Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 622
Filtrar
1.
Alzheimers Dement ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38959429

RESUMO

INTRODUCTION: Although poor glycemic control is associated with dementia, it is unknown if variability in glycemic control, even in those with optimal glycosylated hemoglobin A1c (HbA1c) levels, increases dementia risk. METHODS: Among 171,964 people with type 2 diabetes, we evaluated the hazard of dementia association with long-term HbA1c variability using five operationalizations, including standard deviation (SD), adjusting for demographics and comorbidities. RESULTS: The mean baseline age was 61 years (48% women). Greater HbA1c SD was associated with greater dementia hazard (adjusted hazard ratio = 1.15 [95% confidence interval: 1.12, 1.17]). In stratified analyses, higher HbA1c SD quintiles were associated with greater dementia hazard among those with a mean HbA1c < 6% (P = 0.0004) or 6% to 8% (P < 0.0001) but not among those with mean HbA1c ≥ 8% (P = 0.42). DISCUSSION: Greater HbA1c variability is associated with greater dementia risk, even among those with HbA1c concentrations at ideal clinical targets. These findings add to the importance and clinical impact of recommendations to minimize glycemic variability. HIGHLIGHTS: We observed a cohort of 171,964 people with type 2 diabetes (mean age 61 years). This cohort was based in Northern California between 1996 and 2018. We examined the association between glycosylated hemoglobin A1c (HbA1c) variability and dementia risk. Greater HbA1c variability was associated with greater dementia hazard. This was most evident among those with normal-low mean HbA1c concentrations.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 321: 124730, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38943757

RESUMO

Most known chemiluminescence (CL) systems are flash-type that generate weak luminescence and decline quickly after dozens of seconds, while the glow-type CL systems have stable emission for an extended period to achieve accurate quantitation. In this work, a long-term CL system based on hydrazine-hydrate (N2H4·H2O) modified carbon quantum dots (N-CQDs) as a luminescent probe, with K2S2O8 and H2O2 as co-reactants, was proposed. The CL emission enhanced by H2O2 increased 18-fold more than that of N-CQDs and K2S2O8 direct reaction, and decayed by 5% of the maximum intensity over 700 s. In the reaction system, K2S2O8 and H2O2 co-reactants can promote each other to continuously generate corresponding radicals (•OH, O2•-, 1O2), which in turn trigger the CL emission of N-CQDs. This phenomenon was identified as the primary cause for the production of persistent CL. In addition, a stable and selective CL sensor based on the N-CQDs-K2S2O8-H2O2 CL enhancing system was developed for ascorbic acid quantitation in the linear range from 0.1 to 10.0 mM with a detection limit of 0.036 mM. The method has been applied to the analysis of tablet samples and holds potential in pharmaceutical analysis field.

3.
Nat Commun ; 15(1): 4947, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858350

RESUMO

The potential brain mechanism underlying resilience to socially transferred allodynia remains unknown. Here, we utilize a well-established socially transferred allodynia paradigm to segregate male mice into pain-susceptible and pain-resilient subgroups. Brain screening results show that ventral tegmental area glutamatergic neurons are selectively activated in pain-resilient mice as compared to control and pain-susceptible mice. Chemogenetic manipulations demonstrate that activation and inhibition of ventral tegmental area glutamatergic neurons bi-directionally regulate resilience to socially transferred allodynia. Moreover, ventral tegmental area glutamatergic neurons that project specifically to the nucleus accumbens shell and lateral habenula regulate the development and maintenance of the pain-resilient phenotype, respectively. Together, we establish an approach to explore individual variations in pain response and identify ventral tegmental area glutamatergic neurons and related downstream circuits as critical targets for resilience to socially transferred allodynia and the development of conceptually innovative analgesics.


Assuntos
Ácido Glutâmico , Hiperalgesia , Neurônios , Núcleo Accumbens , Área Tegmentar Ventral , Animais , Masculino , Hiperalgesia/fisiopatologia , Área Tegmentar Ventral/fisiopatologia , Camundongos , Ácido Glutâmico/metabolismo , Núcleo Accumbens/fisiopatologia , Neurônios/metabolismo , Mesencéfalo , Camundongos Endogâmicos C57BL , Resiliência Psicológica , Habenula , Modelos Animais de Doenças
4.
Nat Commun ; 15(1): 4886, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849357

RESUMO

Multi-stable structures attract great interest because they possess special energy landscapes with domains of attraction around the stable states. Consequently, multi-stable structures have the potential to achieve prescribed reconfiguration with only a few lightweight actuators (such as shape-memory alloy springs), and do not need constant actuation to be locked at a stable state. However, most existing multi-stability designs are based on assembling bi-stable unit cells, which contain multitudes of distractive stable states, diminishing the feasibility of reconfiguration actuation. Another type is by introducing prestress together with kinematic symmetry or nonlinearity to achieve multi-stability, but the resultant structure often suffers the lack of stiffness. To help address these challenges, we firstly introduce the constraints that a truss structure is simultaneously compatible at multiple (more than two) prescribed states. Then, we solve for the design of multi-stable truss structures, named multi-compatible structures in this paper, where redundant stable states are limited. Secondly, we explore minimum energy paths connecting the designed stable states, and compute for a simple and inaccurate pulling actuation guiding the structure to transform along the computed paths. Finally, we fabricated four prototypes to demonstrate that prescribed reconfigurations with easy-actuation have been achieved and applied a quadra-stable structure to the design of a variable stiffness gripper. Altogether, our full-cycle design approach contains multi-stability design, stiffness design, minimum-energy-path finding, and pulling actuation design, which highlights the potential for designing morphing structures with lightweight actuation for practical applications.

5.
Acta Pharmacol Sin ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937576

RESUMO

Reperfusion injury, which is distinct from ischaemic injury, occurs when blood flow is restored in previously ischaemic brain tissue, further compromising neurons and other cells and worsening the injury. There is currently a lack of pharmaceutical agents and therapeutic interventions that specifically mitigate cerebral ischaemia/reperfusion (I/R) injury. Ginsenoside Rg1 (Rg1), a protopanaxatriol-type saponin isolated from Panax ginseng C. A. Meyer, has been found to protect against cerebral I/R injury, but its intricate protective mechanisms remain to be elucidated. Numerous studies have shown that autophagy plays a crucial role in protecting brain tissue during the I/R process and is emerging as a promising therapeutic strategy for effective treatment. In this study, we investigated whether Rg1 protected against I/R damage in vitro and in vivo by regulating autophagy. Both MCAO and OGD/R models were established. SK-N-AS and SH-SY5Y cells were subjected to OGD followed by reperfusion with Rg1 (4-32 µM). MCAO mice were injected with Rg1 (30 mg·kg-1·d-1. i.p.) for 3 days before and on the day of surgery. Rg1 treatment significantly mitigated ischaemia/reperfusion injury both in vitro and in vivo. Furthermore, we demonstrated that the induction of autophagy contributed to I/R injury, which was effectively inhibited by Rg1 in both in vitro and in vivo models of cerebral I/R injury. Rg1 inhibited autophagy through multiple steps, including impeding autophagy initiation, inducing lysosomal dysfunction and inhibiting cathepsin enzyme activities. We revealed that mTOR activation was pivotal in mediating the inhibitory effect of Rg1 on autophagy. Treatment with Torin-1, an autophagy inducer and mTOR-specific inhibitor, significantly reversed the impact of Rg1 on autophagy, decreasing its protective efficacy against I/R injury both in vitro and in vivo. In conclusion, our results suggest that Rg1 may serve as a promising drug candidate against cerebral I/R injury by inhibiting autophagy through activation of mTOR signalling.

6.
Talanta ; 276: 126205, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38718649

RESUMO

Considering the high probability of recurrence or metastasis after thyroidectomy, it is meaningful to develop a rapid, sensitive and specific method for monitoring thyrophyma-related biomarkers. In this study, a homogeneous electrochemiluminescence immunoassay (HO-ECLIA) coupled with magnetic beads (MBs)-based enrichment tactic was established for the determination of thyrophyma-related thyroglobulin (Tg). Importantly, owing to the abundant surface groups and good biocompatibility of carbon quantum dots (CQDs), the incorporation of CQDs onto the Tg antigen surface was achieved, resulting in the formation of Tg-encapsulated CQDs (CQDs-Tg), which served not only as an ECL probe but as a biorecognition element. Under optimal experimental conditions, the proposed platform demonstrated a wide linear range from 0.01 to 100 ng·mL-1 with a detection limit of 6.9 pg·mL-1 (S/N = 3), and performed well in real serum sample analysis against interference. Collectively, the proposed platform exhibited the rapid response, satisfactory sensitivity and specificity toward Tg in complex serum milieu, and held a considerable potential for clinical prognosis monitoring of thyrophyma.


Assuntos
Carbono , Técnicas Eletroquímicas , Medições Luminescentes , Pontos Quânticos , Tireoglobulina , Pontos Quânticos/química , Tireoglobulina/sangue , Carbono/química , Humanos , Imunoensaio/métodos , Medições Luminescentes/métodos , Técnicas Eletroquímicas/métodos , Limite de Detecção
7.
Luminescence ; 39(5): e4763, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38761029

RESUMO

The development of optical optics for low-location road lighting is a challenging problem in providing high luminance and uniformity of illumination and meeting many other specific requirements. This study proposes an optical design method of low-location illumination based on an asymmetric double freeform surface lens. The ray emitted from the light source is refracted and reflected through the different surface types to the corresponding area of the receiving surface. In the design example, the road has dual-side mounted luminaires and a width of 6 m, and a height of 0.8 m. Simulation results indicate that, compared with conventional high-pole streetlights, the luminance uniformity had increased from 0.60 to 0.66, the illuminance uniformity had improved from 0.75 to 0.86, and the glare had been reduced.


Assuntos
Iluminação , Propriedades de Superfície , Luz , Desenho de Equipamento
8.
Echocardiography ; 41(5): e15828, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38762785

RESUMO

OBJECTIVES: To evaluate the clinical utility of two dimensional (2D) ultrasound combined with spatiotemporal image correlation (STIC) in diagnosing interrupted aortic arch (IAA) in fetal life. METHODS: A total of 53 cases of fetal IAA were diagnosed using 2D ultrasound combined with STIC, and 53 normal fetuses of the same gestational week were selected. These cases were retrospectively analyzed to assess the utility of employing 2D ultrasound combined with STIC in the diagnosis of IAA. RESULTS: 2D ultrasound combined with STIC detected 22 cases of type A IAA, 24 cases of type B IAA, and seven cases of type C IAA. Furthermore, combining 2D ultrasound with STIC enabled dynamic visualization of the IAA, aiding in prenatal diagnosis. The diagnostic coincidence rate of IAA was found to be higher in the HD-flow combined with STIC than that in the 2D combined with HD-flow. CONCLUSION: HD-flow combined with STIC can assist in diagnosing fetal IAA, and this technique has important clinical value.


Assuntos
Aorta Torácica , Ultrassonografia Pré-Natal , Humanos , Feminino , Ultrassonografia Pré-Natal/métodos , Gravidez , Aorta Torácica/diagnóstico por imagem , Aorta Torácica/anormalidades , Aorta Torácica/embriologia , Estudos Retrospectivos , Adulto , Reprodutibilidade dos Testes , Coração Fetal/diagnóstico por imagem
9.
Heliyon ; 10(10): e31403, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38803848

RESUMO

The main component of O-glycoproteins, mucin, is known to play important roles in physiological conditions and oncogenic processes, particularly correlated with poor prognosis in different carcinomas. Diffuse-type gastric cancer (DGC) has long been associated with genomic stability and unfavorable clinical outcomes. To investigate further, we obtained clinical information and the RNA-seq data of the TCGA-STAD cohort. Through the use of unsupervised clustering methods and GSEA, we identified two distinct clusters, characterized by higher and lower expression of MUC2 and MUC20, denoted as cluster 1 and cluster 2, respectively. Subsequently, employing CIBERSORT, it was determined that cluster 2 exhibited a higher tumor mutation burden (TMB) and a greater abundance of CD8+ T cells and activated CD4+ memory T cells, in addition to immune checkpoints (ICPs). On the other hand, cluster 1 showed a lower TIDE score estimation, indicating a higher probability of tumor immune escape. Furthermore, overexpression of MUC15 and MUC20 was confirmed through qPCR and Western blotting, and their specific roles in mediating the epithelial-mesenchymal transition (EMT) process of GC cells (SNU484 and Hs746t) were validated via CCK-8 assay and wound healing assay in vitro. These findings highlight the potential prognostic value of MUC20 and offer insights into the prospects of immunotherapy for DGC by targeting MUC20.

10.
Adv Mater ; 36(27): e2401220, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38652510

RESUMO

The development of single-system materials that exhibit both multicolor room-temperature phosphorescence (RTP) and thermally activated delayed fluorescence (TADF) with tunable after glow colors and channels is challenging. In this study, four metal-free carbon dots (CDs) are developed through structural tailoring, and panchromatic high-brightness RTP is achieved via strong chemical encapsulation in urea. The maximum lifetime and quantum yield reaches 2141 ms and 56.55%, respectively. Moreover, CDs-IV@urea, prepared via coreshell interaction engineering, exhibits a dual afterglow of red RTP and green TADF. The degree of conjugation and functional groups of precursors affects the binding interactions of the nitrogen cladding on CDs, which in turn stabilizes triplet energy levels and affects the energy gap between S1 and T1 (ΔEST) to induce multicolor RTP. The enhanced wrapping interaction lowers the ΔEST, promoting reverse intersystem crossing, which leads to phosphorescence and TADF. This strong coreshell interaction fully stabilizes the triplet state, thus stabilizing the material in water, even in extreme environments such as strong acids and oxidants. These afterglow materials are tested in multicolor, time, and temperature multiencryption as well as in multicolor in vivo bioimaging. Hence, these materials have promising practical applications in information security as well as biomedical diagnosis and treatment.

11.
Sci Adv ; 10(16): eadk7695, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38640236

RESUMO

Preclinical studies have shown that immunostimulatory cytokines elicit antitumor immune responses but their clinical use is limited by severe immune-related adverse events upon systemic administration. Here, we report a facile and versatile strategy for noncovalently anchoring potent Fc-fused cytokine molecules to the surface of size-discrete particles decorated with Fc-binding peptide for local administration. Following intratumoral injection, particle-anchored Fc cytokines exhibit size-dependent intratumoral retention. The 1-micrometer particle prolongs intratumoral retention of Fc cytokine for over a week and has minimal systemic exposure, thereby eliciting antitumor immunity while eliminating systemic toxicity caused by circulating cytokines. In addition, the combination of these particle-anchored cytokines with immune checkpoint blockade antibodies safely promotes tumor regression in various syngeneic tumor models and genetically engineered murine tumor models and elicits systemic antitumor immunity against tumor rechallenge. Our formulation strategy renders a safe and tumor-agnostic approach that uncouples cytokines' immunostimulatory properties from their systemic toxicities for potential clinical application.


Assuntos
Citocinas , Neoplasias , Camundongos , Animais , Imunoterapia , Neoplasias/tratamento farmacológico , Anticorpos , Linhagem Celular Tumoral
13.
Sci Rep ; 14(1): 6971, 2024 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-38521855

RESUMO

Doxorubicin has been used extensively as a potent anticancer agent, but its clinical use is limited by its cardiotoxicity. However, the underlying mechanisms remain to be fully elucidated. In this study, we tested whether NADPH oxidase 2 (Nox2) mediates cardiac sympathetic nerve terminal abnormalities and myocyte autophagy, resulting in cardiac atrophy and dysfunction in doxorubicin-induced heart failure. Nox2 knockout (KO) and wild-type (WT) mice were randomly assigned to receive a single injection of doxorubicin (15 mg/kg, i.p.) or saline. WT doxorubicin mice exhibited the decreases in survival rate, left ventricular (LV) wall thickness and LV fractional shortening and the increase in the lung wet-to-dry weight ratio 1 week after the injections. These alterations were attenuated in Nox2 KO doxorubicin mice. In WT doxorubicin mice, myocardial oxidative stress was increased, myocardial noradrenergic nerve fibers were reduced, myocardial expression of PGP9.5, GAP43, tyrosine hydroxylase and norepinephrine transporter was decreased, and these changes were prevented in Nox2 KO doxorubicin mice. Myocyte autophagy was increased and myocyte size was decreased in WT doxorubicin mice, but not in Nox2 KO doxorubicin mice. Nox2 mediates cardiac sympathetic nerve terminal abnormalities and myocyte autophagy-both of which contribute to cardiac atrophy and failure after doxorubicin treatment.


Assuntos
Cardiomiopatias , Miócitos Cardíacos , NADPH Oxidase 2 , Animais , Camundongos , Autofagia , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/metabolismo , Doxorrubicina/farmacologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/metabolismo , NADPH Oxidase 2/genética , NADPH Oxidase 2/metabolismo , Estresse Oxidativo , Simpatectomia
14.
Front Microbiol ; 15: 1329521, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38486697

RESUMO

Background: Numerous investigations have underscored the causal effect between chronic pain (CP) and gut microbiota, jointly contributing to the onset and development of widespread CP. Nonetheless, there was still uncertainty about the causal effect between gut microbiota and chronic regional pain (CRP). Methods: Genome-wide association study (GWAS) summary data of gut microbial taxa (MiBioGen Consortium: 211 microbiotas and the Dutch Microbiome Project: 207 microbiotas) and eight types of CRP were used to reveal the causal effect between persistent pain in a specific region of the body and gut microbiota. A two-sample bidirectional Mendelian randomization (MR) design was used. In order to ensure the accuracy of the results, multiple sensitivity analyses were employed. Results: This study uncovered significant causal associations between six gut microbial taxa and three types of CRP (forward: Genus Parabacteroides for general pain; Class Bacteroidia, Order Bacteroidales, and Phylum Bacteroidetes for back pain. Reverse: knee pain for Genus Howardella and Order Coriobacteriales) by forward and reverse MR analysis. These findings had been verified by a rigorous Bonferroni correction. Furthermore, this research identified 19 microbial taxa that exhibited potential correlations with four types of CRP. There are no significant or potential gut microbiotas that were associated with other types of CRP, including fascial pain, stomach or abdominal pain, and hip pain. Conclusion: This two-sample bidirectional MR analysis unveiled the causality between gut microbial taxa and eight CRP conditions. The findings reveal the interplay between CRP and 6 gut microbiotas while also delineating 19 potential specific microbial taxa corresponding to diverse locations of persistent pain.

15.
Anal Chem ; 96(13): 5188-5194, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38506628

RESUMO

In the field of chiral recognition, chiral cyclic organic compounds, especially heterocyclic organic compounds, have attracted little attention and have been rarely studied as chiral substrates by means of 1H NMR spectroscopy. In this paper, enantiomers of thiohydantoin derivatives, representing typical five-membered N,N-heterocycles, have been synthesized and utilized for assignment of absolute configuration and analysis of enantiomeric excess. All enantiomers have been successfully differentiated with the assistance of novel tetraaza macrocyclic chiral solvating agents (TAMCSAs) by 1H NMR spectroscopy. Surprisingly, unprecedented nonequivalent chemical shift values (up to 2.052 ppm) of the NH proton of substrates have been observed, a new milestone in the evaluation of enantiomers. To better understand the intermolecular interactions between host and guest, Job plots and theoretical calculations of (S)-G1 and (R)-G1 with TAMCSA 1a were investigated and revealed significant geometric differentiation between the diastereomers. In order to evaluate practical applications of the present systems in analyzing optical purity of chiral substrates, enantiomeric excesses of a typical substrate (G1) with different optical compositions in the presence of a representative TAMCSA (1a) can be accurately calculated based on the integration of the NH proton's signal peaks. Importantly, this work provides a significant breakthrough in exploring and developing the chiral recognition of chiral heterocyclic organic compounds by 1H NMR spectroscopy.

16.
Mikrochim Acta ; 191(3): 170, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38427110

RESUMO

Gold nanostructures and a Nafion modified screen-printed carbon electrode (Nafion/AuNS/SPCE) were developed to assess the cell viability of Parkinson's disease (PD) cell models. The electrochemical measurement of cell viability was reflected by catecholamine neurotransmitter (represented by dopamine) secretion capacity, followed by a traditional tetrazolium-based colorimetric assay for confirmation. Due to the  capacity to synthesize, store, and release catecholamines as well as their unlimited homogeneous proliferation, and ease of manipulation, pheochromocytoma (PC12) cells were used for PD cell modeling. Commercial low-differentiated and highly-differentiated PC12 cells, and home-made nerve growth factor (NGF) induced low-differentiated PC12 cells (NGF-differentiated PC12 cells) were included in the modeling. This approach achieved sensitive and rapid determination of cellular modeling and intervention states. Notably, among the three cell lines, NGF-differentiated PC12 cells displayed the enhanced neurotransmitter secretion level accompanied with attenuated growth rate, incremental dendrites in number and length that were highly resemble with neurons. Therefore, it was selected as the PD-tailorable modeling cell line. In short, the electrochemical sensor can be used to sensitively determine the biological function of neuron-like PC12 cells with negligible destruction and to explore the protective and regenerative impact of various substances on nerve cell model.


Assuntos
Neoplasias das Glândulas Suprarrenais , Polímeros de Fluorcarboneto , Doença de Parkinson , Ratos , Animais , Catecolaminas/metabolismo , Células PC12 , Fator de Crescimento Neural , Avaliação Pré-Clínica de Medicamentos , Neurotransmissores
17.
Physiol Behav ; 277: 114499, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38378074

RESUMO

An increasing body of evidence suggests that the state of hyperalgesia could be socially transferred from one individual to another through a brief empathetic social contact. However, how the social transfer of pain develops during social contact is not well-known. Utilizing a well-established mouse model, the present study aims to study the functional role of visual and olfactory cues in the development of socially-transferred mechanical hypersensitivity. Behavioral tests demonstrated that one hour of brief social contact with a conspecific mouse injected with complete Freund's adjuvant (CFA) was both sufficient and necessary for developing socially-transferred mechanical hypersensitivity. One hour of social contact with visual deprivation could not prevent the development of socially-transferred mechanical hypersensitivity, and screen observation of a CFA cagemate was not sufficient to develop socially-transferred mechanical hypersensitivity in bystanders. Methimazole-induced olfactory deprivation, a compound with reversible toxicity on the nasal olfactory epithelium, was sufficient to prevent the development of socially-transferred mechanical hypersensitivity. Intriguingly, repeated but not acute olfactory exposure to the CFA mouse bedding induced a robust decrease in 50 % paw withdrawal thresholds (50 %PWTs) to mechanical stimuli, an effect returned to the baseline level after two days of washout with clean bedding. The findings strongly indicate that the normal olfactory function is crucial for the induction of mechanical hypersensitivity through brief empathetic contact, offering valuable insights for animal housing in future pain research.


Assuntos
Hiperalgesia , Dor , Camundongos , Masculino , Animais , Camundongos Endogâmicos C57BL , Hiperalgesia/induzido quimicamente , Modelos Animais de Doenças , Inflamação
18.
Heliyon ; 10(3): e25144, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38322888

RESUMO

HuaChanSu is active water extracts from the skin of Bufo bufo gargarizans Cantor. It has been already used to treat clinical cancers including HCC (Hepatocellular carcinoma, HCC), however, the molecular mechanisms under HuaChanSu's anti-cancer effects remain unclear. PPP (Pentose phosphate pathway, PPP), the major source of ribose and NADPH (Nicotinamide adenine dinucleotide phosphate, NADPH), is always over-activated and particularly critical for tumor cells growth. In this study, firstly, we illustrate that HuaChanSu restrains the growth of human hepatoma cells. More importantly, we demonstrate that the expression of G6PD (Glucose-6-phosphate dehydrogenase, G6PD), the first rate-limiting enzyme of the PPP, is restrained in human hepatoma cells after treatment with HuaChanSu. Additionally, our results show that G6PD enzyme activity and dimer formation are inhibited by HuaChanSu. Furthermore, we find that HuaChanSu could inhibit NADPH production and nucleotide level. In addition, we identify that expression of PLK1 (Polo-like kinase 1, PLK1) is also reduced in response to HuaChanSu, and knockdown of PLK1 restrains enzyme activity and dimer formation of G6PD, but has no effect on G6PD protein level. Subsequently, we demonstrate that inhibition of G6PD could restrain the proliferation of tumor cells and enhance the inhibitory effect of HuaChanSu on cell proliferation of human hepatoma cells. In conclusion, for the first time, our study reveals that HuaChanSu interferes with PPP via suppression of G6PD expression and enzyme activity to restrain growth of tumor cells, and these results provide a novel insight for the anti-hepatoma mechanisms of HuaChanSu and promote the innovation of the research model of TCM. Moreover, the development of drugs targeting abnormal tumor metabolism is currently a hot topic, our works provide theoretical support for further drug development from HuaChanSu, meanwhile, the revelation of the new molecular mechanism also provides a new perspective for the study of the pathogenesis of liver cancer. Short abstract: HuaChanSu suppresses expression of G6PD, the first rate-limiting enzyme of the PPP, restrains G6PD enzyme activity and dimer formation via inhibition of PLK1, knockdown of G6PD could impair the growth of human hepatoma cells and increase the blocking effect of HuaChanSu on cell proliferation of cancer cells. In addition, HuaChanSu restrains NADPH production and nucleotide level, implying the suppression of PPP flux. Our study suggests that HuaChanSu interferes with PPP via G6PD inhibition to exert anti-hepatoma effects.

19.
J Neurosci ; 44(13)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38378273

RESUMO

Patients with chronic pain often develop comorbid depressive symptoms, which makes the pain symptoms more complicated and refractory. However, the underlying mechanisms are poorly known. Here, in a repeated complete Freund's adjuvant (CFA) male mouse model, we reported a specific regulatory role of the paraventricular thalamic nucleus (PVT) glutamatergic neurons, particularly the anterior PVT (PVA) neurons, in mediating chronic pain and depression comorbidity (CDC). Our c-Fos protein staining observed increased PVA neuronal activity in CFA-CDC mice. In wild-type mice, chemogenetic activation of PVA glutamatergic neurons was sufficient to decrease the 50% paw withdrawal thresholds (50% PWTs), while depressive-like behaviors evaluated with immobile time in tail suspension test (TST) and forced swim test (FST) could only be achieved by repeated chemogenetic activation. Chemogenetic inhibition of PVA glutamatergic neurons reversed the decreased 50% PWTs in CFA mice without depressive-like symptoms and the increased TST and FST immobility in CFA-CDC mice. Surprisingly, in CFA-CDC mice, chemogenetically inhibiting PVA glutamatergic neurons failed to reverse the decrease of 50% PWTs, which could be restored by rapid-onset antidepressant S-ketamine. Further behavioral tests in chronic restraint stress mice and CFA pain mice indicated that PVA glutamatergic neuron inhibition and S-ketamine independently alleviate sensory and affective pain. Molecular profiling and pharmacological studies revealed the 5-hydroxytryptamine receptor 1D (Htr1d) in CFA pain-related PVT engram neurons as a potential target for treating CDC. These findings identified novel CDC neuronal and molecular mechanisms in the PVT and provided insight into the complicated pain neuropathology under a comorbid state with depression and related drug development.


Assuntos
Dor Crônica , Ketamina , Humanos , Camundongos , Masculino , Animais , Dor Crônica/metabolismo , Depressão/tratamento farmacológico , Tálamo , Neurônios/metabolismo , Comorbidade
20.
Interv Neuroradiol ; : 15910199231217769, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38192118

RESUMO

OBJECTIVE: To investigate the therapeutic effect of intra-arterial microguidewire electrocoagulation on intracranial vascular diseases. METHODS: Data from 10 patients with cerebral aneurysms between May 2018 and September 2022 were analysed. Patients were treated with endovascular coil embolisation and microguidewire electrocoagulation. XperCT scans were conducted to identify new intracranial haemorrhage, infarction and hydrocephalus. Follow-up examinations were conducted 1, 3, 6 and 12 months after discharge. RESULTS: After the patients received electrocoagulation for different durations, Raymond Grade 1 embolisation was achieved in all 10 patients. No complications, such as haemorrhage, infarction or hydrocephalus, were found during or after surgery. Ten patients were followed up for 6-12 months, and none had any symptoms or new neurological dysfunction 1 month after their operation. Among them, nine were followed up for 12 months, and digital subtraction angiography showed no recurrence of aneurysms or occlusion of parent arteries. CONCLUSION: Intra-arterial microguidewire electrocoagulation can be used as a supplementary treatment for cerebral aneurysms. In cases of incomplete lesion embolisation and cases where tamponade treatment cannot continue, immediate thrombosis may occur. Thus, intra-arterial microguidewire electrocoagulation can help achieve patients' treatment goals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...