Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-35434694

RESUMO

Malaria is the world's fatal parasitic disease. The ability to quickly and accurately identify malaria infection in challenging environments is crucial to allow efficient administration of the best treatment regime for human patients. If those techniques are accessible and efficient, global detection of Plasmodium species will become more sensitive, allowing faster and more precise action to be taken for disease control strategies. Recent advances in technology have enhanced our ability to diagnose different species of Plasmodium parasites with greater sensitivity and specificity. This literature review provides a summary and discussion of the current methods for the diagnosis and identification of Plasmodium spp. in human blood samples. So far not a single method is precise, but advanced technologies give consistent identification of a Plasmodium infection in endemic regions. By using the power of the recent methods, we can provide a broader understanding of the multiplicity of infection and or transmission dynamics of Plasmodium spp. This will result in improved disease control strategies, better-informed policy, and effective treatment for malaria-positive patients.

2.
Parasitol Int ; 76: 102071, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32045674

RESUMO

Fasciola spp. are responsible for over 3 billion US dollars of production loss annually in livestock and cause widespread zoonotic disease. Nevertheless, understating of the emergence and spread of the trematode species is poor. The multiplicity of F. gigantica infection and its spread is potentially influenced by multiple factors, including the abundance of suitable intermediate hosts, climatic conditions favouring the completion of the parasite's lifecycle, and translocation of infected animals, or free-living parasite stages between regions. Here we describe the development of a 'tremabiome' metabarcoding sequencing method to explore the numbers of F. gigantica genotypes per infection and patterns of parasite spread, based on genetic characteristics of the mitochondrial NADH dehydrogenase 1 (mt-ND-1) locus. We collected F. gigantica from three abattoirs in the Punjab and Balochistan provinces of Pakistan, and our results show a high level of genetic diversity in 20 F. gigantica populations derived from small and large ruminants consigned to slaughter in both provinces. This implies that F. gigantica can reproduce in its definitive hosts through meiosis involving cross- and self-breeding, as described in the closely related species, Fasciola hepatica. The genetic diversity between the 20 populations derived from different locations also illustrates the impact of animal movements on gene flow. Our results demonstrate the predominance of single haplotypes, consistent with a single introduction of F. gigantica infection in 85% of the hosts from which the parasite populations were derived. This is consistent with clonal reproduction in the intermediate snail hosts.


Assuntos
Búfalos , Doenças dos Bovinos/epidemiologia , Fasciola/isolamento & purificação , Fasciolíase/veterinária , Variação Genética , Doenças das Cabras/epidemiologia , Doenças dos Ovinos/epidemiologia , Animais , Bovinos , Doenças dos Bovinos/parasitologia , Fasciola/classificação , Fasciolíase/epidemiologia , Fasciolíase/parasitologia , Genótipo , Doenças das Cabras/parasitologia , Cabras , Paquistão/epidemiologia , Ovinos , Doenças dos Ovinos/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...