Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros













Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 29(24): 40406-40418, 2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34809382

RESUMO

Electrons in indirect semiconductors can optically transit between the valance and conduction band edges only when the momentum conservation is satisfied with help of a third quasi-particle, such as a phonon. In this report, we theoretically demonstrate that indirect interband transition of graphene electrons can be optically enabled only by light with highly enhanced transversal modes, which can be generated by scattering of point dipole radiation with periodic metal slits fabricated in a natural hyperbolic material. The light-matter interaction for graphene electrons is reformulated by using indirect transition matrix elements, and interband polarizations of graphene are obtained by solving quantum kinetic equations of motion in the semi-classical regime. The interband optical current density of graphene as a function of the polarization angle of the incident field shows clear hexagonal response to the high transversal modes of light, which results from the low dependence on dephasing rate and dominance of the indirect polarizations over the direct interband contributions.

2.
Nanoscale ; 13(10): 5316-5323, 2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33656502

RESUMO

Plasmonic coupling of metallic nanostructures with two-dimensional molybdenum disulfide (MoS2) atomic layers is an important topic because it provides a pathway to manipulate the optoelectronic properties and to overcome the limited optical cross-section of the materials. Plasmonic enhanced light-matter interaction of a MoS2 layer is known to be mainly governed by optical field enhancement and the Purcell effect, while the discrimination of the contribution from each mechanism to the plasmonic enhancement is challenging. Here, we investigate photoluminescence (PL) enhancement from few-layer MoS2 transferred on Au nanostructure arrays with controlled localized surface plasmon resonance (LSPR) spectral positions that were detuned from the excitation wavelengths. Two distinctive regimes in LSPR mode-dependent PL enhancement were revealed showing a maximum enhancement (∼40-fold) with zero detuning and a modest enhancement (∼10-fold) with the red-shift detuned LSPR from the excitation wavelength, which were attributed to LSPR-induced optical field enhancement and the Purcell effect, respectively. By applying the experimental parameters into the Purcell effect formalism, an effective mode volume of ∼0.016λ03 was estimated. Our work provides an insight into how to utilize few-layer MoS2 as a base material for optoelectronics by harnessing Purcell-enhanced optical responsivity.

3.
Opt Express ; 29(4): 5098-5109, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33726051

RESUMO

The resonance frequency shift and the radiative decay rate of single quantum dot excitions in close proximity to a dielectric-hyperbolic material interface are theoretically investigated. The previous nonlocal susceptibility model for a quantum-confined exciton in inhomogeneous surroundings has been substantially upgraded in a way to incorporate exciton's envelope functions with a non-zero orbital angular momentum and a dyadic Green function tensor for uniaxially anisotropic multilayer structures. Different eigenstates of spatially localized excitons are considered with a distance to the interface of half-infinite Tetradymites(Bi2Se3), a natural hyperbolic material in a visible-to-near infrared wavelength range. From numerically obtained self-energy corrections (SEC) of the exciton as a function of its spatial confinement, eigenfunction, and distance, where the real and imaginary parts correspond to the resonance frequency shift and the radiative decay rate of the exciton, respectively, both optical properties show a significant dependence on the spatial confinement of the exciton than expected. The SEC of very weakly confined (quasi free) two-dimensional excitons is almost immune to specific choice of the eigenfunction and to anisotropic properties of the hyperbolic material even at a close distance, while such conditions are decisive for the SEC of strongly confined excitons.

4.
Light Sci Appl ; 10(1): 19, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33479204

RESUMO

Twisted bilayer graphene (tBLG) has received substantial attention in various research fields due to its unconventional physical properties originating from Moiré superlattices. The electronic band structure in tBLG modified by interlayer interactions enables the emergence of low-energy van Hove singularities in the density of states, allowing the observation of intriguing features such as increased optical conductivity and photocurrent at visible or near-infrared wavelengths. Here, we show that the third-order optical nonlinearity can be considerably modified depending on the stacking angle in tBLG. The third-harmonic generation (THG) efficiency is found to significantly increase when the energy gap at the van Hove singularity matches the three-photon resonance of incident light. Further study on electrically tuneable optical nonlinearity reveals that the gate-controlled THG enhancement varies with the twist angle in tBLG, resulting in a THG enhanced up to 60 times compared to neutral monolayer graphene. Our results prove that the twist angle opens up a new way to control and increase the optical nonlinearity of tBLG, suggesting rotation-induced tuneable nonlinear optics in stacked two-dimensional material systems.

5.
Opt Express ; 28(2): 1790-1804, 2020 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-32121884

RESUMO

We theoretically investigate temporal dynamics of the second order cross correlation function at zero delay time (G12(2)(t)) and spectral entanglement of two photons emitted from an atomic three-level cascade. In Heisenberg's picture, a closed set of quantum kinetic equations of motion for G12(2)(t) is derived within density matrix formalism with cluster expansion rule. G12(2)(t) shows qualitatively distinctive features depending on the spectral entanglement of two photons. Although incoherent photon pairs generated from spontaneous radiation of the excited electron are not entangled, their correlation and anti-correlation properties can be found in G12(2)(t) depending on the radiative decay rates. In the coherent excitation regime where the light emitter is located in a high Q-cavity, and its atomic polarizations are predominantly initialized, spectral entanglement between two coherent photons is established. We show that G12(2)(t) is well fitted by the entanglement criterion by Duan-Giedke-Cirac-Zoller and explain the close relationship between them by means of the optically forbidden transition in the three-level cascade.

6.
Sci Rep ; 10(1): 2172, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-32034230

RESUMO

Organic-inorganic halide perovskite nanocrystals or quantum dots (PQDs) are excellent candidates for optoelectronic applications, such as lasers, solar cells, light emitting diodes, and single photon sources. However, the potential applications of PQDs can expand once the photoluminescence, and in particular, the blinking behaviors of single PQDs are understood. Although the blinking of PQDs has been studied extensively recently, the underlying mechanism of the blinking behaviors is still under debate. In this study, we confirmed that type-A and type-B-HC (hot carrier) blinking, contributed to PQD blinking using their fluorescence lifetime intensity distribution (FLID). Type-B-HC blinking was experimentally confirmed for the first time for formamidinium based PQDs, and the simultaneous contributions of type-A and type-B blinking were clearly specified. Further, we related different FLID data to the ON/OFF time distribution as distinct features of different blinking types. We also emphasized that detection capability was crucial for correctly elucidating the blinking mechanism.

7.
Sci Rep ; 7(1): 7907, 2017 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-28801608

RESUMO

We report surface plasmon (SP) lasing in metal/semiconductor nanostructures, where one-dimensional periodic silver slit gratings are placed on top of an InGaAsP layer. The SP nature of the lasing is confirmed from the emission wavelength governed by the grating period, polarization analysis, spatial coherence, and comparison with the linear transmission. The excellent performance of the device as an SP source is demonstrated by its tunable emission in the 400-nm-wide telecom wavelength band at room temperature. We show that the stimulated emission enhanced by the Purcell effect enables successful SP lasing at high energies above the gap energy of the gain. We also discuss the dependence of the lasing efficiency on temperature, grating dimension, and type of metal.

8.
Opt Express ; 25(8): 8484-8490, 2017 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-28437928

RESUMO

We theoretically studied in terahertz frequency regime optical bistability of graphene placed at the interface between thin dielectric layers. We solved self-consistently the nonlinear wave equations containing the third-order optical conductivity of graphene in four-layer structures and obtained hysteresis response of the transmitted power as a function of the incident power. We numerically observed that the critical powers for the up and down transitions and the Fermi-energy of graphene required for terahertz optical bistability can be reduced by carefully choosing material properties and the thicknesses of dielectric layers. Furthermore, these values can be substantially decreased when graphene as a randomly stacked multilayer structure is asymmetrically located in thin dielectric layers.

9.
Opt Express ; 23(15): 19047-55, 2015 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-26367567

RESUMO

We theoretically study the transmission reduction of light passing through absorptive molecules embedded in a periodic metal slot array in a near infrared wavelength regime. From the analytically solved transmitted light, we present a simple relation given by the attenuation length of light at the resonance wavelength of the slot antennas with respect to the spectral width of the resonant transmission peak. This relation clearly explains that the control of the transmission reduction even with very low absorptive materials is possible. We investigate also the transmission reduction by absorptive molecules in a real metallic slot antenna array on a dielectric substrate and compare the results with finite difference time domain calculations. In numerical calculations, we demonstrate that the same amount of transmission reduction by a bulk absorptive material can be achieved only with one-hundredth thickness of the same material when it is embedded in an optimized Fano-resonant slot antenna array. Our relation presented in this study can contribute to label-free chemical and biological sensing as an efficient design and performance criterion for periodic slot antenna arrays.

10.
Opt Express ; 23(16): 21279-86, 2015 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-26367976

RESUMO

We demonstrate strong modulation of the transmission around the surface plasmon polariton (SPP) resonance in metal/semiconductor hybrid nanostructures based on Ag film on top of InGaAs. The change in the real and imaginary parts of the refractive index due to photoexcited carriers in InGaAs generates a shift in the SPP resonance and enhanced transmission near the SPP resonance. Temporal evolution of the complex refractive index was traced by comparing the transient transmission with finite-difference time-domain (FDTD) simulations.

11.
Nat Commun ; 6: 6851, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25897687

RESUMO

Active manipulation of light in optical fibres has been extensively studied with great interest because of its compatibility with diverse fibre-optic systems. While graphene exhibits a strong electro-optic effect originating from its gapless Dirac-fermionic band structure, electric control of all-fibre graphene devices remains still highly challenging. Here we report electrically manipulable in-line graphene devices by integrating graphene-based field effect transistors on a side-polished fibre. Ion liquid used in the present work critically acts both as an efficient gating medium with wide electrochemical windows and transparent over-cladding facilitating light-matter interaction. Combined study of unique features in gate-variable electrical transport and optical transition at monolayer and randomly stacked multilayer graphene reveals that the device exhibits significant optical transmission change (>90%) with high efficiency-loss figure of merit. This subsequently modifies nonlinear saturable absorption characteristics of the device, enabling electrically tunable fibre laser at various operational regimes. The proposed device will open promising way for actively controlled optoelectronic and nonlinear photonic devices in all-fibre platform with greatly enhanced graphene-light interaction.

12.
ACS Nano ; 8(9): 9089-96, 2014 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-25137623

RESUMO

We show that surface plasmons, excited with femtosecond laser pulses on continuous or discontinuous gold substrates, strongly enhance the generation and emission of ultrashort, broadband terahertz pulses from single layer graphene. Without surface plasmon excitation, for graphene on glass, 'nonresonant laser-pulse-induced photon drag currents' appear to be responsible for the relatively weak emission of both s- and p-polarized terahertz pulses. For graphene on a discontinuous layer of gold, only the emission of the p-polarized terahertz electric field is enhanced, whereas the s-polarized component remains largely unaffected, suggesting the presence of an additional terahertz generation mechanism. We argue that in the latter case, 'surface-plasmon-enhanced optical rectification', made possible by the lack of inversion symmetry at the graphene on gold surface, is responsible for the strongly enhanced emission. The enhancement occurs because the electric field of surface plasmons is localized and enhanced where the graphene is located: at the surface of the metal. We believe that our results point the way to small, thin, and more efficient terahertz photonic devices.

13.
Nat Commun ; 4: 2361, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23999053

RESUMO

Squeezing light through nanometre-wide gaps in metals can lead to extreme field enhancements, nonlocal electromagnetic effects and light-induced electron tunnelling. This intriguing regime, however, has not been readily accessible to experimentalists because of the lack of reliable technology to fabricate uniform nanogaps with atomic-scale resolution and high throughput. Here we introduce a new patterning technology based on atomic layer deposition and simple adhesive-tape-based planarization. Using this method, we create vertically oriented gaps in opaque metal films along the entire contour of a millimetre-sized pattern, with gap widths as narrow as 9.9 Å, and pack 150,000 such devices on a 4-inch wafer. Electromagnetic waves pass exclusively through the nanogaps, enabling background-free transmission measurements. We observe resonant transmission of near-infrared waves through 1.1-nm-wide gaps (λ/1,295) and measure an effective refractive index of 17.8. We also observe resonant transmission of millimetre waves through 1.1-nm-wide gaps (λ/4,000,000) and infer an unprecedented field enhancement factor of 25,000.

14.
Nano Lett ; 13(4): 1782-6, 2013 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-23441747

RESUMO

Molecules have extremely small absorption cross sections in the terahertz range even under resonant conditions, which severely limit their detectability, often requiring tens of milligrams. We demonstrate that nanoantennas tailored for the terahertz range resolves the small molecular cross section problem. The extremely asymmetric electromagnetic environment inside the slot antenna, which finds the electric field being enhanced by thousand times with the magnetic field changed little, forces the molecular cross section to be enhanced by >10(3) accompanied by a colossal absorption coefficient of ~170,000 cm(-1). Tens of nanograms of small molecules such as 1,3,5-trinitroperhydro-1,3,5-triazine (RDX) and lactose drop-cast over an area of 10 mm(2), with only tens of femtograms of molecules inside the single nanoslot, can readily be detected. Our work enables terahertz sensing of chemical and biological molecules in ultrasmall quantities.


Assuntos
Técnicas Biossensoriais , Radiação Terahertz , Absorção , Eletricidade , Ligação de Hidrogênio , Modelos Teóricos
15.
Opt Express ; 20(23): 25644-53, 2012 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-23187383

RESUMO

We studied the electromagnetic interaction between two asymmetric terahertz nano resonators, rectangular holes which have a few hundred micron lengths but nanoscale widths. We report that the dominant resonant transmission of the structures can be modulated by the horizontal distance between two rectangles due to the different oscillation strength of the asymmetric coupling at two different resonance frequencies. Our results are significant for an optimum design of rectangular holes in terahertz frequency regime for applications such as sensitive nanoparticle detection and terahertz filters.

16.
Opt Express ; 20(6): 6365-74, 2012 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-22418518

RESUMO

We studied the in- and the out-coupling efficiencies of photons with a thin InGaAs slab covered by periodic gold nano-slit arrays, by measuring transmission and photoluminescence (PL) spectra. While the maximum in-coupled photons into the InGaAs slab waveguide were found at dip positions in transmission spectra, the mostly out-coupled photons were observed as peaks in PL spectra. For different periods of slit arrays and incident angles we discussed spectral positions of transmission dips and efficiency of the in-coupling influenced by the absorption coefficient of InGaAs. In PL spectra we measured overall enhanced PL intensities from the InGaAs slab covered by slit arrays compared to that of a bare InGaAs, where the peak positions are determined by the period of slit arrays as well. Our findings are important for designing semiconductors both as an optically passive waveguide and active light emitter.


Assuntos
Arsenicais/química , Gálio/química , Índio/química , Refratometria/instrumentação , Ressonância de Plasmônio de Superfície/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Teste de Materiais
17.
Opt Express ; 19(22): 21211-5, 2011 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-22108973

RESUMO

We demonstrate an active metamaterial device that allows to electrically control terahertz transmission over more than one order of magnitude. Our device consists of a lithographically defined gold nano antenna array fabricated on a thin film of vanadium dioxide (VO(2)), a material that possesses an insulator to metal transition. The nano antennas let terahertz (THz) radiation funnel through when the VO(2) film is in the insulating state. By applying a dc-bias voltage through our device, the VO(2) becomes metallic. This electrically shorts the antennas and therefore switches off the transmission in two distinct regimes: reversible and irreversible switching.

18.
Opt Express ; 19(24): 24775-81, 2011 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-22109504

RESUMO

A pinch harmonic (or guitar harmonic) is a musical note produced by lightly pressing the thumb of the picking hand upon the string immediately after it is picked [J. Chem. Educ. 84, 1287 (2007)]. This technique turns off the fundamental and all overtones except those with a node at that location. Here we present a terahertz analogue of pinch harmonics, whereby a metallic nano rod placed at a harmonic node on a terahertz nanoresonator suppresses the fundamental mode, making the higher harmonics dominant. Strikingly, a skin depth-wide nano rod placed at the mid-point turns off all resonances. Our work demonstrates that terahertz electromagnetic waves can be tailored by nanoparticles strategically positioned, paving important path towards terahertz switching and detection applications.


Assuntos
Nanopartículas/química , Nanotecnologia/instrumentação , Oscilometria/instrumentação , Radiação Terahertz , Transdutores , Desenho de Equipamento , Análise de Falha de Equipamento , Nanopartículas/ultraestrutura
19.
ACS Nano ; 5(10): 8340-5, 2011 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-21961910

RESUMO

Nanoscale metallic barriers embedded in terahertz (THz) slot antennas are shown to provide unprecedented control of the transition state arising at the crossover between the full- and half-wavelength resonant modes of such antennas. We demonstrate strong near-field coupling between two paired THz slot antennas separated by a 5 nm wide nanobarrier, almost fully inducing the shift to the resonance of the double-length slot antenna. This increases by a factor of 50 the length-scale needed to observe similar coupling strengths in conventional air-gap antennas (around 0.1 nm), making the transition state readily accessible to experiment. Our measurements are in good agreement with a quantitative theoretical modeling, which also provides a simple physical picture of our observations.

20.
Phys Rev Lett ; 105(12): 127403, 2010 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-20867671

RESUMO

We report substantially enhanced photoluminescence (PL) from hybrid structures of graphene/ZnO films at a band gap energy of ZnO (∼3.3 eV/376 nm). Despite the well-known constant optical conductivity of graphene in the visible-frequency regime, its abnormally strong absorption in the violet-frequency region has recently been reported. In this Letter, we demonstrate that the resonant excitation of graphene plasmon is responsible for such absorption and eventually contributes to enhanced photoemission from structures of graphene/ZnO films when the corrugation of the ZnO surface modulates photons emitted from ZnO to fulfill the dispersion relation of graphene plasmon. These arguments are strongly supported by PL enhancements depending on the spacer thickness, measurement temperature, and annealing temperature, and the micro-PL mapping images obtained from separate graphene layers on ZnO films.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA