Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 6258, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491125

RESUMO

This study presented a unique, miniaturised asymmetric interconnected vertical stripe (IVS) design for terahertz (THz) frequency applications. Therefore, this research aimed to achieve a frequency response of 0 to 10 THz using a 5 × 5 µm2 Silicon (Si) substrate material. Meanwhile, various parametric examinations were conducted to investigate variations in the performance. For example, the unit cell selection process was carefully examined by using various design structures and modifying the structure by adding split gaps and connecting bars between vertical stripes. Furthermore, the proposed sandwich structure design was used to compute the absorbance and reflectance properties. All the analytical examinations were executed utilising the Computer Simulation Technology (CST) 2019 software. The introduced IVS metamaterial exhibits negative index behaviour and has a single resonance frequency of 5.23 THz with an acceptable magnitude of - 24.38 dB. Additionally, the quadruple-layer IVS structure exhibits optimised transmission coefficient behaviour between 3 and 6 THz and 7 to 9 THz, respectively. However, the magnitude of the transmission coefficient increased with the number of material layers. Besides that, the absorbance study shows that using a quadruple-layer structure obtains unique and promising results. Overall, the proposed asymmetric IVS metamaterial design achieves the required performance by using a compact structure rather than extending the dimensions of the design.

2.
Heliyon ; 10(4): e26232, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38390122

RESUMO

This study developed a metamaterial-inspired split-ring resonator (SRR) based inversion symmetry-shaped structure for airport surveillance radar and local area wireless network applications. The proposed device exhibited suitability for S- and C-band applications, featuring distinct resonance peaks at 2.8 and 4.9 GHz, respectively. The two-layer double negative metamaterial unit cell comprises a copper-based resonator, patch, and a low-loss substrate material known as Rogers RT5800 with a thickness of 1.575 mm. The 8 × 8 mm2 structure unit cell was identified with an effective medium ratio (EMR) of 13.4 at the resonance peak of 2.8 GHz. With the alteration of the metamaterial unit cell structure, the electric field, surface current distribution, magnetic field, and design evolution were observed, analysed, and investigated in this study. Meanwhile, the retrieved data from the reflection and transmission coefficients from CST Microwave Studio were validated using the Ansys High-Frequency Structure Simulator (HFSS) software. A Vector Network Analyzer (VNA) further measured the numerical results. Based on the findings, the proposed novel double negative metamaterial device is suitable for radar communication and satellite applications, especially airport surveillance radar (ASR) and wireless local area network (WLAN), due to its high EMR at the desired resonance frequency.

3.
Heliyon ; 10(1): e23851, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38192815

RESUMO

This study introduces a compact double negative metamaterial (DNM) composed of three split rings connected slab resonator (TSRCSR) based double-layer design with a high 13.9 EMR (effective medium ratio) value. A double-layer patch is introduced to achieve the novel double negative properties, including negative behaviours of effective medium parameters, including refractive index, permittivity, and permeability with a high effective medium ratio for the miniaturised size of the introduced unconventional material that is highly suitable for microwave S and C band covering applications. The popular low-loss Rogers RT5880 (thickness 1.575 mm) substrate and copper resonator materials are utilized to develop the metamaterial unit cell that offers triple resonance between frequencies from 1 to 8 GHz. Therefore, the proposed metamaterial exhibits resonance peaks at 2.75, 5.2, and 6.3 GHz, suitable for radar, communication satellite, and long-distance telecommunication applications, respectively. The commercially available simulator known as Computer Simulation Technology (CST) is adopted to develop and simulate the 8 × 8 mm2 metamaterial design. The simulation results of the introduced TSRCSR design structure were verified by adopting the Ansys High-Frequency Structure Simulator (HFSS). Furthermore, it was then proved with the help of equivalent circuit model findings gained from the Advanced Design Structure (ADS) software. On the other hand, the analytical results were further validated by measuring the TSRCSR design utilizing a Vector Network Analyzer (VNA). These analyses become one of the novelties of this work, where the compact TSRCSR metamaterial successfully gained small discrepancies in transmission coefficient values when compared to both analytical and measurement results. The proposed metamaterial is highly suggested for communication devices for its extensive effective characteristics and compactness.

4.
Sci Rep ; 13(1): 21828, 2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38071245

RESUMO

This work focused on the novel symmetrical left-handed split ring resonator metamaterial for terahertz frequency applications. A compact substrate material known as Silicon with a dimension of 5 µm was adopted in this research investigation. Moreover, several parameter studies were investigated, such as clockwise rotation, array and layer structure designs, larger-scale metamaterials, novel design structure comparisons and electric field distribution analysis. Meanwhile, two types of square-shaped metamaterial designs were proposed in this work. The proposed designs exhibit double and single resonance frequencies respectively, likely at 3.32 and 9.24 THz with magnitude values of - 16.43 and - 17.33 for the first design, while the second design exhibits a response at 3.03 THz with a magnitude value of - 19.90. Moreover, the verification of these results by adopting High-frequency Structure Simulator software indicates only slight discrepancies which are less than 5%. Furthermore, the initial response of the proposed designs was successfully altered by simply rotating the design clockwise or even increasing the dimension of the design. For instance, the first resonance frequency is shifted to the lower band when the first proposed design was rotated 90°. On the other hand, by increasing the size of the metamaterial, more than nine resonance frequencies were gained in each symmetric design. Furthermore, the symmetric metamaterial with a similar width and length of 10 µm dimension was adopted for both design structures to construct an equivalent circuit model by utilising Advanced Design System software. Finally, both unit cell designs were utilised to explore the absorption performances which exhibit four and five peak points. Overall, the altering behaviour by changing physical properties and compact design with acceptable responses become one of the novelties of this research investigation. In a nutshell, the proposed designs can be utilised in terahertz frequency which gives optimistic or advantageous feedback and is relatively suitable for the adopted frequency range.

5.
Heliyon ; 9(10): e20976, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37886752

RESUMO

A hydrothermal technique was employed to synthesize Ni/Mg/Al ternary L.D.H.s modified with montmorillonite (NMA-MMT-LDHs). Many characterization methods, including X-ray diffraction (XRD), scanning electron microscopy (S.E.M.), Fourier transform infrared (FTIR), and Brunauer, Emmett, and Teller (B.E.T.), were used to assess the physiochemical properties of the produced analytes. Congo red and methylene blue were utilized as model dyes to treat textile waste with the synthesized analytes. The batch adsorption model was utilized to conduct the adsorption experiments under varying contact time, adsorbent dosage, and solution pH conditions. A pseudo-second-order kinetics and the Langmuir adsorption model control the adsorption process. The maximum monolayer adsorption capacities of C.R. and M.B. were determined to be 344 and 200 mg/g, respectively. As the quantity of dosage increased from the 0.01-0.04 g, the percent removal efficiency (%) increased from 75 to 87 % for S2-LDH, 84-88 % for S2-MMT, 86-93 % for S3-MMT, and 95-97% for S4-MMT for C.R. dye and 82-85 % for S2-LDH, 83-89 % for S2-MMT, 83-91 % for S3-MMT, and 84-92 % for S4-MMT for M.B. dye. The removal percentage of C.R. dye for adsorbents S2-LDH, S2-MMT, S3-MMT, and S4-MMT were 75 %, 84 %, 86 %, and 95 %, respectively and 82 %, 83 %, 83 %, and 85 %, respectively for the M.B. dye removal. The presence of MMT significantly increases the affinity of Ni/Mg/Al-LDHs (NMA-LDHs), and the designed production technique can be used to produce a variety of compositionally distinct adsorbent materials.

6.
Materials (Basel) ; 16(13)2023 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-37444880

RESUMO

Metamaterial analysis for microwave frequencies is a common practice. However, adopting a multi-layered design is unique in the concept of miniaturisation, thus requiring extensive research for optimal performance. This study focuses on a multi-layered symmetric metamaterial design for C- and X-band applications. All simulation analyses were performed analytically using Computer Simulation Technology Studio Suite 2019. The performances of the proposed metamaterial design were analysed through several parametric studies. Based on the observation, the proposed metamaterial unit cell design manifested resonant frequencies at 7.63 GHz (C-band) and 9.56 GHz (X-band). Moreover, the analysis of effective medium parameters was also included in this study. High-Frequency Simulation 15.0 and Advanced Design System 2020 software validated the transmission coefficient results. Simultaneously, the proposed multi-layered metamaterial design with Rogers RO3006 substrate material exhibited a unique transmission coefficient using double, triple, and quadruple layers. The two resonant frequencies in the unit cell design were successfully increased to three in the double-layer structure at 6.34 GHz (C-band), 8.46 and 11.13 GHz (X-band). The proposed unit cell design was arranged in an array structure to analyse the performance changes in the transmission coefficient. Overall, the proposed metamaterial design accomplished the miniaturisation concept by arranging unit cells in a multi-layer structure and possesses unique properties such as a highly effective medium ratio and left-handed characteristics.

7.
Materials (Basel) ; 16(13)2023 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-37445090

RESUMO

A commercially viable metal-dielectric-metal configured triple-band metamaterial absorber is offered in this paper. It is an aggregation of four compact symmetric circles, with a swastika-shaped metal structure, which are bonded by two split-ring resonators (SRRs). Copper (annealed) of electrical conductivity 5.8 × 107 Sm-1 is used for the ground plate and resonator portion of the top layer and an FR 4 dielectric of permittivity 4.3 is used as a substrate. The structural parameters of the unit cell were determined by a trial and error method. FIT-based 3D simulation software (CST microwave studio, 2019 version was used to characterize the proposed perfect metamaterial absorber (PMA). Three resonance peaks were observed at frequencies 3.03, 5.83 and 7.23 GHz with an absorbance of 99.84%, 99.03% and 98.26%, respectively. The numerical result has been validated by some authentic validation methods. Finally, a microwave network analyzer (PNA) of Agilent N5227 with waveguide ports were deployed for measurement. The simulation and experimental results show better harmony. The proposed PMA has a unique design and a small dimension with higher absorption compared to other contemporary studies. This special type of polarization, insensitive S- and C-band PMA, is designed for a telecommunication system via full-time raw satellite and radar feeds.

8.
Materials (Basel) ; 16(3)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36770144

RESUMO

A split-ring resonator (SRR)-based power tiller wheel-shaped quad-band ℇ-negative metamaterial is presented in this research article. This is a new compact metamaterial with a high effective medium ratio (EMR) designed with three modified octagonal split-ring resonators (OSRRs). The electrical dimension of the proposed metamaterial (MM) unit cell is 0.086λ × 0.086λ, where λ is the wavelength calculated at the lowest resonance frequency of 2.35 GHz. Dielectric RT6002 materials of standard thickness (1.524 mm) were used as a substrate. Computer simulation technology (CST) Microwave Studio simulator shows four resonance peaks at 2.35, 7.72, 9.23 and 10.68 GHz with magnitudes of -43.23 dB -31.05 dB, -44.58 dB and -31.71 dB, respectively. Moreover, negative permittivity (ℇ) is observed in the frequency ranges of 2.35-3.01 GHz, 7.72-8.03 GHz, 9.23-10.02 GHz and 10.69-11.81 GHz. Additionally, a negative refractive index is observed in the frequency ranges of 2.36-3.19 GHz, 7.74-7.87 GHz, 9.26-10.33 GHz and 10.70-11.81 GHz, with near-zero permeability noted in the environments of these frequency ranges. The medium effectiveness indicator effective medium ratio (EMR) of the proposed MM is an estimated 11.61 at the lowest frequency of 2.35 GHz. The simulated results of the anticipated structure are validated by authentication processes such as array orientation, HFSS and ADS for an equivalent electrical circuit model. Given its high EMR and compactness in dimensions, the presented metamaterial can be used in S-, C- and X-band wireless communication applications.

9.
Materials (Basel) ; 15(21)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36363280

RESUMO

In this article, we present the use of a metamaterial-incorporated microwave-based sensor with a single port network for material characterization. The proposed sensor consists of a microstrip patch layer enclosed with a dual-square-shaped metamaterial split-ring. This structure has the dimensions of 20 × 20 × 1.524 mm3 and a copper metallic layer is placed on a Rogers RT 6002 with a partial back layer as a ground. Two resonant frequencies are exhibited for applied electromagnetic interaction using a transmission line. The dual split rings increase the compactness and accumulation of the electromagnetic field on the surface of the conducting layer to improve the sensitivity of the sensor. The numerical studies are carried out using a CST high-frequency microwave simulator. The validation of the proposed sensor is performed with an equivalent circuit model in ADS and numerical high-frequency simulator HFSS. The material under test placed on the proposed sensor shows good agreement with the frequency deviation for different permittivity variations. Different substrates are analyzed as a host medium of the sensor for parametric analysis.

10.
Sci Rep ; 12(1): 10958, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35768459

RESUMO

Despite their widespread use for performing advanced electromagnetic properties, metamaterial suffers from several restrictions in this technological era. Generally, technology affects the way individuals communicate, learn, think and plays an important role in society today. For this reason, there has been a surge of interest in a coding metamaterial field that possesses the ability to manipulate electromagnetic waves and realize different functionalities. This research work investigates circular-shaped coding metamaterial for microwave frequency applications through several analyses. First, the 1-bit coding metamaterial that is made up of only "0" and "1" elements with 0 and π phase responses by adopting two types of unit cells such as square-shaped Rogers RT6002 substrate material with and without metamaterial structure were analysed in this work. The proposed element '1' successfully manifests several more than 180○ phase responses at several frequency ranges, for instance, 7.35 to 9.48 GHz, 12.87 to 14.25 GHz and 17.49 to 18 GHz (C, X, and Ku-bands), respectively. Besides that, three types of coding sequences were proposed and the radar cross-section (RCS) reduction values of the designs were numerically calculated by utilising Computer Simulation Technology (CST) software. Meanwhile, the single-layered coding metamaterial with 6 lattices was compared with double and triple-layered metamaterial structures. At 2 GHz, the triple-layered structure exhibit reduced RCS values with near to - 30 dBm2 for all coding sequences. Therefore, the transmission coefficient results of the triple-layered coding metamaterial sequences were numerically calculated. Several advanced coding metamaterial designs were constructed and the properties were discussed in terms of RCS values and scattering patterns. Meanwhile, the scattering and effective medium parameters of the unit cell metamaterial structure were also analysed in this work. In a nutshell, the 1-bit coding metamaterial in a controlled sequence can control electromagnetic waves and realize different functionalities.


Assuntos
Radar , Software , Simulação por Computador , Humanos , Micro-Ondas
11.
Sci Rep ; 12(1): 8028, 2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35577823

RESUMO

In this research work, the development of the metamaterial unit cell is used to investigate multifunctional characteristics, exhibit preferable and capable adjustability, reconfigurable by changing the phase response of applied electromagnetic wave. This proposed metamaterial unit cell is analysed by modifying the geometric design of the metallic structure which mitigates the design to reduce the cost for the commercialisation. The resonant frequencies are located from 1.87, 2.55, 4.32, 5.46 GHz. The interaction with the electric field and magnetic field exhibit the polarisation in both planes which enhances the left handed characteristics. The field distribution of electric, magnetic, and surface current is presented with vector fields in different planes to observe the polarisation state. Different thicknesses of dielectric material are utilised to observe the impact of time varying electric and magnetic fields through the proposed metamaterial. The different substrate materials are described the degree of freedom for the implementation in different fields within the functional microwave frequency range.

12.
Integr Cancer Ther ; 20: 15347354211046192, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34541909

RESUMO

BACKGROUND: Among the different cancers found in women, breast cancer is the most common. Breast cancer-related lymphedema is a serious health complication affecting the quality of life and sleep quality. This study evaluates the quality of life and sleep quality among Saudi women with different stages of lymphedema following the treatment of breast cancer. METHODS: This cross-sectional correlational study included 163 Saudi women with breast cancer-related lymphedema (Stages I-III), aged 28 to 56 years. From the patients identified for this study, women who suffered from mental and psychological dysfunctions or other malignant disorders were excluded. Copies of structured questionnaires were given to each participant during their visits to outpatient physiotherapy clinics. Quality of life was assessed using a valid questionnaire (EORTC QLQ-C30), while sleep quality was assessed using the Pittsburgh Sleep Quality Index (PSQI). The differences between the different lymphedema stages have been assessed. RESULTS: Of the total number of participants 27 women had been diagnosed with stage I lymphedema, 84 women had been diagnosed with stage II lymphedema, and 52 women had been diagnosed with stage III lymphedema. All participants have shown low scores on both EORTC QLQ-C30 and PSQI. While analyzing the differences between the 3 stages of lymphedema with the Kruskal-Wallis test, noteworthy statistical differences between the 3 stages of lymphedema (P < .05) have been found. The Stage III lymphedema patients have been shown the lowest quality of life values in all scales when compared with the stage I and stage II lymphedema patients. For PSQI scores, the stage III lymphedema patients worse values than the stage I and stage II lymphedema patients (P < .05). CONCLUSION AND RECOMMENDATIONS: Both quality of life and quality of sleep have significantly decreased in Saudi women with different stages of breast cancer-related lymphedema. Quality of life and quality of sleep are the worst in stage III lymphedema patients. Future research should consider repeat and enlarge these results as well as assess the risk factors that affect the quality of life and quality of sleep among Saudi women suffering from breast cancer-related lymphedema.


Assuntos
Neoplasias da Mama , Linfedema , Neoplasias da Mama/complicações , Estudos Transversais , Feminino , Humanos , Linfedema/epidemiologia , Linfedema/etiologia , Qualidade de Vida , Arábia Saudita/epidemiologia , Sono
13.
Appl Radiat Isot ; 173: 109735, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33915407

RESUMO

Copper-67 (T1/2 = 61.83 h, Eß-mean=141 keV, Iß-total=100%; Eγ = 184.577 keV, Iγ = 48.7%) is a promising radionuclide for theranostic applications especially in radio immunotherapy. However, one of the main drawbacks for its application is related to its limited availability. Various nuclear reaction routes investigated in the last years can result in 67Cu production, although the use of proton beams is the method of choice taken into account in this work. The goal of this work is a revision of the cross-sections aimed at 67Cu yield, which were evaluated for the 68Zn(p,2p)67Cu reaction route up to 80 MeV proton energy. A well-defined statistical procedure, i.e., the Simultaneous Evaluation on KALMAN (SOK), combined with the least-squares concept, was used to obtain the evaluated data together with the covariance matrix. The obtained evaluated data were also compared to predictions provided by the nuclear reaction model codes TALYS and EMPIRE, and a partial agreement among them has been found. These data may be useful for both existing and potential applications in nuclear medicine, to achieve an improvement and validation of the various nuclear reaction models, and may also find applications in other fields (e.g., activation analysis and thin layer activation).


Assuntos
Radioisótopos de Cobre/análise , Medicina de Precisão , Isótopos de Zinco/análise , Simulação por Computador , Radioisótopos de Cobre/uso terapêutico , Humanos , Medicina Nuclear , Prótons , Isótopos de Zinco/uso terapêutico
14.
Foods ; 10(2)2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33578933

RESUMO

While the consumption of seaweed and seaweed-based products is very common amongst East Asian nations, forming a notable component of the daily diet, relatively very few studies have concerned the concentrations of heavy metals in these together with potential effects on human health. The present study analyses the concentrations of 17 elements in locally resourced seaweed, also assessing potential noncarcinogenic and carcinogenic risks. The samples were ground, homogenized, and quantified using the ICP-OES technique. It has been found that the essential elements K, Ca, Mg, Zn, and Na typically show concentrations somewhat greater than a number of potentially toxic metals, in particular, Cd, Pb, Ag, and As, with exceptions being Ni, Cr-VI, and Si. Statistical analysis indicates all of the latter to have similar origin, with increased concentration of these metals within the marine ecosystem. While the daily estimated intake of most metals is seen to be within the daily dietary allowance level recommended by various international organizations, the noncarcinogenic risk shows a value greater than unity, estimated via the hazard quotient. This indicates a potential for adverse effects to health arising from consumption of the sampled seaweed. The carcinogenic risk resulting from nonessential elements shows values greater than the United States Environmental Protection Agency (US-EPA) reference limit of 10-4. Considering the nonbiodegradability of heavy metals and metalloids and their potential accumulation in seaweed, there is need for critical examination of metal levels in the seaweeds obtained from the present study locations, together with the introduction of practices of removal of heavy metals via bio-adsorbent techniques.

15.
Appl Radiat Isot ; 70(7): 1344-50, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22244196

RESUMO

This study is aimed at the determination of the activity concentrations of naturally occuring and technologically enhanced levels of radiation in 34 representative soil samples that have been collected from an inshore oil field area which was found to have, in a previous study, the highest observed value of 226Ra concentration among 129 soil samples. The activity concentrations of 238U and 226Ra have been inferred from gamma-ray transitions associated with their decay progenies and measured using a hyper-pure germanium detector. Details of the sample preparation and the gamma-ray spectroscopic analysis techniques are presented, together with the values of the activity concentrations associated with the naturally occuring radionuclide chains for all the samples collected from NW Dukhan. Discrete-line, gamma-ray energy transitions from spectral lines ranging in energy from ∼100 keV up to 2.6 MeV have been associated with characteristic decays of the various decay products within the 235.8U and 232Th radioactive decay chains. These data have been analyzed, under the assumption of secular equilibrium for the U and Th decay chains. Details of the sample preparation and the gamma-ray spectroscopic analysis techniques are presented. The weighted mean value of the activity concentrations of 226Ra in one of the samples was found to be around a factor of 2 higher than the values obtained in the previous study and approximately a factor of 10 higher than the accepted worldwide average value of 35 Bq/kg. The weighted mean values of the activity concentrations of 232Th and 40K were also deduced and found to be within the worldwide average values of 30 and 400 Bq/kg, respectively. Our previous study reported a value of 201.9±1.5Stat.±13Syst.Bq/kg for 226Ra in one sample and further investigation in the current work determined a measured value for 226Ra of 342.00±1.9Stat.±25Syst.Bq/kg in a sample taken from the same locality. This is significantly higher than all the other investigated soil samples in the current and previous works. Notably, the Th levels in the same sample are within the worldwide average expectations, implying that the increased 226Ra concentration arises from TENORM processes.

16.
Appl Radiat Isot ; 65(10): 1101-7, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17600723

RESUMO

Excitation functions have been measured for a number of proton-induced nuclear reactions on natural zinc in the energy range from 27.5 MeV down to their threshold energy, using the activation method on stacked foils. Excitation functions and thick target yield for the reactions leading to the formation of (67)Ga,(66)Ga,(68)Ga,(62)Zn and (65)Zn are presented and compared with earlier reported experimental data. The experimental cross-sections and the production yields are tabulated; the excitation functions and the thick target yield curves are plotted in graphs.


Assuntos
Radioisótopos de Gálio/química , Radioisótopos de Zinco/química , Zinco/química , Prótons , Geradores de Radionuclídeos
17.
Appl Radiat Isot ; 65(1): 104-13, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17015019

RESUMO

Excitation functions have been measured for a number of proton induced nuclear reactions on natural nickel in the energy range from 27.5 MeV down to their threshold energy, using the activation method on stacked foils. Excitation functions for the reactions leading to the formation of (60)Cu, (61)Cu, (56)Ni, (57)Ni, (55)Co, (56)Co, (57)Co and (58)Co are presented and compared with earlier reported experimental data. Comparison with the recommended data reported by the International Atomic Energy Agency [Gul et al., 2001. Charged particle cross section database for medical radioisotope production. IAEA-TECDOC-1211, IAEA Vienna, Austria] is also presented when possible.


Assuntos
Transferência Linear de Energia , Modelos Químicos , Níquel/química , Níquel/efeitos da radiação , Prótons , Radioisótopos/química , Radioisótopos/efeitos da radiação , Simulação por Computador , Relação Dose-Resposta à Radiação , Doses de Radiação , Radiometria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...