Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731959

RESUMO

Cerebral cavernous malformations (CCMs) are a neurological disorder characterized by enlarged intracranial capillaries in the brain, increasing the susceptibility to hemorrhagic strokes, a major cause of death and disability worldwide. The limited treatment options for CCMs underscore the importance of prognostic biomarkers to predict the likelihood of hemorrhagic events, aiding in treatment decisions and identifying potential pharmacological targets. This study aimed to identify blood biomarkers capable of diagnosing and predicting the risk of hemorrhage in CCM1 patients, establishing an initial set of circulating biomarker signatures. By analyzing proteomic profiles from both human and mouse CCM models and conducting pathway enrichment analyses, we compared groups to identify potential blood biomarkers with statistical significance. Specific candidate biomarkers primarily associated with metabolism and blood clotting pathways were identified. These biomarkers show promise as prognostic indicators for CCM1 deficiency and the risk of hemorrhagic stroke, strongly correlating with the likelihood of hemorrhagic cerebral cavernous malformations (CCMs). This lays the groundwork for further investigation into blood biomarkers to assess the risk of hemorrhagic CCMs.


Assuntos
Biomarcadores , Hemangioma Cavernoso do Sistema Nervoso Central , Hemangioma Cavernoso do Sistema Nervoso Central/sangue , Hemangioma Cavernoso do Sistema Nervoso Central/diagnóstico , Humanos , Animais , Camundongos , Prognóstico , Biomarcadores/sangue , Proteômica/métodos , Hemorragia Cerebral/sangue , Hemorragia Cerebral/diagnóstico , Proteína KRIT1/sangue , Modelos Animais de Doenças , Feminino , Masculino
3.
J Econ Entomol ; 115(2): 688-692, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35244163

RESUMO

Little is known about how simultaneous antagonistic interactions on plants and pollinators affect pollination services, even though herbivory can alter floral traits and parasites can change pollinator learning, perception, or behavior. We investigated how a common herbivore and bumble bee (Bombus spp.) parasite impact pollination in tomatoes (Solanum lycopersicum L.) (Solanales: Solanaceae). We exposed half the plants to low-intensity herbivory by the specialist Manduca sexta L. (Lepidoptera: Sphigidae), and observed bumble bee visits and time spent on flowers of damaged and control plants. Following observations, we caught the foraging bees and assessed infection by the common gut parasite, Crithidia bombi Lipa & Triggiani (Trypanosomatida: Trypanosomatidae). Interestingly, we found an interactive effect between herbivory and Crithidia infection; bees with higher parasite loads spent less time foraging on damaged plants compared to control plants. However, bees did not visit higher proportions of flowers on damaged or control plants, regardless of infection status. Our study demonstrates that multiple antagonists can have synergistic negative effects on the duration of pollinator visits, such that the consequences of herbivory may depend on the infection status of pollinators. If pollinator parasites indeed exacerbate the negative effects of herbivory on pollination services, this suggests the importance of incorporating bee health management practices to maximize crop production.


Assuntos
Himenópteros , Doenças Parasitárias , Solanum lycopersicum , Animais , Abelhas , Crithidia/fisiologia , Flores , Herbivoria , Plantas , Polinização
4.
Cancers (Basel) ; 14(2)2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-35053451

RESUMO

Bladder cancer (BC) is the second most frequent cancer of the genitourinary system. The most successful therapy since the 1970s has consisted of intravesical instillations of Bacillus Calmette-Guérin (BCG) in which the tumor microenvironment (TME), including macrophages, plays an important role. However, some patients cannot be treated with this therapy due to comorbidities and severe inflammatory side effects. The overexpression of histone deacetylases (HDACs) in BC has been correlated with macrophage polarization together with higher tumor grades and poor prognosis. Herein we demonstrated that phenylbutyrate acid (PBA), a HDAC inhibitor, acts as an antitumoral compound and immunomodulator. In BC cell lines, PBA induced significant cell cycle arrest in G1, reduced stemness markers and increased PD-L1 expression with a corresponding reduction in histone 3 and 4 acetylation patterns. Concerning its role as an immunomodulator, we found that PBA reduced macrophage IL-6 and IL-10 production as well as CD14 downregulation and the upregulation of both PD-L1 and IL-1ß. Along this line, PBA showed a reduction in IL-4-induced M2 polarization in human macrophages. In co-cultures of BC cell lines with human macrophages, a double-positive myeloid-tumoral hybrid population (CD11b+EPCAM+) was detected after 48 h, which indicates BC cell-macrophage fusions known as tumor hybrid cells (THC). These THC were characterized by high PD-L1 and stemness markers (SOX2, NANOG, miR-302) as compared with non-fused (CD11b-EPCAM+) cancer cells. Eventually, PBA reduced stemness markers along with BMP4 and IL-10. Our data indicate that PBA could have beneficial properties for BC management, affecting not only tumor cells but also the TME.

5.
Cell Rep ; 38(2): 110235, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34986327

RESUMO

We have analyzed BNT162b2 vaccine-induced immune responses in naive subjects and individuals recovered from coronavirus disease 2019 (COVID-19), both soon after (14 days) and later after (almost 8 months) vaccination. Plasma spike (S)-specific immunoglobulins peak after one vaccine shot in individuals recovered from COVID-19, while a second dose is needed in naive subjects, although the latter group shows reduced levels all along the analyzed period. Despite how the neutralization capacity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mirrors this behavior early after vaccination, both groups show comparable neutralizing antibodies and S-specific B cell levels late post-vaccination. When studying cellular responses, naive individuals exhibit higher SARS-CoV-2-specific cytokine production, CD4+ T cell activation, and proliferation than do individuals recovered from COVID-19, with patent inverse correlations between humoral and cellular variables early post-vaccination. However, almost 8 months post-vaccination, SARS-CoV-2-specific responses are comparable between both groups. Our data indicate that a previous history of COVID-19 differentially determines the functional T and B cell-mediated responses to BNT162b2 vaccination over time.


Assuntos
Vacina BNT162/imunologia , Vacinas contra COVID-19/imunologia , COVID-19/imunologia , Imunidade Celular/imunologia , Imunidade Humoral/imunologia , Vacinas Sintéticas/imunologia , Vacinas de mRNA/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Linfócitos B/imunologia , Linfócitos B/virologia , COVID-19/virologia , Chlorocebus aethiops , Humanos , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/virologia , Ativação Linfocitária/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinação/métodos , Células Vero
6.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34969842

RESUMO

The quantitative understanding and precise control of complex dynamical systems can only be achieved by observing their internal states via measurement and/or estimation. In large-scale dynamical networks, it is often difficult or physically impossible to have enough sensor nodes to make the system fully observable. Even if the system is in principle observable, high dimensionality poses fundamental limits on the computational tractability and performance of a full-state observer. To overcome the curse of dimensionality, we instead require the system to be functionally observable, meaning that a targeted subset of state variables can be reconstructed from the available measurements. Here, we develop a graph-based theory of functional observability, which leads to highly scalable algorithms to 1) determine the minimal set of required sensors and 2) design the corresponding state observer of minimum order. Compared with the full-state observer, the proposed functional observer achieves the same estimation quality with substantially less sensing and fewer computational resources, making it suitable for large-scale networks. We apply the proposed methods to the detection of cyberattacks in power grids from limited phase measurement data and the inference of the prevalence rate of infection during an epidemic under limited testing conditions. The applications demonstrate that the functional observer can significantly scale up our ability to explore otherwise inaccessible dynamical processes on complex networks.

8.
SN Comput Sci ; 2(5): 405, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34396152

RESUMO

Optimal control for infectious diseases has received increasing attention over the past few decades. In general, a combination of cost state variables and control effort have been applied as cost indices. Many important results have been reported. Nevertheless, it seems that the interpretation of the optimal control law for an epidemic system has received less attention. In this paper, we have applied Pontryagin's maximum principle to develop an optimal control law to minimize the number of infected individuals and the vaccination rate. We have adopted the compartmental model SIR to test our technique. We have shown that the proposed control law can give some insights to develop a control strategy in a model-free scenario. Numerical examples show a reduction of 50% in the number of infected individuals when compared with constant vaccination. There is not always a prior knowledge of the number of susceptible, infected, and recovered individuals required to formulate and solve the optimal control problem. In a model-free scenario, a strategy based on the analytic function is proposed, where prior knowledge of the scenario is not necessary. This insight can also be useful after the development of a vaccine to COVID-19, since it shows that a fast and general cover of vaccine worldwide can minimize the number of infected, and consequently the number of deaths. The considered approach is capable of eradicating the disease faster than a constant vaccination control method.

9.
J Immunol ; 207(1): 162-174, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34183364

RESUMO

According to a large number of reported cohorts, sepsis has been observed in nearly all deceased patients with COVID-19. We and others have described sepsis, among other pathologies, to be an endotoxin tolerance (ET)-related disease. In this study, we demonstrate that the culture of human blood cells from healthy volunteers in the presence of SARS-CoV-2 proteins induced ET hallmarks, including impairment of proinflammatory cytokine production, low MHC class II (HLA-DR) expression, poor T cell proliferation, and enhancing of both phagocytosis and tissue remodeling. Moreover, we report the presence of SARS-CoV-2 blood circulating proteins in patients with COVID-19 and how these levels correlate with an ET status, the viral RNA presence of SARS-CoV-2 in plasma, as well as with an increase in the proportion of patients with secondary infections.


Assuntos
COVID-19 , SARS-CoV-2 , Tolerância à Endotoxina , Genes MHC da Classe II , Humanos , RNA Viral
10.
Biomed Hub ; 6(1): 48-58, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34046413

RESUMO

We report the disparate clinical progression of a couple infected by SARS-CoV-2 based on their immune checkpoint (IC) levels and immune cell distribution in blood from admission to exitus in patient 1 and from admission to discharge and recovery in patient 2. A detailed clinical follow-up accompanied by a longitudinal analysis of immune phenotypes and IC levels is shown. The continuous increase in the soluble IC ligand galectin-9 (Gal-9) and the increment in T-cell immunoglobulin and mucin domain-containing 3 (TIM-3) protein in T cells in patient 1 suggests an activation of the Gal-9/TIM-3 axis and, subsequently, a potential cell exhaustion in this patient that did not occur in patient 2. Our data indicate that the Gal-9/TIM-3 axis could be a potential target in this clinical setting, along with a patent effector memory T-cell reduction.

11.
Heliyon ; 6(12): e05635, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33283062

RESUMO

Increased cytokine levels, acute phase reactants and immune checkpoint expression changes have been described in patients with Coronavirus Disease 2019 (COVID-19). Here, we have reported a monocyte polarization towards a low HLA-DR and high PD-L1 expression after long exposure to proteins from SARS-CoV-2. Moreover, CD86 expression was also reduced over SARS-CoV-2 proteins exposure. Additionally, T-cells proliferation was significantly reduced after stimulation with these proteins. Eventually, patients with long-term SARS-CoV-2 infection also exhibited a significant blockade of T-cells proliferation.

12.
J Chem Ecol ; 46(10): 978-986, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32876829

RESUMO

Herbivory can induce chemical changes throughout plant tissues including flowers, which could affect pollinator-pathogen interactions. Pollen is highly defended compared to nectar, but no study has examined whether herbivory affects pollen chemistry. We assessed the effects of leaf herbivory on nectar and pollen alkaloids in Nicotiana tabacum, and how herbivory-induced changes in nectar and pollen affect pollinator-pathogen interactions. We damaged leaves of Nicotiana tabacum using the specialist herbivore Manduca sexta and compared nicotine and anabasine concentrations in nectar and pollen. We then pooled nectar and pollen by collection periods (within and after one month of flowering), fed them in separate experiments to bumble bees (Bombus impatiens) infected with the gut pathogen Crithidia bombi, and assessed infections after seven days. We did not detect alkaloids in nectar, and leaf damage did not alter the effect of nectar on Crithidia counts. In pollen, herbivory induced higher concentrations of anabasine but not nicotine, and alkaloid concentrations rose and then fell as a function of days since flowering. Bees fed pollen from damaged plants had Crithidia counts 15 times higher than bees fed pollen from undamaged plants, but only when pollen was collected after one month of flowering, indicating that both damage and time since flowering affected interaction outcomes. Within undamaged treatments, bees fed late-collected pollen had Crithidia counts 10 times lower than bees fed early-collected pollen, also indicating the importance of time since flowering. Our results emphasize the role of herbivores in shaping pollen chemistry, with consequences for interactions between pollinators and their pathogens.


Assuntos
Abelhas/parasitologia , Crithidia/fisiologia , Flores/química , Herbivoria , Interações Hospedeiro-Parasita , Nicotiana/química , Anabasina/análise , Animais , Comportamento Alimentar/fisiologia , Manduca/fisiologia , Nicotina/análise , Folhas de Planta/química , Néctar de Plantas/química , Pólen/química , Polinização , Fatores de Tempo
13.
Int J Biol Sci ; 16(14): 2479-2489, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32792851

RESUMO

The emergence of SARS-CoV-2 virus and its associated disease COVID-19 have triggered significant threats to public health, in addition to political and social changes. An important number of studies have reported the onset of symptoms compatible with pneumonia accompanied by coagulopathy and lymphocytopenia during COVID-19. Increased cytokine levels, the emergence of acute phase reactants, platelet activation and immune checkpoint expression are some of the biomarkers postulated in this context. As previously observed in prolonged sepsis, T-cell exhaustion due to SARS-CoV-2 and even their reduction in numbers due to apoptosis hinder the response to the infection. In this review, we synthesized the immune changes observed during COVID-19, the role of immune molecules as severity markers for patient stratification and their associated therapeutic options.


Assuntos
Infecções por Coronavirus/imunologia , Infecções por Coronavirus/fisiopatologia , Pneumonia Viral/imunologia , Pneumonia Viral/fisiopatologia , Sepse/fisiopatologia , Corticosteroides/uso terapêutico , Antivirais/uso terapêutico , Betacoronavirus , Biomarcadores , Transtornos da Coagulação Sanguínea/imunologia , COVID-19 , Citocinas/metabolismo , Humanos , Sistema Imunitário , Imunidade Inata , Interferons/metabolismo , Linfopenia/imunologia , Pandemias , Fenótipo , Ativação Plaquetária , SARS-CoV-2
14.
Medicine (Baltimore) ; 99(20): e20065, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32443313

RESUMO

Despite viral control, basal chronic inflammation and its related comorbidities remain unsolved problems among HIV-infected individuals. Soluble factors derived from myeloid cells have emerged as potent markers associated with HIV-related comorbidities and mortality. In the present report, we explored the relationship between soluble programmed death-ligand 1 (sPD-L1) and HIV-1 infection, antiretroviral therapy (ART), CD4/CD8 ratio, viral load (VL), and sexually transmitted coinfections.A prospective observational study on 49 HIV-1 infected adults.We found sPD-L1 levels were significantly higher in 49 HIV infected subjects than in 30 uninfected adults (1.05 ng/ml vs 0.52 ng/ml; P < .001). In this line, sPD-L1 levels were found to be elevated in 16 HIV infected subjects with undetectable VL compared with the uninfected subjects (0.75 ng/ml vs 0.52 ng/ml; P = .02). Thirteen ART-treated individuals with virological failure exhibited the highest sPDL1 levels, which were significantly higher than both 20 ART naïve infected individuals (1.68 ng/ml vs 0.87 ng/ml; P = .003) and the 16 ART-treated individuals with suppressed viremia (1.68 ng/ml vs 0.79 ng/ml; P = 002). Entire cohort data showed a statistically significant positive correlation between VL and sPD-L1 levels in plasma (r = 0.3; P = 036).Our findings reveal sPDL-1 as a potential biomarker for HIV infection especially interesting in those individuals with virological failure.


Assuntos
Antígeno B7-H1/sangue , Infecções por HIV/sangue , Infecções por HIV/imunologia , HIV-1 , Adulto , Fármacos Anti-HIV/uso terapêutico , Biomarcadores/sangue , Feminino , Infecções por HIV/complicações , Infecções por HIV/tratamento farmacológico , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Carga Viral/efeitos dos fármacos , Carga Viral/imunologia
15.
Phys Rev E ; 101(3-1): 032207, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32289930

RESUMO

Phase coherence is an important measure in nonlinear science. Whereas there is no generally accepted definition for phase and therefore for phase coherence, many works associate this feature with topological aspects of the systems, such as having a well-defined rotating center. Given the relevance of this concept for synchronization problems, one aim of this paper is to argue by means of a couple of counterexamples that phase coherence is not related to the topology of the attractor. A second aim is to introduce a phase-coherence measure based on recurrence plots, for which probabilities of recurrences for two different trajectories are similar for a phase-coherent system and dissimilar for non-phase-coherent systems. The measure does not require a phase variable defined a priori.

16.
J Surg Res ; 249: 232-240, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31796217

RESUMO

BACKGROUND: Galactomannan (GAL), a polysaccharide present on the cell wall of several fungi, has shown an ability to modulate inflammatory responses through the dectin-1 receptor in human macrophages. However, studies evaluating the modulatory properties of this polysaccharide in in vivo inflammatory scenarios are scarce. We hypothesized that GAL pretreatment would modulate local and remote damage related to intestinal reperfusion after an ischemic insult. MATERIALS AND METHODS: Adult male Balb/c mice were subjected to intestinal ischemia-reperfusion injury by reversible occlusion of the superior mesenteric artery, consisting of 45 min of ischemia followed by 3 or 24 h of reperfusion. Intragastric GAL (70 mg/kg) was administered 12 h before ischemia, and saline solution was used in the control animals. Jejunum, lung, and blood samples were taken for the analysis of histology, gene expression, plasma cytokine levels, and nitrosative stress. RESULTS: Intestinal and lung histologic alterations were attenuated by GAL pretreatment, showing significant differences compared with nontreated animals. Interleukin 1ß, monocyte chemoattractant protein 1, and IL-6 messenger RNA expression were considerably downregulated in the small intestine of the GAL group. In addition, GAL treatment significantly prevented plasma interleukin 6 and monocyte chemoattractant protein 1 upregulation and diminished nitrate and nitrite levels after 3 h of intestinal reperfusion. CONCLUSIONS: GAL pretreatment constitutes a novel and promising therapy to reduce local and remote damage triggered by intestinal ischemia-reperfusion injury. Further in vivo and in vitro studies to understand GAL's modulatory effects are warranted.


Assuntos
Mucosa Intestinal/efeitos dos fármacos , Isquemia/complicações , Mananas/administração & dosagem , Traumatismo por Reperfusão/prevenção & controle , Animais , Modelos Animais de Doenças , Galactose/análogos & derivados , Humanos , Mucosa Intestinal/irrigação sanguínea , Mucosa Intestinal/patologia , Jejuno/irrigação sanguínea , Jejuno/efeitos dos fármacos , Jejuno/patologia , Masculino , Camundongos , Traumatismo por Reperfusão/etiologia , Traumatismo por Reperfusão/patologia
17.
Chaos ; 29(8): 083101, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31472506

RESUMO

Recurrence network analysis (RNA) is a remarkable technique for the detection of dynamical transitions in experimental applications. However, in practical experiments, often only a scalar time series is recorded. This requires the state-space reconstruction from this single time series which, as established by embedding and observability theory, is shown to be hampered if the recorded variable conveys poor observability. In this work, we investigate how RNA metrics are impacted by the observability properties of the recorded time series. Following the framework of Zou et al. [Chaos 20, 043130 (2010)], we use the Rössler and Duffing-Ueda systems as benchmark models for our study. It is shown that usually RNA metrics perform badly with variables of poor observability as for recurrence quantification analysis. An exception is the clustering coefficient, which is rather robust to observability issues. Along with its efficacy to detect dynamical transitions, it is shown to be an efficient tool for RNA-especially when no prior information of the variable observability is available.

18.
Ecology ; 100(10): e02801, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31234229

RESUMO

Bee populations have experienced declines in recent years, due in part to increased disease incidence. Multiple factors influence bee-pathogen interactions, including nectar and pollen quality and secondary metabolites. However, we lack an understanding of how plant interactions with their environment shape bee diet quality. We examined how plant interactions with the belowground environment alter floral rewards and, in turn, bee-pathogen interactions. Soil-dwelling mycorrhizal fungi are considered plant mutualists, although the outcome of the relationship depends on environmental conditions such as nutrients. In a 2 × 2 factorial design, we asked whether mycorrhizal fungi and nutrients affect concentrations of nectar and pollen alkaloids (anabasine and nicotine) previously shown to reduce infection by the gut pathogen Crithidia in the native bumble bee Bombus impatiens. To ask how plant interactions affect this common bee pathogen, we fed pollen and nectar from our treatment plants, and from a wildflower pollen control with artificial nectar, to bees infected with Crithidia. Mycorrhizal fungi and fertilizer both influenced flowering phenology and floral chemistry. While we found no anabasine or nicotine in nectar, high fertilizer increased anabasine and nicotine in pollen. Arbuscular mycorrhizal fungi (AMF) decreased nicotine concentrations, but the reduction due to AMF was stronger in high than low-nutrient conditions. AMF and nutrients also had interactive effects on bee pathogens via changes in nectar and pollen. High fertilizer reduced Crithidia cell counts relative to low fertilizer in AMF plants, but increased Crithidia in non-AMF plants. These results did not correspond with effects of fertilizer and AMF on pollen alkaloid concentrations, suggesting that other components of pollen or nectar were affected by treatments and shaped pathogen counts. Our results indicate that soil biotic and abiotic environment can alter bee-pathogen interactions via changes in floral rewards, and underscore the importance of integrative studies to predict disease dynamics and ecological outcomes.


Assuntos
Micorrizas , Parasitos , Animais , Abelhas , Crithidia , Nutrientes , Solo
19.
Chaos ; 29(3): 033118, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30927843

RESUMO

In a network of high-dimensionality, it is not feasible to measure every single node. Thus, an important goal is to define the optimal choice of sensor nodes that provides a reliable state reconstruction of the network system state-space. This is an observability problem. In this paper, we propose a particle filtering (PF) framework as a way to assess observability properties of a dynamical network, where each node is composed of an individual dynamical system. The PF framework is applied to two benchmarks, networks of Kuramoto and Rössler oscillators, to investigate how the interplay between dynamics and topology impacts the network observability. Based on the numerical results, we conjecture that, when the network nodal dynamics are heterogeneous, better observability is conveyed for sets of sensor nodes that share some dynamical affinity to its neighbourhood. Moreover, we also investigate how the choice of an internal measured variable of a multidimensional sensor node affects the PF performance. The PF framework effectiveness as an observability measure is compared with a well-consolidated nonlinear observability metric for a small network case and some chaotic system benchmarks.

20.
Respirology ; 24(7): 684-692, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30656807

RESUMO

BACKGROUND AND OBJECTIVE: In obstructive sleep apnoea (OSA), intermittent hypoxia (IH) compromises immune surveillance through the upregulation of the programmed cell death-1 (PD-1) receptor and its ligand (PD-L1). Because the risk of OSA-related cancer depends on age, we assessed PD-L1/PD-1 expression in middle-aged and older patients with OSA as well as in a murine model. METHODS: PD-L1 expression was studied in 41 patients with severe OSA and 40 healthy volunteers (HV), divided into two groups (≤55 and >55 years of age). We used flow cytometry, quantitative PCR (qPCR) and ELISA to determine PD-L1 expression on monocytes and plasma PD-L1 protein levels. Moreover, we analysed PD-L1 expression on an in vivo IH model with old and young mice. RESULTS: In subjects up to 55 years of age, severe OSA increased PD-L1 surface protein and mRNA level expression on monocytes and soluble-PD-L1 protein concentration in plasma compared to HV. PD-L1 and hypoxia-induced factor (HIF)-1α expression correlated with age in HV, whereas in patients with OSA there was a negative relationship. In the mice exposed to IH, PD-L1 expression on F4/80+ splenocytes was also only increased in young animals. HIF-1α expression was significantly higher in patients with OSA than in HV in subjects up to 55 years of age, while PD-L1 expression in monocytes was related to HIF-1α expression in young patients with OSA. CONCLUSION: PD-L1 upregulation in patients with OSA as a consequence of HIF-1α activation occurs mainly in young patients. In older patients with OSA, upregulation was not detected, possibly due to impaired oxygen sensitivity.


Assuntos
Antígeno B7-H1/sangue , Subunidade alfa do Fator 1 Induzível por Hipóxia/sangue , Hipóxia/sangue , Apneia Obstrutiva do Sono/sangue , Adulto , Fatores Etários , Idoso , Animais , Antígeno B7-H1/genética , Estudos de Casos e Controles , Feminino , Humanos , Hipóxia/etiologia , Hipóxia/fisiopatologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Masculino , Camundongos , Pessoa de Meia-Idade , Monócitos/metabolismo , RNA Mensageiro , Apneia Obstrutiva do Sono/complicações , Apneia Obstrutiva do Sono/fisiopatologia , Ativação Transcricional , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...