Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros













Base de dados
Intervalo de ano de publicação
1.
Viruses ; 16(3)2024 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-38543776

RESUMO

Rotaviruses are a significant cause of severe, potentially life-threatening gastroenteritis in infants and the young of many economically important animals. Although vaccines against porcine rotavirus exist, both live oral and inactivated, their effectiveness in preventing gastroenteritis is less than ideal. Thus, there is a need for the development of new generations of porcine rotavirus vaccines. The Ohio State University (OSU) rotavirus strain represents a Rotavirus A species with a G5P[7] genotype, the genotype most frequently associated with rotavirus disease in piglets. Using complete genome sequences that were determined via Nanopore sequencing, we developed a robust reverse genetics system enabling the recovery of recombinant (r)OSU rotavirus. Although rOSU grew to high titers (~107 plaque-forming units/mL), its growth kinetics were modestly decreased in comparison to the laboratory-adapted OSU virus. The reverse genetics system was used to generate the rOSU rotavirus, which served as an expression vector for a foreign protein. Specifically, by engineering a fused NSP3-2A-UnaG open reading frame into the segment 7 RNA, we produced a genetically stable rOSU virus that expressed the fluorescent UnaG protein as a functional separate product. Together, these findings raise the possibility of producing improved live oral porcine rotavirus vaccines through reverse-genetics-based modification or combination porcine rotavirus vaccines that can express neutralizing antigens for other porcine enteric diseases.


Assuntos
Gastroenterite , Infecções por Rotavirus , Vacinas contra Rotavirus , Rotavirus , Humanos , Animais , Suínos , Genética Reversa , Ohio , Universidades , Infecções por Rotavirus/prevenção & controle , Infecções por Rotavirus/veterinária , Gastroenterite/prevenção & controle , Gastroenterite/veterinária
2.
Methods Mol Biol ; 2733: 249-263, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38064037

RESUMO

Rotaviruses are the primary cause of severe gastroenteritis in infants and young children throughout the world. To combat rotavirus illness, several live oral vaccines have been developed, or are under development, that are formulated from attenuated human or human-animal reassortant strains of rotavirus. While the effectiveness of these vaccines is generally high in developed countries, the same vaccines are significantly less effective in many developing countries, where the need for rotavirus vaccines is greatest. Recently, reverse genetics systems have been developed that allow modification of the segmented double-stranded (ds)RNA genome of rotavirus, including reprogramming the genome to allow expression of additional proteins that may stimulate expanded neutralizing antibody responses in vaccinated children. The use of reverse genetics systems may not only lead to the development of more potent classes of vaccines but can be used to better explore the intricacies of rotavirus molecular biology and pathogenesis. In this article, we share protocols that can be used to generate recombinant rotaviruses, including modified strains that express foreign proteins.


Assuntos
Gastroenterite , Infecções por Rotavirus , Rotavirus , Vacinas , Lactente , Animais , Criança , Humanos , Pré-Escolar , Rotavirus/genética , Genética Reversa/métodos
3.
mBio ; : e0225523, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37905816

RESUMO

The binding of viral RNA to RIG-I-like receptors triggers the formation of mitochondrial antiviral signaling (MAVS) protein aggregates critical for interferon (IFN) expression. Several rotavirus strains have been shown to suppress IFN expression by inducing MAVS degradation. Relying on transient expression assays, previous studies reached different conclusions regarding the identity of the rotavirus protein responsible for MAVS degradation, suggesting it was an activity of the rotavirus capping enzyme VP3 or the interferon antagonist NSP1. Here, we have used recombinant SA11 rotaviruses to identify the endogenous viral protein responsible for MAVS degradation and to analyze how the attack on MAVS impacts IFN expression. The recombinant viruses included those expressing modified VP3 or NSP1 proteins deficient in the ability to induce the degradation of MAVS or interferon regulatory factor-3 (IRF3), or both. With these viruses, we determined that VP3 directs the proteasomal degradation of MAVS but plays no role in IRF3 degradation. Moreover, NSP1 was determined to induce IRF3 degradation but to have no impact on MAVS degradation. Analysis of rotavirus-infected cells indicated that IRF3 degradation was more efficient than MAVS degradation and that NSP1 was primarily responsible for suppressing IFN expression in infected cells. However, VP3-mediated MAVS degradation contributed to IFN suppression in cells that failed to produce functional NSP1, pointing to a subsidiary role for VP3 in the IFN antagonist activity of NSP1. Thus, VP3 is a multifunctional protein with several activities that counter anti-rotavirus innate immune responses, including capping of viral (+)RNAs, hydrolysis of the RNase L 2-5A (2'-5' oligoadenylate) signaling molecule, and proteasomal degradation of MAVS. IMPORTANCE Rotavirus is an enteric RNA virus that causes severe dehydrating gastroenteritis in infants and young children through infection of enterocytes in the small intestine. Timely clearance of the virus demands a robust innate immune response by cells associated with the small intestine, including the expression of interferon (IFN). Previous studies have shown that some rotavirus strains suppress the production of interferon, by inducing the degradation of mitochondrial antiviral signaling (MAVS) protein and interferon regulatory factor-3 (IRF3). In this study, we have used reverse genetics to generate recombinant rotaviruses expressing compromised forms of VP3 or NSP1, or both, to explore the function of these viral proteins in the degradation of MAVS and IRF3. Our results demonstrate that VP3 is responsible for MAVS depletion in rotavirus-infected cells, and through this activity, helps to suppress IFN production. Thus, VP3 functions to support the activity of rotavirus NSP1, the major interferon antagonist of the virus.

4.
Microbiol Resour Announc ; 12(11): e0060323, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37819123

RESUMO

The live oral rotavirus RV1 (Rotarix) vaccine is formulated from the human G1P[8] RIX4414 virus. Based on RIX4414 sequences, T7 expression plasmids were constructed that supported recovery of recombinant RIX4414-like viruses by reverse genetics. These plasmids will advance the study of the RV1 vaccine, possibly allowing improvements to its efficacy.

5.
Viruses ; 12(11)2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33217894

RESUMO

Understanding the epidemiology of human norovirus infection in children within Ghana and the entire sub-Saharan African region, where future norovirus vaccines would have the greatest impact, is essential. We analyzed 1337 diarrheic stool samples collected from children <5 years from January 2008 to December 2017 and found 485 (36.2%) shedding the virus. GII.4 (54.1%), GII.3 (7.7%), GII.6 (5.3%), GII.17 (4.7%), and GII.5 (4.7%) were the most common norovirus genotypes. Although norovirus GII.4 remained the predominant capsid genotype throughout the study period, an increase in GII.6 and GII.3 capsid genotypes was observed in 2013 and 2014, respectively. The severity of clinical illness in children infected with GII.4 norovirus strains was similar to illness caused by non-GII.4 strains. Since the epidemiology of norovirus changes rapidly, establishment of systematic surveillance within sentinel sites across the country would enhance the monitoring of circulating norovirus strains and allow continuous understanding of norovirus infection in Ghana.


Assuntos
Infecções por Caliciviridae/epidemiologia , Gastroenterite/epidemiologia , Genótipo , Norovirus/genética , Infecções por Caliciviridae/diagnóstico , Pré-Escolar , Fezes/virologia , Feminino , Gastroenterite/virologia , Variação Genética , Gana/epidemiologia , Humanos , Lactente , Recém-Nascido , Masculino , Norovirus/classificação , Filogenia , Prevalência , Análise de Sequência de DNA , Eliminação de Partículas Virais
6.
Pediatr Infect Dis J ; 37(11): 1172-1174, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30312266

RESUMO

We used the dideoxynucleotide chain termination method to determine the strains of nine non-typeable rotavirus enzyme immunoassay-positive samples, which were identified as G2. We detected nucleotide changes in the primer-binding region and amino acid substitutions within the VP7 protein of the G2 rotavirus strains. Genotyping primers need to be updated regularly.


Assuntos
Substituição de Aminoácidos , Antígenos Virais/genética , Proteínas do Capsídeo/genética , Rotavirus/genética , Fezes/virologia , Gastroenterite/virologia , Genótipo , Gana , Humanos , Filogenia , Reação em Cadeia da Polimerase , RNA Viral/genética , Infecções por Rotavirus , Análise de Sequência de DNA
7.
Am J Trop Med Hyg ; 98(5): 1250-1259, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29557327

RESUMO

In crowded urban settlements in low-income countries, many households rely on shared sanitation facilities. Shared facilities are not currently considered "improved sanitation" because of concerns about whether hygiene conditions sufficiently protect users from the feces of others. Prevention of fecal exposure at a latrine is only one aspect of sanitary safety. Ensuring consistent use of latrines for feces disposal, especially child feces, is required to reduce fecal contamination in households and communities. Household crowding and shared latrine access are correlated in these settings, rendering latrine use by neighbors sharing communal living areas as critically important for protecting one's own household. This study in Accra, Ghana, found that household access to a within-compound basic latrine was associated with higher latrine use by children of ages 5-12 years and for disposal of feces of children < 5 years, compared with households using public latrines. However, within-compound access was not associated with improved child feces disposal by other caregivers in the compound. Feces was rarely observed in household compounds but was observed more often in compounds with latrines versus compounds relying on public latrines. Escherichia coli and human adenovirus were detected frequently on household surfaces, but concentrations did not differ when compared by latrine access or usage practices. The differences in latrine use for households sharing within-compound versus public latrines in Accra suggest that disaggregated shared sanitation categories may be useful in monitoring global progress in sanitation coverage. However, compound access did not completely ensure that households were protected from feces and microbial contamination.


Assuntos
Pobreza , Banheiros/normas , Cuidadores , Características da Família , Fezes , Feminino , Gana , Humanos , Mães
8.
J Gen Virol ; 96(8): 2219-2231, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25934790

RESUMO

Unusual human G6P[6] rotavirus A (RVA) strains have been reported sporadically in Europe and Africa, but how they evolved was not fully understood. The whole genome of a Ghanaian G6P[6] strain designated PML1965 (2012) was analysed to understand how it evolved in Africa and to learn how its G6 VP7 gene was related to that of rotaviruses of human and artiodactyl origin. The genotype constellation of RVA/Human-wt/GHA/PML1965/2012/G6P[6] was G6-P-[6]-I2-R2-C2-M2-A2-N2-T2-E2-H2. It shared sublineages with G6P[6] strains previously detected in Italy and Africa in all genome segments except the VP6 gene of a few Burkinabe and Cameroonian strains and both the VP6 and NSP4 genes of Guinea Bissau strains. The VP7 gene of the G6P[6] strains appeared to derive from those of human G6P[9] strains, and they were distantly related to the VP7 genes of artiodactyl G6 or human G6P[14] strains. The time of the most recent common ancestor of the VP7 sequences of G6P[6] strains was estimated to be the year 1998. The evolutionary rates of the VP7 genes in bovine and human G6 rotaviruses were 6.93 × 10(-4) and 3.42 × 10(-3) nucleotide substitutions site(-1) year(-1), respectively, suggesting an accelerated adaptive process in the new host. The sequences of the remaining 10 genome segments of PML1965 clustered with those of G2 and G8 human rotaviruses detected in Africa possessing the DS-1-like genetic background. In conclusion, PML1965 evolved from G2 or G8 RVA strains with DS-1-like background, acquiring the G6 VP7 gene from a human G6P[9] RVA and not from an artiodactyl G6 RVA strain.


Assuntos
Gastroenterite/virologia , Infecções por Rotavirus/virologia , Rotavirus/isolamento & purificação , Animais , Bovinos , Criança , Evolução Molecular , Genoma Viral , Genótipo , Gana , Humanos , Lactente , Masculino , Dados de Sequência Molecular , Filogenia , Rotavirus/classificação , Rotavirus/genética , Proteínas Virais/genética
9.
PLoS One ; 9(6): e100699, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24971993

RESUMO

Group A rotaviruses (RVAs) are the most important etiological agent of acute gastroenteritis in children <5 years of age worldwide. The monovalent rotavirus vaccine Rotarix was introduced into the national Expanded Programme on Immunization (EPI) in Ghana in May 2012. However, there is a paucity of genetic and phylogenetic data on the complete genomes of human RVAs in circulation pre-vaccine introduction. The common bovine rotavirus VP7 genotype G8 has been sporadically detected in Ghanaian children, usually in combination with the VP4 genotype P[6]. To investigate the genomic constellations and phylogeny of RVA strains in circulation prior to vaccine introduction, the full genomes of two unusual G8P[6] strains, GH018-08 and GH019-08, detected during burden of disease surveillance, were characterized by Illumina MiSeq sequencing. The Ghanaian isolates, GH018-08 and GH019-08, exhibited the unusual, previously unreported genotype constellation G8-P[6]-I2-R2-C2-M2-A2-N2-T2-E2-H3. Phylogenetic analyses confirmed that 10 out of the 11 genes of GH018-08 and GH019-08 were identical/nearly identical, with significant variation detected only in their VP1 genes, and clearly established the occurrence of multiple independent interspecies transmission and reassortment events between co-circulating bovine/ovine/caprine rotaviruses and human DS-1-like RVA strains. These findings highlight the contribution of reassortment and interspecies transmission events to the high rotavirus diversity in this region of Africa, and justify the need for simultaneous monitoring of animal and human rotavirus strains.


Assuntos
Vírus Reordenados/genética , Rotavirus/genética , Animais , Sequência de Bases , Proteínas do Capsídeo/genética , Bovinos , Criança , Biblioteca Gênica , Genótipo , Gana , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Dados de Sequência Molecular , Filogenia , RNA Viral/isolamento & purificação , RNA Viral/metabolismo , Vírus Reordenados/classificação , Vírus Reordenados/isolamento & purificação , Rotavirus/classificação , Rotavirus/isolamento & purificação , Infecções por Rotavirus/virologia , Análise de Sequência de DNA , Proteínas não Estruturais Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA