Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 15(12): e0242697, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33259524

RESUMO

Thermal degradation of sugars and amino acids, and depolymerization of macromolecules such as starch, proteins and fibre occasioned by high-temperature short-time extrusion cooking modify the physicochemical and functional properties of raw materials. High-temperature short-time extrusion cooking holds promise for the expanded use of non-conventional ingredients as food/feed due to its practicality, increased productivity and efficiency, and ability to retain thermally degradable nutrients during cooking. However, little is known about the effect of the high-temperature short-time extrusion cooking process on the physicochemical properties and starch digestibility of lesser-known grain legumes such as African yam beans (Sphenostylis stenocarpa), Pigeon pea (Cajanus cajan), and Bambara peanut (Vigna subterranean). In this study, we investigate the effect of high-temperature short-time extrusion cooking and extrusion cooking temperature; low (100°C) vs high (140°C) temperatures in a single screw extruder, on hydration characteristics, viscoamylolytic properties, in vitro starch digestibility and digestion kinetics of these grain legumes. We show that water holding capacity and swelling power increased (p < 0.05) with increasing extrusion temperature for Sphenostylis stenocarpa and Vigna subterranean but not Cajanus cajan extrudates. Significant effects of extrusion cooking (i.e unextruded vs 100°C and unextruded vs 140°C) and extrusion temperatures (i.e. 100°C vs 140°C) were observed in peak, trough, final and setback viscosities of all extrudates. Starch digestibility and digestion characteristics were modified with increase in extrusion temperature, however, no effect of extrusion temperatures (i.e. 100°C vs 140°C) on starch digestion kinetics was observed for Sphenostylis stenocarpa and Vigna subterranean except for hydrolysis index (34.77 vs 40.77%). Nutritional and physiological implications of extruded grain legumes in monogastric animal feeding were also highlighted. The Information presented herein will influence expanded use of extruded grain legumes as feed ingredients for intensive monogastric animal feeding.


Assuntos
Culinária/normas , Digestão/fisiologia , Grão Comestível/química , Amido/química , Cajanus/química , Cajanus/metabolismo , Fabaceae/química , Fabaceae/crescimento & desenvolvimento , Farinha/análise , Manipulação de Alimentos , Humanos , Cinética , Sphenostylis/química , Sphenostylis/metabolismo , Amido/metabolismo , Temperatura , Verduras/química , Vigna/química , Vigna/metabolismo , Água/química
2.
Heliyon ; 6(11): e05419, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33225089

RESUMO

African yam beans (Sphenostylis stenocarpa), Bambara groundnut (Vigna subterranean) and Pigeon pea (Cajanus cajan) flours were extruded in a single screw extruder at two extrusion temperatures; 100 °C and 140 °C, and the effect of extrusion cooking temperature on the chemical composition; crude protein, crude fibre, ether extract and nitrogen-free extracts, protein digestibility, enzyme inhibitor activity and amino acid profiles was investigated. The crude protein, amino acid profile and ether extract of the grain legumes were negatively affected (p < 0.05) by the extrusion cooking process, with a significant increase in nitrogen-free extracts for all grain legumes, and increased crude fibre of Bambara groundnut and Pigeon pea extrudates. Extrusion cooking of African yam beans and Pigeon pea produced extrudates with significantly lower trypsin, chymotrypsin and amylase inhibitor activity as well as improved protein digestibility. However, extrusion cooking did not modify the chymotrypsin and amylase inhibitor activity of Bambara groundnut extrudates. Extrusion cooking at 140 °C compared to 100 °C significantly reduced the protein quality of extrudates resulting in 22.94-51.27%, 5.11-25.18%, and 7.78-38.42% reduction in amino acid concentration of African yam beans, Bambara groundnut and Pigeon pea, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...