RESUMO
In this study, a simple calcination route was adopted to prepare hausmannite Mn3O4 nanoparticles using rice powder as soft bio-template. Prepared Mn3O4 was characterized by Fourier Transform Infra-Red Spectroscopy (FTIR), Field Emission Scanning Electron Microscopy (FESEM), Energy Dispersive X-ray microanalysis (EDX), Powder X-Ray Diffraction (XRD), Transmission Electron Microscopy (TEM), Brunauer-Emmett-Teller (BET) and Solid state UV-Vis spectroscopic techniques. Mn-O stretching in tetrahedral site was confirmed by FTIR and Raman spectra. % of Mn and O content supported Mn3O4 formation. The crystallinity and grain size was found to be 68.76% and 16.43 nm, respectively; tetragonal crystal system was also cleared by XRD. TEM clarified the planes of crystal formed which supported the XRD results and BET demonstrated mesoporous nature of prepared Mn3O4 having low pore volume. Low optical band gap of 3.24 eV of prepared Mn3O4 nanoparticles indicated semiconductor property and was used as cathode material to fabricate CR-2032 coin cell of Aqueous Rechargeable Zinc Ion Battery (ARZIB). A reversible cyclic voltammogram (CV) showed good zinc ion storage performance. Low cell resistance was confirmed by Electrochemical Impedance Spectroscopy (EIS). The coin cell delivered high specific discharge capacity of 240.75 mAhg-1 at 0.1 Ag-1 current density. The coulombic efficiency was found to be 99.98%. It also delivered excellent capacity retention 94.45% and 64.81% after 300 and 1000 charge-discharge cycles, respectively. This work offers a facile and cost effective approach for preparing cathode material of ARZIBs.
Assuntos
Fontes de Energia Elétrica , Compostos de Manganês , Nanopartículas , Oryza , Óxidos , Pós , Zinco , Oryza/química , Compostos de Manganês/química , Zinco/química , Óxidos/química , Nanopartículas/química , Difração de Raios X , Espectroscopia de Infravermelho com Transformada de FourierRESUMO
In this work, an HB pencil electrode (HBPE) was electrochemically modified by amino acids (AAs) glycine (GLY) and aspartic acid (ASA) and designated as GLY-HB and ASA-HB electrodes. They were used in the detection of dihydroxybenzene isomers (DHBIs) such as hydroquinone (HQ), catechol (CC), and resorcinol (RS), by cyclic voltammetry (CV), and by differential pulse voltammetry. HBPE was characterized by scanning electron microscopy and energy-dispersive X-ray spectroscopy. These three electrodes showed a linear relationship of current with concentration of DHBIs, and the electrochemical processes were diffusion controlled in all cases. In simultaneous detection, the limit of detection, based on signal-to-noise ratio (S/N = 3), for HQ, CC, and RS was 12.473, 16.132, and 25.25 µM, respectively, at bare HBPE; 5.498, 7.119, and 14.794 µM, respectively, at GLY-HB; and 22.459, 25.478, and 38.303 µM, respectively, at ASA-HB. The sensitivity for HQ, CC, and RS was 470.481, 363.781, and 232.416 µA/mM/cm2, respectively, at bare HBPE; 364.785, 282.712, and 135.560 µA/mM/cm2, respectively, at GLY-HB; and 374.483, 330.108, and 219.574, respectively, at ASA-HB. The interference studies clarified the suitability and reliability of the electrodes for the detection of HQ, CC, and RS in an environmental system. Real sample analysis was done using tap water, and the proposed electrodes expressed recovery with high reproducibility. Meanwhile, these three electrodes have excellent sensitivity and selectivity, which can be used as a promising technique for the detection of DHBIs simultaneously.
RESUMO
Main-chain chiral quaternary ammonium polymers were successfully synthesized by the quaternization polymerization of cinchonidine dimer with dihalides. The polymerization occurred smoothly under optimized conditions to give novel type of main-chain chiral quaternary ammonium polymers. The catalytic activity of the polymeric chiral organocatalysts was investigated on the asymmetric benzylation of N-(diphenylmethylidene)glycine tert-butyl ester.