Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(8): e0291887, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39173065

RESUMO

Seizures are increasingly being recognized as the hallmark of Alzheimer's disease (AD). Neuronal hyperactivity can be a consequence of neuronal damage caused by abnormal amyloid ß (Aß) depositions. However, it can also be a cell-autonomous phenomenon causing AD by Aß-independent mechanisms. Various studies using animal models have shown that Ca2+ is released from the endoplasmic reticulum (ER) via type 1 inositol triphosphate receptors (InsP3R1s) and ryanodine receptors (RyRs). To investigate which is the main pathophysiological mechanism in human neurons, we measured Ca2+ signaling in neural cells derived from three early-onset AD patients harboring Presenilin-1 variants (PSEN1 p.A246E, p.L286V, and p.M146L). Of these, it has been reported that PSEN1 p.A246E and p.L286V did not produce a significant amount of abnormal Aß. We found all PSEN1-mutant neurons, but not wild-type, caused abnormal Ca2+-bursts in a manner dependent on the calcium channel, Ryanodine Receptor 2 (RyR2). Indeed, carvedilol, an RyR2 inhibitor, and VK-II-86, an analog of carvedilol without the ß-blocking effects, sufficiently eliminated the abnormal Ca2+ bursts. In contrast, Dantrolene, an inhibitor of RyR1 and RyR3, and Xestospongin c, an IP3R inhibitor, did not attenuate the Ca2+-bursts. The Western blotting showed that RyR2 expression was not affected by PSEN1 p.A246E, suggesting that the variant may activate the RyR2. The RNA-Seq data revealed that ER-stress responsive genes were increased, and mitochondrial Ca2+-transporter genes were decreased in PSEN1A246E cells compared to the WT neurons. Thus, we propose that aberrant Ca2+ signaling is a key link between human pathogenic PSEN1 variants and cell-intrinsic hyperactivity prior to deposition of abnormal Aß, offering prospects for the development of targeted prevention strategies for at-risk individuals.


Assuntos
Doença de Alzheimer , Sinalização do Cálcio , Cálcio , Carvedilol , Neurônios , Presenilina-1 , Canal de Liberação de Cálcio do Receptor de Rianodina , Feminino , Humanos , Masculino , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Presenilina-1/genética , Presenilina-1/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Carvedilol/farmacologia
2.
Stem Cell Res ; 79: 103471, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38878669

RESUMO

Cadherin 23 (CDH23) is one of the most common genes responsible for hereditary hearing loss; a mutation of CDH23 can cause a wide range of symptoms depending on the variant. In this study, an iPSC line was generated from a patient with late-onset, progressive high frequency hearing loss caused by c.[719C > T];[6085C > T]:p.[P240L];[R2029W] compound heterozygous variants of CDH23. The cells were confirmed to have a normal karyotype, express markers of pluripotency, and have tri-embryonic differentiation potential. This disease-specific iPSC line will further the construction of disease models and the elucidation of the pathophysiology of CDH23 mutations.


Assuntos
Caderinas , Perda Auditiva , Células-Tronco Pluripotentes Induzidas , Mutação , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Caderinas/genética , Caderinas/metabolismo , Perda Auditiva/genética , Perda Auditiva/patologia , Linhagem Celular , Diferenciação Celular , Masculino , Proteínas Relacionadas a Caderinas
3.
Stem Cell Res ; 77: 103401, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38537501

RESUMO

The CMT1A variant accounts for over 60% of cases of Charcot-Marie-Tooth disease (CMT), one of the most common human neuropathies. The cause of CMT1A has been identified as the duplication of PMP22, a myelin protein expressed in Schwann cells. Yet, the pathological mechanisms have not been elucidated, and no treatment is currently available. In our study, we established an iPS cell line from a CMT1A patient with PMP22 duplication. The generated iPSCs maintain pluripotency and in vitro differentiation potency.


Assuntos
Doença de Charcot-Marie-Tooth , Células-Tronco Pluripotentes Induzidas , Proteínas da Mielina , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/patologia , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Proteínas da Mielina/genética , Proteínas da Mielina/metabolismo , Linhagem Celular , Diferenciação Celular , Duplicação Gênica , Masculino
4.
Stem Cell Res ; 76: 103323, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38309147

RESUMO

PARK2 is the most common autosomal recessive form of Parkinson's disease and is caused by mutations in parkin that result in early-onset loss of dopaminergic neurons in the substantia nigra. In this study, we established an induced pluripotent stem cell (iPSC) line from a patient harboring a homozygous exon 3 deletion in PARK2. The established iPSCs showed pluripotency, the capacity to differentiate into the three germ layers, and normal karyotypes.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doença de Parkinson , Transtornos Parkinsonianos , Humanos , Neurônios Dopaminérgicos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação/genética , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Transtornos Parkinsonianos/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
5.
Stem Cell Res ; 74: 103271, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38100917

RESUMO

Appropriate control induced pluripotent stem cells (iPSCs) are essential for studying iPSCs derived from patients with Parkinson's disease (PD). In this study, we established an iPSC line from a healthy male donor. The iPSCs showed pluripotency, capacity to differentiate into three germ layers, and normal karyotypes. Additionally, we confirmed that the iPSC line did not exhibit any PD-related gene abnormalities. This iPSC line will be useful for PD research.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doença de Parkinson , Humanos , Masculino , Células-Tronco Pluripotentes Induzidas/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Linhagem Celular
6.
Stem Cell Res ; 74: 103270, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38100911

RESUMO

The appropriate control of induced pluripotent stem cells (iPSCs) is essential for studying iPSCs derived from patients with Parkinson's disease (PD). Here, we established an iPSC line from a healthy female donor. The iPSCs were pluripotent, could differentiate into three germ layers, and had normal karyotypes. We also confirmed that the iPSC line exhibited no PD-related gene abnormalities. This iPSC line will be useful for PD research.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doença de Parkinson , Humanos , Feminino , Células-Tronco Pluripotentes Induzidas/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Linhagem Celular , Camadas Germinativas/metabolismo
7.
Stem Cell Res ; 74: 103296, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38154385

RESUMO

Parkinson's disease is the second most common neurodegenerative disorder and is pathologically characterized by synuclein-rich aggregations (Lewy bodies) in neurons. Multiplication of the synuclein gene (SNCA) increases the mRNA and protein levels of synuclein, resulting in autosomal dominant hereditary Parkinson's disease. In the present study, we established three isogenic induced pluripotent stem cells (iPSCs) from a patient harboring SNCA duplication, which showed pluripotency, three-germ layer differentiation capacity, and normal karyotypes.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doença de Parkinson , Humanos , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Células Clonais/metabolismo , Diferenciação Celular
8.
Int J Mol Sci ; 24(24)2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38139018

RESUMO

Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episode (MELAS) syndrome, caused by a single base substitution in mitochondrial DNA (m.3243A>G), is one of the most common maternally inherited mitochondrial diseases accompanied by neuronal damage due to defects in the oxidative phosphorylation system. There is no established treatment. Our previous study reported a superior restoration of mitochondrial function and bioenergetics in mitochondria-deficient cells using highly purified mesenchymal stem cells (RECs). However, whether such exogenous mitochondrial donation occurs in mitochondrial disease models and whether it plays a role in the recovery of pathological neuronal functions is unknown. Here, utilizing induced pluripotent stem cells (iPSC), we differentiated neurons with impaired mitochondrial function from patients with MELAS. MELAS neurons and RECs/mesenchymal stem cells (MSCs) were cultured under contact or non-contact conditions. Both RECs and MSCs can donate mitochondria to MELAS neurons, but RECs are more excellent than MSCs for mitochondrial transfer in both systems. In addition, REC-mediated mitochondrial transfer significantly restored mitochondrial function, including mitochondrial membrane potential, ATP/ROS production, intracellular calcium storage, and oxygen consumption rate. Moreover, mitochondrial function was maintained for at least three weeks. Thus, REC-donated exogenous mitochondria might offer a potential therapeutic strategy for treating neurological dysfunction in MELAS.


Assuntos
Acidose Láctica , Síndrome MELAS , Células-Tronco Mesenquimais , Doenças Mitocondriais , Humanos , Síndrome MELAS/genética , Síndrome MELAS/terapia , Mitocôndrias/genética , Acidose Láctica/metabolismo , Acidose Láctica/patologia , DNA Mitocondrial/metabolismo , Doenças Mitocondriais/metabolismo , Neurônios/patologia , Células-Tronco Mesenquimais/metabolismo
9.
Mov Disord ; 38(12): 2249-2257, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37926948

RESUMO

BACKGROUND: Parkin RBR E3 ubiquitin-protein ligase (PRKN) mutations are the most common cause of young onset and autosomal recessive Parkinson's disease (PD). PRKN is located in FRA6E, which is one of the common fragile sites in the human genome, making this region prone to structural variants. However, complex structural variants such as inversions of PRKN are seldom reported, suggesting that there are potentially unrevealed complex pathogenic PRKN structural variants. OBJECTIVES: To identify complex structural variants in PRKN using long-read sequencing. METHODS: We investigated the genetic cause of monozygotic twins presenting with a young onset dystonia-parkinsonism using targeted sequencing, whole exome sequencing, multiple ligation probe amplification, and long-read sequencing. We assessed the presence and frequency of complex inversions overlapping PRKN using whole-genome sequencing data of Accelerating Medicines Partnership Parkinson's disease (AMP-PD) and United Kingdom (UK)-Biobank datasets. RESULTS: Multiple ligation probe amplification identified a heterozygous exon three deletion in PRKN and long-read sequencing identified a large novel inversion spanning over 7 Mb, including a large part of the coding DNA sequence of PRKN. We could diagnose the affected subjects as compound heterozygous carriers of PRKN. We analyzed whole genome sequencing data of 43,538 participants of the UK-Biobank and 4941 participants of the AMP-PD datasets. Nine inversions in the UK-Biobank and two in AMP PD were identified and were considered potentially damaging and likely to affect PRKN expression. CONCLUSIONS: This is the first report describing a large 7 Mb inversion involving breakpoints outside of PRKN. This study highlights the importance of using long-read sequencing for structural variant analysis in unresolved young-onset PD cases. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.


Assuntos
Doença de Parkinson , Transtornos Parkinsonianos , Humanos , Heterozigoto , Mutação/genética , Doença de Parkinson/genética , Transtornos Parkinsonianos/genética , Ubiquitina-Proteína Ligases/genética
10.
medRxiv ; 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37790330

RESUMO

Background: PRKN mutations are the most common cause of young onset and autosomal recessive Parkinson's disease (PD). PRKN is located in FRA6E which is one of the common fragile sites in the human genome, making this region prone to structural variants. However, complex structural variants such as inversions of PRKN are seldom reported, suggesting that there are potentially unrevealed complex pathogenic PRKN structural variants. Objectives: To identify complex structural variants in PRKN using long-read sequencing. Methods: We investigated the genetic cause of monozygotic twins presenting with a young onset dystonia-parkinsonism using targeted sequencing, whole exome sequencing, multiple ligation probe amplification, and long-read. We assessed the presence and frequency of complex inversions overlapping PRKN using whole-genome sequencing data of AMP-PD and UK-Biobank datasets. Results: Multiple ligation probe amplification identified a heterozygous exon 3 deletion in PRKN and long-read sequencing identified a large novel inversion spanning over 7Mb, including a large part of the coding DNA sequence of PRKN. We could diagnose the affected subjects as compound heterozygous carriers of PRKN. We analyzed whole genome sequencing data of 43,538 participants of the UK-Biobank and 4,941 participants of the AMP-PD datasets. Nine inversions in the UK-Biobank and two in AMP PD were identified and were considered potentially damaging and likely to affect PRKN isoforms. Conclusions: This is the first report describing a large 7Mb inversion involving breakpoints outside of PRKN. This study highlights the importance of using long-read whole genome sequencing for structural variant analysis in unresolved young-onset PD cases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...