RESUMO
Electron flow through the electron transport chain (ETC) is essential for oxidative phosphorylation in mitochondria and photosynthesis in chloroplasts. Electron fluxes depend on environmental parameters, e.g., ionic and osmotic conditions and endogenous factors, and this may cause severe imbalances. Plants have evolved alternative sinks to balance the reductive load on the electron transport chains in order to avoid overreduction, generation of reactive oxygen species (ROS), and to cope with environmental stresses. These sinks act primarily as valves for electron drainage and secondarily as regulators of tolerance-related metabolism, utilizing the excess reductive energy. High salinity is an environmental stressor that stimulates the generation of ROS and oxidative stress, which affects growth and development by disrupting the redox homeostasis of plants. While glycophytic plants are sensitive to high salinity, halophytic plants tolerate, grow, and reproduce at high salinity. Various studies have examined the ETC systems of glycophytic plants, however, information about the state and regulation of ETCs in halophytes under non-saline and saline conditions is scarce. This review focuses on alternative electron sinks in chloroplasts and mitochondria of halophytic plants. In cases where information on halophytes is lacking, we examined the available knowledge on the relationship between alternative sinks and gradual salinity resilience of glycophytes. To this end, transcriptional responses of involved components of photosynthetic and respiratory ETCs were compared between the glycophyte Arabidopsis thaliana and the halophyte Schrenkiella parvula, and the time-courses of these transcripts were examined in A. thaliana. The observed regulatory patterns are discussed in the context of reactive molecular species formation in halophytes and glycophytes.
Assuntos
Cloroplastos , Mitocôndrias , Espécies Reativas de Oxigênio , Salinidade , Plantas Tolerantes a Sal , Cloroplastos/metabolismo , Plantas Tolerantes a Sal/metabolismo , Plantas Tolerantes a Sal/genética , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transporte de Elétrons , FotossínteseRESUMO
The biological interactions between plants and their root microbiomes are essential for plant growth, and even though plant genotype (G), soil microbiome (M), and growth conditions (environment; E) are the core factors shaping root microbiome, their relationships remain unclear. In this study, we investigated the effects of G, M, and E and their interactions on the Lotus root microbiome and plant growth using an in vitro cross-inoculation approach, which reconstructed the interactions between nine Lotus accessions and four soil microbiomes under two different environmental conditions. Results suggested that a large proportion of the root microbiome composition is determined by M and E, while G-related (G, G × M, and G × E) effects were significant but small. In contrast, the interaction between G and M had a more pronounced effect on plant shoot growth than M alone. Our findings also indicated that most microbiome variations controlled by M have little effect on plant phenotypes, whereas G × M interactions have more significant effects. Plant genotype-dependent interactions with soil microbes warrant more attention to optimize crop yield and resilience.
Assuntos
Genótipo , Lotus , Microbiota , Raízes de Plantas , Microbiologia do Solo , Lotus/microbiologia , Lotus/crescimento & desenvolvimento , Lotus/genética , Raízes de Plantas/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , Microbiota/genética , Solo/químicaRESUMO
Many plant species have succeeded in colonizing a wide range of diverse climates through local adaptation, but the underlying molecular genetics remain obscure. We previously found that winter survival was a direct target of selection during colonization of Japan by the perennial legume Lotus japonicus and identified associated candidate genes. Here, we show that two of these, FERONIA-receptor like kinase (LjFER) and a S-receptor-like kinase gene (LjLecRK), are required for non-acclimated freezing tolerance and show haplotype-dependent cold-responsive expression. Our work suggests that recruiting a conserved growth regulator gene, FER, and a receptor-like kinase gene, LecRK, into the set of cold-responsive genes has contributed to freezing tolerance and local climate adaptation in L. japonicus, offering functional genetic insight into perennial herb evolution.
Assuntos
Lotus , Lotus/metabolismo , Haplótipos/genética , Congelamento , Aclimatação/genética , Adaptação Fisiológica/genética , Regulação da Expressão Gênica de PlantasRESUMO
Transposable elements (TEs) constitute a large proportion of genomes of multicellular eukaryotes, including flowering plants. TEs are normally maintained in a silenced state and their transpositions rarely occur. Hybridization between distant species has been regarded as a 'shock' that stimulates genome reorganization, including TE mobilization. However, whether crosses between genetically close parents that result in viable and fertile offspring can induce TE transpositions has remained unclear. Here, we investigated the activation of long terminal repeat (LTR) retrotransposons in three Lotus japonicus recombinant inbred line (RIL) populations. We found that at least six LTR retrotransposon families were activated and transposed in 78% of the RILs investigated. LORE1a, one of the transposed LTR retrotransposons, showed transgenerational epigenetic activation, indicating the long-term effects of epigenetic instability induced by hybridization. Our study highlights TE activation as an unexpectedly common event in plant reproduction.
Assuntos
Lotus , Retroelementos , Evolução Molecular , Genoma de Planta/genética , Hibridização Genética , Lotus/genética , Plantas/genética , Retroelementos/genética , Sequências Repetidas Terminais/genéticaRESUMO
Drought is a prevalent natural factor limiting crop production in arid regions across the world. To overcome this limitation, seeds are sown much deeper to boost germination by soil moisture produced by underground water. Seed pretreatment can effectively induce deep-sowing tolerance in plants. In the present study, we evaluated whether H2O2 pretreatment of seeds can initiate metabolic changes and lead to improved deep-sowing tolerance in wheat. Pretreatment with 0.05 µM H2O2 promoted first internode elongation by 13% in the deep-sowing tolerant wheat cultivar "Tir" and by 32% in the sensitive cultivar "Kiraç-66" under deep-sowing conditions, whereas internode elongation was inhibited by diphenyleneiodonium chloride. In contrast to Tir seedlings, H2O2 levels in the first internode of Kiraç-66 seedlings increased under deep-sowing condition in the H2O2-treated group compared to controls. Moreover, these seedlings had significantly lower catalase (CAT), peroxidase (POX), and ascorbate peroxidase (APX) activities but higher NADPH oxidase (NOX) and superoxide dismutase (SOD) activities under the same conditions, which consequently induced greater H2O2 accumulation. Contrary to Tir, both total glutathione and glutathione S-transferase (GST) activity decreased in Kiraç-66 after deep-sowing at 10 cm. However, H2O2 treatment increased the total glutathione amounts and the activities of glutathione-related enzymes (except GST and GPX) in the first internode of Kiraç-66. Taken together, these data support that H2O2 acts as a signaling molecule in the activation of antioxidant enzymes (specifically NOX, SOD, and CAT), regulation of both glutathione-related enzymes and total glutathione content, and upregulation of the cell wall-loosening protein gene TaEXPB23.
Assuntos
Peróxido de Hidrogênio , Plântula , Antioxidantes , Ascorbato Peroxidases , Catalase , Sementes , Superóxido Dismutase , TriticumRESUMO
BACKGROUND: Genomic information for Allium cepa L. is limited as it is heterozygous and its genome is very large. To elucidate potential SNP markers obtained by NGS, we used a complete set of A. fistulosum L.-A. cepa monosomic addition lines (MALs) and doubled haploids (DHs). These were the parental lines of an A. cepa mapping population for transcriptome-based SNP genotyping. RESULTS: We mapped the transcriptome sequence reads from a series of A. fistulosum-A. cepa MALs onto the unigene sequence of the doubled haploid shallot A. cepa Aggregatum group (DHA) and compared the MAL genotype call for parental bunching onion and shallot transcriptome mapping data. We identified SNP sites with at least four reads on 25,462 unigenes. They were anchored on eight A. cepa chromosomes. A single SNP site was identified on 3,278 unigenes and multiple SNPs were identified on 22,184 unigenes. The chromosome marker information was made public via the web database Allium TDB ( http://alliumtdb.kazusa.or.jp/ ). To apply transcriptome based genotyping approach for genetic mapping, we gathered RNA sequence data from 96 lines of a DHA × doubled haploid bulb onion A. cepa common onion group (DHC) mapping population. After selecting co-dominant SNP sites, 16,872 SNPs were identified in 5,339 unigenes. Of these, at least two SNPs with identical genotypes were found in 1,435 unigenes. We developed a linkage map using genotype information from these unigenes. All unigene markers mapped onto the eight chromosomes and graphical genotyping was conducted based on the unigene order information. Another 2,963 unigenes were allocated onto the eight chromosomes. To confirm the accuracy of this transcriptome-based genetic linkage map, conventional PCR-based markers were used for linkage analysis. All SNP - and PCR-based markers were mapped onto the expected linkage groups and no inconsistency was found among these chromosomal locations. CONCLUSIONS: Effective transcriptome analysis with unique Allium resources successfully associated numerous chromosome markers with unigene information and a high-density A. cepa linkage map. The information on these unigene markers is valuable in genome sequencing and useful trait detection in Allium.
Assuntos
Allium , Cebolas , Allium/genética , Mapeamento Cromossômico , Cromossomos de Plantas , Cebolas/genética , Polimorfismo de Nucleotídeo Único , TranscriptomaRESUMO
The present work aimed to compare antioxidant response and lipid peroxide detoxification capacity of an arctic-alpine species Arabis alpina to its close relative model species Arabidopsis thaliana under acute short duration (3 h and 6 h) UV-B stress (4.6 and 8.2 W/m2). After 3 and 6 h exposure to UV-B, A. alpina showed lower lipid peroxidation and H2O2 accumulation when compared to A. thaliana. Moreover, Fv/Fm value of A. thaliana dropped to 0.70, while A. alpina dropped to 0.75 indicating better protection of PSII in this species. For elucidation of the antioxidant response, activities of superoxide dismutase (SOD), catalase (CAT), peroxidase (POX), ascorbate peroxidase (APX), glutathione reductase (GR) and dehydroascorbate reductase (DHAR) were measured. SOD induction with 6 h of UV-B was more prominent in A. alpina. Also, A. alpina had higher chloroplastic FeSOD activity when compared to A. thaliana. APX activity was also significantly induced in A. alpina, while its activity decreased at 3 h or did not change at 6 h in A. thaliana. A. alpina was able to maintain constant CAT activity, but drastic decreases were observed in A. thaliana at both time points. Moreover, A. alpina was able to maintain or induce aldehyde dehydrogenase (ALDH), alkenal reductases (AERs) and glutathione-S-transferases (GST) activity, while an opposite trend was observed in A. thaliana. These findings indicate that A. alpina was able to maintain/induce its antioxidant defence and lipid peroxide detoxification conferring better protection against UV-B.
Assuntos
Arabidopsis/metabolismo , Arabis/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Raios UltravioletaRESUMO
Lotus japonicus is a herbaceous perennial legume that has been used extensively as a genetically tractable model system for deciphering the molecular genetics of symbiotic nitrogen fixation. Our aim is to improve the L. japonicus reference genome sequence, which has so far been based on Sanger and Illumina sequencing reads from the L. japonicus accession MG-20 and contained a large fraction of unanchored contigs. Here, we use long PacBio reads from L. japonicus Gifu combined with Hi-C data and new high-density genetic maps to generate a high-quality chromosome-scale reference genome assembly for L. japonicus. The assembly comprises 554 megabases of which 549 were assigned to six pseudomolecules that appear complete with telomeric repeats at their extremes and large centromeric regions with low gene density. The new L. japonicus Gifu reference genome and associated expression data represent valuable resources for legume functional and comparative genomics. Here, we provide a first example by showing that the symbiotic islands recently described in Medicago truncatula do not appear to be conserved in L. japonicus.
Assuntos
Cromossomos , Dosagem de Genes , Lotus/genética , Simbiose/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Genômica , Medicago/genética , Medicago truncatula/genética , Fixação de NitrogênioRESUMO
Arbuscular mycorrhizal (AM) fungi are important members of the root microbiome and may be used as biofertilizers for sustainable agriculture. To elucidate the impact of AM fungal inoculation on indigenous root microbial communities, we used high-throughput sequencing and an analytical pipeline providing fixed operational taxonomic units (OTUs) as an output to investigate the bacterial and fungal communities of roots treated with a commercial AM fungal inoculum in six agricultural fields. AM fungal inoculation significantly influenced the root microbial community structure in all fields. Inoculation changed the abundance of indigenous AM fungi and other fungal members in a field-dependent manner. Inoculation consistently enriched several bacterial OTUs by changing the abundance of indigenous bacteria and introducing new bacteria. Some inoculum-associated bacteria closely interacted with the introduced AM fungi, some of which belonged to the genera Burkholderia, Cellulomonas, Microbacterium, Sphingomonas, and Streptomyces and may be candidate mycorrhizospheric bacteria that contribute to the establishment and/or function of the introduced AM fungi. Inoculated AM fungi also co-occurred with several indigenous bacteria with putative beneficial traits, suggesting that inoculated AM fungi may recruit specific taxa to confer better plant performance. The bacterial families Methylobacteriaceae, Acetobacteraceae, Armatimonadaceae, and Alicyclobacillaceae were consistently reduced by the inoculation, possibly due to changes in the host plant status caused by the inoculum. To the best of our knowledge, this is the first large-scale study to investigate interactions between AM fungal inoculation and indigenous root microbial communities in agricultural fields.