RESUMO
Strobilurins, among the most used fungicides worldwide, are considered non-toxic to mammals and birds, but there is growing evidence that these compounds are highly toxic to aquatic species. Dimoxystrobin has been included in the 3rd Watch List of the European Commission, and it has been classified as very toxic to aquatic life. However, previous studies focused on acute toxicity and only two reports are available on its impact on fish, and none on its effects during the early life stages. Here, we evaluated for the first time the effects induced on zebrafish embryos and larvae by two dimoxystrobin sublethal concentrations (6.56 and 13.13⯵g/L) falling in the range of predicted environmental concentrations. We demonstrated that short-term exposure to dimoxystrobin may exert adverse effects on multiple targets, inducing severe morphological alterations. Moreover, we showed enhanced mRNA levels of genes related to the mitochondrial respiratory chain and ATP production. Impairment of the swim bladder inflation has also been recorded, which may be related to the observed swimming performance alterations.
Assuntos
Embrião não Mamífero , Fungicidas Industriais , Larva , Mitocôndrias , Estrobilurinas , Poluentes Químicos da Água , Peixe-Zebra , Animais , Fungicidas Industriais/toxicidade , Larva/efeitos dos fármacos , Estrobilurinas/toxicidade , Mitocôndrias/efeitos dos fármacos , Embrião não Mamífero/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Natação , Sacos Aéreos/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacosRESUMO
Strobilurins represent the most widely used class of fungicides nowadays andare considered relatively non-toxic to mammals and birds but highly toxic to aquatic biota. Dimoxystrobin is one of the novel strobilurins, recently included in the 3rd Watch List of the European Commission as available data indicate that it could pose a significant risk to aquatic species. As yet, the number of studies explicitly assessing the impact of this fungicide on terrestrial and aquatic species is extremely low, and the toxic effects of dimoxystrobin on fish have not been reported. Here we investigate for the first time the alterations induced by two environmentally relevant and very low concentrations of dimoxystrobin (6.56 and 13.13 µg/L) in the fish gills. morphological, morphometric, ultrastructural, and functional alterations have been evaluated using zebrafish as a model species. We demonstrated that even short-term exposure (96 h) to dimoxystrobin alters fish gills reducing the surface available for gas exchange and inducing severe alterations encompassing three reaction patterns: circulatory disturbance and both regressive and progressive changes. Furthermore, we revealed that this fungicide impairs the expression of key enzymes involved in osmotic and acid-base regulation (Na+/K+-ATPase and AQP3) and the defensive response against oxidative stress (SOD and CAT). The information presented here highlights the importance of combining data from different analytical methods for evaluating the toxic potential of currently used and new agrochemical compounds. Our results will also contribute to the discussion on the suitability of mandatory ecotoxicological tests on vertebrates before the introduction on the market of new compounds.
Assuntos
Fungicidas Industriais , Poluentes Químicos da Água , Animais , Fungicidas Industriais/metabolismo , Estrobilurinas/farmacologia , Peixe-Zebra/metabolismo , Brânquias/metabolismo , Poluentes Químicos da Água/análise , MamíferosRESUMO
Heavy metal contamination is recognized worldwide as a serious threat to human health and wildlife, and reducing their emissions is a priority of international and EU actions. Due to its persistence, high bioaccumulation tendency, and toxicity properties, lead (Pb) is one of the heavy metals of greatest concern. Even at low concentrations, lead induces various clinical and subclinical conditions in both humans and animals, and it has been included in the priority list of hazardous substances. In the present study, we used zebrafish's early stages as a model, given their well-acknowledged predictive value in the risk assessment of chemicals. This study was designed to investigate the morphological and morphometric alterations induced by Pb during zebrafish's early development and disclose the putative effects stage- and/or dose-dependent. We examined injuries induced by two environmentally relevant and extremely low concentrations of Pb (2.5 µg/L and 5 µg/L) during two exposure windows: early (between 1 and 7 dpf) and late (between 2 and 8 dpf). We clearly demonstrated that the incidence and severity of morphological abnormalities increased with increasing Pb dose and exposure time in both early and late-exposed groups. Furthermore, we revealed that malformation severity was significantly higher in the early exposed group than in the late exposure group at all exposure times and for both tested doses, thus highlighting the high sensitivity of zebrafish during the initial stages of development. The information presented in this paper emphasizes the effectiveness of morphological biomarkers in unveiling threatening situations and supports the role of zebrafish embryos and larvae in risk assessment and environmental monitoring.
Assuntos
Metais Pesados , Poluentes Químicos da Água , Animais , Biomarcadores , Substâncias Perigosas , Humanos , Larva , Chumbo/toxicidade , Poluentes Químicos da Água/toxicidade , Peixe-ZebraRESUMO
Lead (Pb), due to its high toxicity and bioaccumulation tendency, is one of the top three pollutants of concern for both humans and wildlife and occupies second place in the Priority List of Hazardous Substances. In freshwater fish, Pb is mainly absorbed through the gills, where the greatest accumulation occurs. Despite the crucial role of gills in several physiological functions such as gas exchange, water balance, and osmoregulation, no studies evaluated the effects of environmentally relevant concentrations of Pb on this organ, and existing literature only refers to high levels of exposure. Herein we investigated for the first time the molecular and morphological effects induced by two low and environmentally relevant concentrations of Pb (2.5 and 5 µg/L) on the gills of Danio rerio, a model species with a high translational value for human toxicity. It was demonstrated that Pb administration at even low doses induces osmoregulatory dysfunctions by affecting Na+/K+-ATPase and AQP3 expression. It was also shown that Pb upregulates MTs as a protective response to prevent cell damage. Modulation of SOD confirms that the production of reactive oxygen species is an important toxicity mechanism of Pb. Histological and morphometric analysis revealed conspicuous pathological changes, both dose- and time-dependent.