Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros













Base de dados
Intervalo de ano de publicação
1.
Lancet Infect Dis ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38734012

RESUMO

BACKGROUND: Lassa fever is a viral haemorrhagic fever with few options for diagnosis and treatment; it is also under-researched with knowledge gaps on its epidemiology. A point-of-care bedside test diagnosing Lassa fever, adhering to REASSURED criteria, is not currently available but is urgently needed in west African regions with high Lassa fever burden. We aimed to assess the validity and feasibility of a rapid diagnostic test (RDT) to confirm Lassa fever in people in Nigeria. METHODS: We estimated the diagnostic performance of the ReLASV Pan-Lassa RDT (Zalgen Labs, Frederick, MD, USA) as a research-use-only test, compared to RT-PCR as a reference standard, in 217 participants at a federal tertiary hospital in Abakaliki, Nigeria. We recruited participants between Feb 17, 2022, and April 17, 2023. The RDT was performed using capillary blood at the patient bedside and using plasma at the laboratory. The performance of the test, based on REASSURED criteria, was assessed for user friendliness, rapidity and robustness, sensitivity, and specificity. FINDINGS: Participants were aged between 0 and 85 years, with a median age of 33·0 years (IQR 22·0-44·3), and 24 participants were younger than 18 years. 107 (50%) participants were women and 109 (50%) were men; one participant had missing sex data. Although the specificity of the Pan-Lassa RDT was high (>90%), sensitivity at bedside using capillary blood was estimated as 4% (95% CI 1-14) at 15 min and 10% (3-22) at 25 min, far below the target of 90%. The laboratory-based RDT using plasma showed better sensitivity (46% [32-61] at 15 min and 50% [36-64] at 25 min) but did not reach the target sensitivity. Among the 52 PCR-positive participants with Lassa fever, positive RDT results were associated with lower cycle threshold values (glycoprotein precursor [GPC] gene mean 30·3 [SD 4·3], Large [L] gene mean 32·3 [3·7] vs GPC gene mean 24·5 [3·9], L gene mean 28·0 [3·6]). Personnel conducting the bedside test procedure reported being hindered by the inconvenient use of full personal protective equipment and long waiting procedures before a result could be read. INTERPRETATION: The Pan-Lassa RDT is not currently recommended as a diagnostic or screening tool for suspected Lassa fever cases. Marked improvement in sensitivity and user friendliness is needed for the RDT to be adopted clinically. There remains an urgent need for better Lassa fever diagnostics to promote safety of in-hospital care and better disease outcomes in low-resource settings. FUNDING: Médecins Sans Frontières.

2.
Lancet Microbe ; 5(2): e194-e202, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38101440

RESUMO

Laboratory-acquired infections (LAIs) and accidental pathogen escape from laboratory settings (APELS) are major concerns for the community. A risk-based approach for pathogen research management within a standard biosafety management framework is recommended but is challenging due to reasons such as inconsistency in risk tolerance and perception. Here, we performed a scoping review using publicly available, peer-reviewed journal and media reports of LAIs and instances of APELS between 2000 and 2021. We identified LAIs in 309 individuals in 94 reports for 51 pathogens. Eight fatalities (2·6% of all LAIs) were caused by infection with Neisseria meningitidis (n=3, 37·5%), Yersinia pestis (n=2, 25%), Salmonella enterica serotype Typhimurium (S Typhimurium; n=1, 12·5%), or Ebola virus (n=1, 12·5%) or were due to bovine spongiform encephalopathy (n=1, 12·5%). The top five LAI pathogens were S Typhimurium (n=154, 49·8%), Salmonella enteritidis (n=21, 6·8%), vaccinia virus (n=13, 4·2%), Brucella spp (n=12, 3·9%), and Brucella melitensis (n=11, 3·6%). 16 APELS were reported, including those for Bacillus anthracis, SARS-CoV, and poliovirus (n=3 each, 18·8%); Brucella spp and foot and mouth disease virus (n=2 each, 12·5%); and variola virus, Burkholderia pseudomallei, and influenza virus H5N1 (n=1 each, 6·3%). Continual improvement in LAI and APELS management via their root cause analysis and thorough investigation of such incidents is essential to prevent future occurrences. The results are biased due to the reliance on publicly available information, which emphasises the need for formalised global LAIs and APELS reporting to better understand the frequency of and circumstances surrounding these incidents.


Assuntos
Virus da Influenza A Subtipo H5N1 , Infecção Laboratorial , Yersinia pestis , Animais , Bovinos , Humanos , Salmonella enteritidis , Salmonella typhimurium
3.
Appl Biosaf ; 28(4): 199-215, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38090355

RESUMO

Introduction: Foot and mouth disease (FMD) is a highly contagious infection of cloven-hoofed animals. The Biosafety Research Road Map reviewed scientific literature regarding the foot and mouth disease virus (FMDV). This project aims to identify gaps in the data required to conduct evidence-based biorisk assessments, as described by Blacksell et al., and strengthen control measures appropriate for local and national laboratories. Methods: A literature search was conducted to identify potential gaps in biosafety and focused on five main sections: the route of inoculation/modes of transmission, infectious dose, laboratory-acquired infections, containment releases, and disinfection and decontamination strategies. Results: The available data regarding biosafety knowledge gaps and existing evidence have been collated. Some gaps include the need for more scientific data that identify the specific safety contribution of engineering controls, support requirements for showering out after in vitro laboratory work, and whether a 3- to 5-day quarantine period should be applied to individuals conducting in vitro versus in vivo work. Addressing these gaps will contribute to the remediation and improvement of biosafety and biosecurity systems when working with FMDV.

4.
Appl Biosaf ; 28(4): 216-229, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38090357

RESUMO

Introduction: Crimean Congo Hemorrhagic Fever (CCHF) virus and Lassa virus (LASV) are zoonotic agents regarded as high-consequence pathogens due to their high case fatality rates. CCHF virus is a vector-borne disease and is transmitted by tick bites. Lassa virus is spread via aerosolization of dried rat urine, ingesting infected rats, and direct contact with or consuming food and water contaminated with rat excreta. Methods: The scientific literature for biosafety practices has been reviewed for both these two agents to assess the evidence base and biosafety-related knowledge gaps. The review focused on five main areas, including the route of inoculation/modes of transmission, infectious dose, laboratory-acquired infections, containment releases, and disinfection and decontamination strategies. Results: There is a lack of data on the safe collection and handling procedures for tick specimens and the infectious dose from an infective tick bite for CCHF investigations. In addition, there are gaps in knowledge about gastrointestinal and contact infectious doses for Lassa virus, sample handling and transport procedures outside of infectious disease areas, and the contribution of asymptomatic carriers in viral circulation. Conclusion: Due to the additional laboratory hazards posed by these two agents, the authors recommend developing protocols that work effectively and safely in highly specialized laboratories in non-endemic regions and a laboratory with limited resources in endemic areas.

5.
Appl Biosaf ; 28(3): 135-151, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37736423

RESUMO

Introduction: The Biosafety Research Road Map reviewed the scientific literature on a viral respiratory pathogen, avian influenza virus, and a bacterial respiratory pathogen, Mycobacterium tuberculosis. This project aims at identifying gaps in the data required to conduct evidence-based biorisk assessments, as described in Blacksell et al. One significant gap is the need for definitive data on M. tuberculosis sample aerosolization to guide the selection of engineering controls for diagnostic procedures. Methods: The literature search focused on five areas: routes of inoculation/modes of transmission, infectious dose, laboratory-acquired infections, containment releases, and disinfection and decontamination methods. Results: The available data regarding biosafety knowledge gaps and existing evidence have been collated and presented in Tables 1 and 2. The guidance sources on the appropriate use of biosafety cabinets for specific procedures with M. tuberculosis require clarification. Detecting vulnerabilities in the biorisk assessment for respiratory pathogens is essential to improve and develop laboratory biosafety in local and national systems.

6.
Appl Biosaf ; 28(3): 152-161, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37736424

RESUMO

Introduction: The virus formerly known as monkeypox virus, now called mpoxv, belongs to the Orthopoxvirus genus and can cause mpox disease through both animal-to-human and human-to-human transmission. The unexpected spread of mpoxv among humans has prompted the World Health Organization (WHO) to declare a Public Health Emergency of International Concern (PHEIC). Methods: We conducted a literature search to identify the gaps in biosafety, focusing on five main areas: how the infection enters the body and spreads, how much of the virus is needed to cause infection, infections acquired in the lab, accidental release of the virus, and strategies for disinfecting and decontaminating the area. Discussion: The recent PHEIC has shown that there are gaps in our knowledge of biosafety when it comes to mpoxv. We need to better understand where this virus might be found, how much of it can spread from person-to-person, what are the effective control measures, and how to safely clean up contaminated areas. By gathering more biosafety evidence, we can make better decisions to protect people from this zoonotic agent, which has recently become more common in the human population.

7.
Appl Biosaf ; 28(2): 64-71, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37342514

RESUMO

Introduction: Lack of evidence-based information regarding potential biological risks can result in inappropriate or excessive biosafety and biosecurity risk-reduction strategies. This can cause unnecessary damage and loss to the physical facilities, physical and psychological well-being of laboratory staff, and community trust. A technical working group from the World Organization for Animal Health (WOAH, formerly OIE), World Health Organization (WHO), and Chatham House collaborated on the Biosafety Research Roadmap (BRM) project. The goal of the BRM is the sustainable implementation of evidence-based biorisk management of laboratory activities, particularly in low-resource settings, and the identification of gaps in the current biosafety and biosecurity knowledge base. Methods: A literature search was conducted for the basis of laboratory design and practices for four selected high-priority subgroups of pathogenic agents. Potential gaps in biosafety were focused on five main sections, including the route of inoculation/modes of transmission, infectious dose, laboratory-acquired infections, containment releases, and disinfection and decontamination strategies. Categories representing miscellaneous, respiratory, bioterrorism/zoonotic, and viral hemorrhagic fever pathogens were created within each group were selected for review. Results: Information sheets on the pathogens were developed. Critical gaps in the evidence base for safe sustainable biorisk management were identified. Conclusion: The gap analysis identified areas of applied biosafety research required to support the safety, and the sustainability, of global research programs. Improving the data available for biorisk management decisions for research with high-priority pathogens will contribute significantly to the improvement and development of appropriate and necessary biosafety, biocontainment and biosecurity strategies for each agent.

8.
Appl Biosaf ; 28(2): 87-95, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37342515

RESUMO

Introduction: The SARS-CoV-2 virus emerged as a novel virus and is the causative agent of the COVID-19 pandemic. It spreads readily human-to-human through droplets and aerosols. The Biosafety Research Roadmap aims to support the application of laboratory biological risk management by providing an evidence base for biosafety measures. This involves assessing the current biorisk management evidence base, identifying research and capability gaps, and providing recommendations on how an evidence-based approach can support biosafety and biosecurity, including in low-resource settings. Methods: A literature search was conducted to identify potential gaps in biosafety and focused on five main sections, including the route of inoculation/modes of transmission, infectious dose, laboratory-acquired infections, containment releases, and disinfection and decontamination strategies. Results: There are many knowledge gaps related to biosafety and biosecurity due to the SARS-CoV-2 virus's novelty, including infectious dose between variants, personal protective equipment for personnel handling samples while performing rapid diagnostic tests, and laboratory-acquired infections. Detecting vulnerabilities in the biorisk assessment for each agent is essential to contribute to the improvement and development of laboratory biosafety in local and national systems.

9.
Appl Biosaf ; 28(2): 72-86, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37342513

RESUMO

Introduction: Brucella melitensis and Bacillus anthracis are zoonoses transmitted from animals and animal products. Scientific information is provided in this article to support biosafety precautions necessary to protect laboratory workers and individuals who are potentially exposed to these pathogens in the workplace or other settings, and gaps in information are also reported. There is a lack of information on the appropriate effective concentration for many chemical disinfectants for this agent. Controversies related to B. anthracis include infectious dose for skin and gastrointestinal infections, proper use of personal protective equipment (PPE) during the slaughter of infected animals, and handling of contaminated materials. B. melitensis is reported to have the highest number of laboratory-acquired infections (LAIs) to date in laboratory workers. Methods: A literature search was conducted to identify potential gaps in biosafety and focused on five main sections including the route of inoculation/modes of transmission, infectious dose, LAIs, containment releases, and disinfection and decontamination strategies. Results: Scientific literature currently lacks information on the effective concentration of many chemical disinfectants for this agent and in the variety of matrices where it may be found. Controversies related to B. anthracis include infectious dose for skin and gastrointestinal infections, proper use of PPE during the slaughter of infected animals, and handling contaminated materials. Discussion: Clarified vulnerabilities based on specific scientific evidence will contribute to the prevention of unwanted and unpredictable infections, improving the biosafety processes and procedures for laboratory staff and other professionals such as veterinarians, individuals associated with the agricultural industry, and those working with susceptible wildlife species.

10.
Appl Biosaf ; 28(2): 96-101, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37342516

RESUMO

Introduction: Shigella bacteria cause shigellosis, a gastrointestinal infection most often acquired from contaminated food or water. Methods: In this review, the general characteristics of Shigella bacteria are described, cases of laboratory-acquired infections (LAIs) are discussed, and evidence gaps in current biosafety practices are identified. Results: LAIs are undoubtedly under-reported. Owing to the low infectious dose, rigorous biosafety level 2 practices are required to prevent LAIs resulting from sample manipulation or contact with infected surfaces. Conclusions: It is recommended that, before laboratory work with Shigella, an evidence-based risk assessment be conducted. Particular emphasis should be placed on personal protective equipment, handwashing, and containment practices for procedures that generate aerosols or droplets.

11.
PLoS One ; 18(1): e0280756, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36696405

RESUMO

The COVID-19 global pandemic is being driven by evolving SARS-CoV-2 variants with consequential implications on virus transmissibility, host immunity, and disease severity. Continuous molecular and genomic surveillance of the SARS-CoV-2 variants is therefore necessary for public health interventions toward the management of the pandemic. This study is a retrospective analysis of COVID-19 cases reported in a Nigerian tertiary institution from July to December 2021. In total, 705 suspected COVID-19 cases that comprised 547 students and 158 non-students were investigated by real time PCR (RT-PCR); of which 372 (~52.8%) tested positive for COVID-19. Using a set of selection criteria, 74 (~19.9%) COVID-19 positive samples were selected for next generation sequencing. Data showed that there were two outbreaks of COVID-19 within the university community over the study period, during which more females (56.8%) tested positive than males (47.8%) (p<0.05). Clinical data together with phylogenetic analysis suggested community transmission of SARS-CoV-2 through mostly asymptomatic and/or pre-symptomatic individuals. Confirmed COVID-19 cases were mostly mild, however, SARS-CoV-2 delta (77%) and omicron (4.1%) variants were implicated as major drivers of respective waves of infections during the study period. This study highlights the importance of integrated surveillance of communicable disease during outbreaks.


Assuntos
COVID-19 , SARS-CoV-2 , Feminino , Masculino , Humanos , SARS-CoV-2/genética , COVID-19/epidemiologia , Nigéria/epidemiologia , Filogenia , Estudos Retrospectivos , Surtos de Doenças , Pandemias
12.
Emerg Infect Dis ; 28(5): 994-997, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35226800

RESUMO

During the 2018 Lassa fever outbreak in Nigeria, samples from patients with suspected Lassa fever but negative Lassa virus PCR results were processed through custom gene expression array cards and metagenomic sequencing. Results demonstrated no single etiology, but bacterial and viral pathogens (including mixed co-infections) were detected.


Assuntos
Febre Lassa , Surtos de Doenças , Humanos , Febre Lassa/diagnóstico , Febre Lassa/epidemiologia , Vírus Lassa/genética , Nigéria/epidemiologia , Reação em Cadeia da Polimerase
13.
PLOS Glob Public Health ; 2(8): e0000191, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36962735

RESUMO

Over past decades, there has been increasing geographical spread of Lassa fever (LF) cases across Nigeria and other countries in West Africa. This increase has been associated with significant morbidity and mortality despite increasing focus on the disease by both local and international scientists. Many of these studies on LF have been limited to few specialised centres in the country. This study was done to identify sociodemographic and clinical predictors of LF disease and related deaths across Nigeria. We analysed retrospective surveillance data on suspected LF cases collected during January-June 2018 and 2019. Multivariable logistic regression analyses were used to identify the factors independently associated with laboratory-confirmed LF diagnosis, and with LF-related deaths. There were confirmed 815 of 1991 suspected LF cases with complete records during this period. Of these, 724/815 confirmed cases had known clinical outcomes, of whom 100 died. LF confirmation was associated with presentation of gastrointestinal tract (aOR 3.47, 95% CI: 2.79-4.32), ear, nose and throat (aOR 2.73, 95% CI: 1.80-4.15), general systemic (aOR 2.12, 95% CI: 1.65-2.70) and chest/respiratory (aOR 1.71, 95% CI: 1.28-2.29) symptoms. Other factors were being male (aOR 1.32, 95% CI: 1.06-1.63), doing business/trading (aOR 2.16, 95% CI: 1.47-3.16) and farming (aOR 1.73, 95% CI: 1.12-2.68). Factors associated with LF mortality were a one-year increase in age (aOR 1.03, 95% CI: 1.01-1.04), bleeding (aOR 2.07, 95% CI: 1.07-4.00), and central nervous manifestations (aOR 5.02, 95% CI: 3.12-10.16). Diverse factors were associated with both LF disease and related death. A closer look at patterns of clinical variables would be helpful to support early detection and management of cases. The findings would also be useful for planning preparedness and response interventions against LF in the country and region.

14.
One Health ; 13: 100346, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34820499

RESUMO

Globally, effective emergency response to disease outbreaks is usually affected by weak coordination. However, coordination using an incident management system (IMS) in line with a One Health approach involving human, environment, and animal health with collaborations between government and non-governmental agencies result in improved response outcome for zoonotic diseases such as Lassa fever (LF). We provide an overview of the 2019 LF outbreak response in Nigeria using the IMS and One Health approach. The response was coordinated via ten Emergency Operation Centre (EOC) response pillars. Cardinal response activities included activation of EOC, development of an incident action plan, deployment of One Health rapid response teams to support affected states, mid-outbreak review and after-action review meetings. Between 1st January and 29th December 2019, of the 5057 people tested for LF, 833 were confirmed positive from 23 States, across 86 Local Government Areas. Of the 833 confirmed cases, 650 (78%) were from hotspot States of Edo (36%), Ondo (26%) and Ebonyi (16%). Those in the age-group 21-40 years (47%) were mostly affected, with a male to female ratio of 1:1. Twenty healthcare workers were affected. Two LF naïve states Kebbi and Zamfara, reported confirmed cases for the first time during this period. The outbreak peaked earlier in the year compared to previous years, and the emergency phase of the outbreak was declared over by epidemiological week 17 based on low national threshold composite indicators over a period of six consecutive weeks. Multisectoral and multidisciplinary strategic One Health EOC coordination at all levels facilitated the swift containment of Nigeria's large LF outbreak in 2019. It is therefore imperative to embrace One Health approach embedded within the EOC to holistically address the increasing LF incidence in Nigeria.

15.
BMJ Glob Health ; 6(11)2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34794956

RESUMO

BACKGROUND: With reports of surges in COVID-19 case numbers across over 50 countries, country-level epidemiological analysis is required to inform context-appropriate response strategies for containment and mitigation of the outbreak. We aimed to compare the epidemiological features of the first and second waves of COVID-19 in Nigeria. METHODS: We conducted a retrospective analysis of the Surveillance Outbreak Response Management and Analysis System data of the first and second epidemiological waves, which were between 27 February and 24 October 2020, and 25 October 2020 to 3 April 2021, respectively. Descriptive statistical measures including frequencies and percentages, test positivity rate (TPR), cumulative incidence (CI) and case fatality rates (CFRs) were compared. A p value of <0.05 was considered statistically significant. All statistical analyses were carried out in STATA V.13. RESULTS: There were 802 143 tests recorded during the study period (362 550 and 439 593 in the first and second waves, respectively). Of these, 66 121 (18.2%) and 91 644 (20.8%) tested positive in the first and second waves, respectively. There was a 21.3% increase in the number of tests conducted in the second wave with TPR increasing by 14.3%. CI during the first and second waves were 30.3/100 000 and 42.0/100 000 respectively. During the second wave, confirmed COVID-19 cases increased among females and people 30 years old or younger and decreased among urban residents and individuals with travel history within 14 days of sample collection (p value <0.001). Most confirmed cases were asymptomatic at diagnosis during both waves: 74.9% in the first wave; 79.7% in the second wave. CFR decreased during the second wave (0.7%) compared with the first wave (1.8%). CONCLUSION: Nigeria experienced a larger but less severe second wave of COVID-19. Continued implementation of public health and social measures is needed to mitigate the resurgence of another wave.


Assuntos
COVID-19 , Pandemias , Adulto , Feminino , Humanos , Nigéria/epidemiologia , Estudos Retrospectivos , SARS-CoV-2
16.
Elife ; 102021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34143732

RESUMO

Background: Despite recent insights into cholera transmission patterns in Africa, regional and local dynamics in West Africa-where cholera outbreaks occur every few years-are still poorly understood. Coordinated genomic surveillance of Vibrio cholerae in the areas most affected may reveal transmission patterns important for cholera control. Methods: During a regional sequencing workshop in Nigeria, we sequenced 46 recent V. cholerae isolates from Cameroon, Niger, and Nigeria (37 from 2018 to 2019) to better understand the relationship between the V. cholerae bacterium circulating in these three countries. Results: From these isolates, we generated 44 whole Vibrio cholerae O1 sequences and analyzed them in the context of 1280 published V. cholerae O1 genomes. All sequences belonged to the T12 V. cholerae seventh pandemic lineage. Conclusions: Phylogenetic analysis of newly generated and previously published V. cholerae genomes suggested that the T12 lineage has been continuously transmitted within West Africa since it was first observed in the region in 2009, despite lack of reported cholera in the intervening years. The results from this regional sequencing effort provide a model for future regionally coordinated surveillance efforts. Funding: Funding for this project was provided by Bill and Melinda Gates Foundation OPP1195157.


Assuntos
Cólera , Vibrio cholerae O1 , África Ocidental/epidemiologia , Camarões/epidemiologia , Cólera/epidemiologia , Cólera/microbiologia , Cólera/transmissão , Genoma Bacteriano/genética , Humanos , Epidemiologia Molecular , Filogenia , Vibrio cholerae O1/classificação , Vibrio cholerae O1/genética
20.
Health Secur ; 17(6): 495-503, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31859570

RESUMO

Biosecurity and biosafety measures are designed to mitigate intentional and accidental biological risks that pose potentially catastrophic consequences to a country's health system, security, and political and economic stability. Unfortunately, biosecurity and biosafety are often under-prioritized nationally, regionally, and globally. Security leaders often deemphasize accidental and deliberate biological threats relative to other challenges to peace and security. Given emerging biological risks, including those associated with rapid technological advances and terrorist and state interest in weapons of mass destruction, biosecurity deserves stronger emphasis in health and security fora. The Global Biosecurity Dialogue (GBD) was initiated to align national and regional donor initiatives toward a common set of measurable targets. The GBD was launched by the Nuclear Threat Initiative (NTI), with support from Global Affairs Canada's Weapons Threat Reduction Program and the Open Philanthropy Project, and in coordination with the government of The Netherlands as the 2018-19 Chair of the Global Health Security Agenda (GHSA) Action Package Prevent-3 (APP3) on Biosafety and Biosecurity. The GBD provides a multisectoral forum for sharing models, enabling new actions to achieve biosecurity-related targets, and promoting biosecurity as an integral component of health security. The GBD has contributed to new national and continent-wide actions, including the African Union and Africa Centres for Disease Control and Prevention's new regional Initiative to Strengthen Biosafety and Biosecurity in Africa. Here we present the GBD as a model for catalyzing action within APP3. We describe how the benefits of this approach could expand to other GHSA Action Packages and international health security initiatives.


Assuntos
Bioterrorismo/prevenção & controle , Contenção de Riscos Biológicos/métodos , Surtos de Doenças/prevenção & controle , Saúde Global , Cooperação Internacional , Medidas de Segurança/organização & administração , Fortalecimento Institucional/métodos , Fortalecimento Institucional/organização & administração , Política de Saúde , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA