ; 82(20): 3840-3855.e8, 2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36270248

RESUMO

The use of alternative promoters, splicing, and cleavage and polyadenylation (APA) generates mRNA isoforms that expand the diversity and complexity of the transcriptome. Here, we uncovered thousands of previously undescribed 5' uncapped and polyadenylated transcripts (5' UPTs). We show that these transcripts resist exonucleases due to a highly structured RNA and N6-methyladenosine modification at their 5' termini. 5' UPTs appear downstream of APA sites within their host genes and are induced upon APA activation. Strong enrichment in polysomal RNA fractions indicates 5' UPT translational potential. Indeed, APA promotes downstream translation initiation, non-canonical protein output, and consistent changes to peptide presentation at the cell surface. Lastly, we demonstrate the biological importance of 5' UPTs using Bcl2, a prominent anti-apoptotic gene whose entire coding sequence is a 5' UPT generated from 5' UTR-embedded APA sites. Thus, APA is not only accountable for terminating transcripts, but also for generating downstream uncapped RNAs with translation potential and biological impact.


Assuntos
Poliadenilação , Isoformas de RNA , Isoformas de RNA/genética , Regiões 5' não Traduzidas , Regiões 3' não Traduzidas/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Exonucleases/genética
15.
Nat Commun ; 13(1): 4578, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35931688

RESUMO

Resistance to platinum-based chemotherapy represents a major clinical challenge for many tumors, including epithelial ovarian cancer. Patients often experience several response-relapse events, until tumors become resistant and life expectancy drops to 12-15 months. Despite improved knowledge of the molecular determinants of platinum resistance, the lack of clinical applicability limits exploitation of many potential targets, leaving patients with limited options. Serine biosynthesis has been linked to cancer growth and poor prognosis in various cancer types, however its role in platinum-resistant ovarian cancer is not known. Here, we show that a subgroup of resistant tumors decreases phosphoglycerate dehydrogenase (PHGDH) expression at relapse after platinum-based chemotherapy. Mechanistically, we observe that this phenomenon is accompanied by a specific oxidized nicotinamide adenine dinucleotide (NAD+) regenerating phenotype, which helps tumor cells in sustaining Poly (ADP-ribose) polymerase (PARP) activity under platinum treatment. Our findings reveal metabolic vulnerabilities with clinical implications for a subset of platinum resistant ovarian cancers.


Assuntos
Neoplasias Ovarianas , Platina , Carcinoma Epitelial do Ovário/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Recidiva Local de Neoplasia/tratamento farmacológico , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Platina/farmacologia , Platina/uso terapêutico , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poli(ADP-Ribose) Polimerases/farmacologia , Serina/farmacologia
16.
Cancer Res ; 82(20): 3637-3649, 2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-35904353

RESUMO

Immune-checkpoint blockade therapy has been successfully applied to many cancers, particularly tumors that harbor a high mutational burden and consequently express a high abundance of neoantigens. However, novel approaches are needed to improve the efficacy of immunotherapy for treating tumors that lack a high load of classic genetically derived neoantigens. Recent discoveries of broad classes of nongenetically encoded and inducible neoepitopes open up new avenues for therapeutic development to enhance sensitivity to immunotherapies. In this review, we discuss recent work on neoantigen discovery, with an emphasis on novel classes of noncanonical neoepitopes.


Assuntos
Antígenos de Neoplasias , Neoplasias , Antígenos de Neoplasias/genética , Humanos , Inibidores de Checkpoint Imunológico , Imunoterapia , Mutação , Neoplasias/genética , Neoplasias/terapia
18.
Oncogene ; 41(32): 3953-3968, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35798875

RESUMO

Accumulating evidence identifies non-genetic mechanisms substantially contributing to drug resistance in cancer patients. Preclinical and clinical data implicate the transcriptional co-activators YAP1 and its paralog TAZ in resistance to multiple targeted therapies, highlighting the strong need for therapeutic strategies overcoming YAP1/TAZ-mediated resistance across tumor entities. Here, we show particularly high YAP1/TAZ activity in MITFlow/AXLhigh melanomas characterized by resistance to MAPK pathway inhibition and broad receptor tyrosine kinase activity. To uncover genetic dependencies of melanoma cells with high YAP1/TAZ activity, we used a genome-wide CRISPR/Cas9 functional screen and identified SLC35B2, the 3'-phosphoadenosine-5'-phosphosulfate transporter of the Golgi apparatus, as an essential gene for YAP1/TAZ-driven drug resistance. SLC35B2 expression correlates with tumor progression, and its loss decreases heparan sulfate expression, reduces receptor tyrosine kinase activity, and sensitizes resistant melanoma cells to BRAF inhibition in vitro and in vivo. Thus, targeting heparan sulfation via SLC35B2 represents a novel approach for breaking receptor tyrosine kinase-mediated resistance to MAPK pathway inhibitors.


Assuntos
Melanoma , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Heparitina Sulfato/metabolismo , Humanos , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/patologia , Inibidores de Proteínas Quinases/farmacologia , Receptores Proteína Tirosina Quinases , Fatores de Transcrição , Proteínas de Sinalização YAP
19.
Trends Genet ; 38(11): 1123-1133, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35641342

RESUMO

Programmed ribosomal frameshifting (PRF) is a key mechanism that viruses use to generate essential proteins for replication, and as a means of regulating gene expression. PRF generally involves recoding signals or frameshift stimulators to elevate the occurrence of frameshifting at shift-prone 'slippery' sequences. Given its essential role in viral replication, targeting PRF was envisioned as an attractive tool to block viral infection. However, in contrast to controlled-PRF mechanisms, recent studies have shown that ribosomes of many human cancer cell types are prone to frameshifting upon amino acid shortage; thus, these cells are deemed to be sloppy. The resulting products of a sloppy frameshift at the 'hungry' codons are aberrant proteins the degradation and display of which at the cell surface can trigger T cell activation. In this review, we address recent discoveries in ribosomal frameshifting and their functional consequences for the proteome in human cancer cells.


Assuntos
Mudança da Fase de Leitura do Gene Ribossômico , Proteoma , Aminoácidos/genética , Códon/genética , Mudança da Fase de Leitura do Gene Ribossômico/genética , Humanos , Proteoma/genética , Ribossomos/genética , Ribossomos/metabolismo
20.
Nature ; 603(7902): 721-727, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35264796

RESUMO

Activated T cells secrete interferon-γ, which triggers intracellular tryptophan shortage by upregulating the indoleamine 2,3-dioxygenase 1 (IDO1) enzyme1-4. Here we show that despite tryptophan depletion, in-frame protein synthesis continues across tryptophan codons. We identified tryptophan-to-phenylalanine codon reassignment (W>F) as the major event facilitating this process, and pinpointed tryptophanyl-tRNA synthetase (WARS1) as its source. We call these W>F peptides 'substitutants' to distinguish them from genetically encoded mutants. Using large-scale proteomics analyses, we demonstrate W>F substitutants to be highly abundant in multiple cancer types. W>F substitutants were enriched in tumours relative to matching adjacent normal tissues, and were associated with increased IDO1 expression, oncogenic signalling and the tumour-immune microenvironment. Functionally, W>F substitutants can impair protein activity, but also expand the landscape of antigens presented at the cell surface to activate T cell responses. Thus, substitutants are generated by an alternative decoding mechanism with potential effects on gene function and tumour immunoreactivity.


Assuntos
Triptofano-tRNA Ligase , Triptofano , Códon/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Interferon gama , Neoplasias/imunologia , Fenilalanina , Linfócitos T , Triptofano/metabolismo , Triptofano Oxigenase/genética , Triptofano Oxigenase/metabolismo , Triptofano-tRNA Ligase/genética , Triptofano-tRNA Ligase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...