Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 279(Pt 2): 135312, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39236960

RESUMO

Sensing motors and supercapacitors are pivotal in empowering smart systems, honing energy management, and facilitating the seamless integration of responsive electronics. Harnessing the electrochemistry of methylcellulose-polyaniline (MC/PANI) composites, this research delves into their potential applications as reactive current sensing supercapacitors with single connectivity. The electrochemical traits of pristine polyaniline (PANI) and MC/PANI composites were analyzed and assessed for their potential applications in sensors and energy storage devices. With a specific capacitance of 300Fg-1, the MC/PANI_B3 composite-based device retained 87.01 % capacitance after 2000 cycles. Besides, based on electrical energy as the sensing parameter, the composite exhibited augmented cathodic and anodic current sensitivity of 8.77 mJmA-1 and -8.86 mJmA-1, respectively. The ameliorated supercapacitor and current sensing parameters of MC/PANI_B3 are ascribed to the percolation threshold content of the conducting phase, which is endowed with optimal hydrogen bond-mediated interactions with methylcellulose (MC), thus confers an expanded chain conformation.

2.
J Fluoresc ; 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39155355

RESUMO

A neoteric colorimetric probe based on 2-hydroxy-1-naphthaldehyde (PMB3) was designed and synthesized for the real-time as well as on-site naked-eye detection of Cu2+/Ni2+ ions. Various physicochemical methods were employed to characterize the probe, and its colorimetric response to different metal ions was meticulously investigated. The probe, PMB3, exhibited a sensitive colorimetric response to Cu2+/Ni2+ ions among other competing metal ions, culminating in a prominent colour change from colourless to yellow. The stoichiometry of the ligand metal complexes was ascertained to be in a 1:1 ratio using Job's plot analysis, which was further corroborated by ESI-MS data. With detection limits of 4.56 µM for Cu2+ and 2.68 µM for Ni2+, the method was effectively extended to real sample analysis, ensuring propitious results that closely aligned with the actual values.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...