Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros













Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 4006, 2024 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-38369569

RESUMO

Parthenium hysterophorus, a globally widespread weed, poses a significant threat to agricultural ecosystems due to its invasive nature. We investigated the chloroplast genome of P. hysterophorus in this study. Our analysis revealed that the chloroplast genome of P. hysterophorus spans a length of 151,881 base pairs (bp). It exhibits typical quadripartite structure commonly found in chloroplast genomes, including inverted repeat regions (IR) of 25,085 bp, a small single copy (SSC) region of 18,052 bp, and a large single copy (LSC) region of 83,588 bp. A total of 129 unique genes were identified in P. hysterophorus chloroplast genomes, including 85 protein-coding genes, 36 tRNAs, and eight rRNAs genes. Comparative analysis of the P. hysterophorus plastome with those of related species from the tribe Heliantheae revealed both conserved structures and intriguing variations. While many structural elements were shared among the species, we identified a rearrangement in the large single-copy region of P. hysterophorus. Moreover, our study highlighted notable gene divergence in several specific genes, namely matK, ndhF, clpP, rps16, ndhA, rps3, and ndhD. Phylogenetic analysis based on the 72 shared genes placed P. hysterophorus in a distinct clade alongside another species, P. argentatum. Additionally, the estimated divergence time between the Parthenium genus and Helianthus (sunflowers) was approximately 15.1 million years ago (Mya). These findings provide valuable insights into the evolutionary history and genetic relationships of P. hysterophorus, shedding light on its divergence and adaptation over time.


Assuntos
Asteraceae , Genoma de Cloroplastos , Filogenia , Plantas Daninhas/genética , Parthenium hysterophorus , Ecossistema , Asteraceae/genética
3.
Metabolites ; 13(10)2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37887361

RESUMO

Rice (Oryza sativa) is a research model for monocotyledonous plants. Rice is also one of the major staple foods and the primary crop for more than half of the world's population. Increasing industrial activities and the use of different fertilizers and pesticides containing heavy metals (HMs) contribute to the contamination of agriculture fields. HM contamination is among the leading causes that affect the health of rice plants by limiting their growth and causing plant death. Phytohormones have a crucial role in stress-coping mechanisms and in determining a range of plant development and growth aspects during heavy metal stress. This review summarizes the role of different exogenous applications of phytohormones including auxin, cytokinin, gibberellins, ethylene, abscisic acid, strigolactones, jasmonates, brassinosteroids, and salicylic acids in rice plants for mitigating heavy metal stress via manipulation of their stress-related physiological and biochemical processes, and alterations of signaling and biosynthesis of genes. Exogenous administration of phytohormones and regulation of endogenous levels by targeting their biosynthesis/signaling machineries is a potential strategy for protecting rice from HM stress. The current review primarily emphasizes the key mechanistic phytohormonal-mediated strategies for reducing the adverse effects of HM toxicity in rice. Herein, we have provided comprehensive evidence for the effective role of exogenous phytohormones in employing defense responses and tolerance in rice to the phytotoxic effects of HM toxicity along with endogenous hormonal crosstalk for modulation of subcellular mechanisms and modification of stress-related signaling pathways, and uptake and translocation of metals. Altogether, this information offers a systematic understanding of how phytohormones modulate a plant's tolerance to heavy metals and may assist in directing the development of new approaches to strengthen rice plant resistance to HM toxicity.

4.
Sci Rep ; 13(1): 7436, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37156827

RESUMO

The Zygophyllum and Tetraena genera are intriguingly important ecologically and medicinally. Based on morphological characteristics, T. hamiensis var. qatarensis, and T. simplex were transferred from Zygophyllum to Tetraena with the least genomic datasets available. Hence, we sequenced the T. hamiensis and T. simplex and performed in-depth comparative genomics, phylogenetic analysis, and estimated time divergences. The complete plastomes ranged between 106,720 and 106,446 bp-typically smaller than angiosperms plastomes. The plastome circular genomes are divided into large single-copy regions (~ 80,964 bp), small single-copy regions (~ 17,416 bp), and two inverted repeats regions (~ 4170 bp) in both Tetraena species. An unusual shrinkage of IR regions 16-24 kb was identified. This resulted in the loss of 16 genes, including 11 ndh genes which encode the NADH dehydrogenase subunits, and a significant size reduction of Tetraena plastomes compared to other angiosperms. The inter-species variations and similarities were identified using genome-wide comparisons. Phylogenetic trees generated by analyzing the whole plastomes, protein-coding genes, matK, rbcL, and cssA genes exhibited identical topologies, indicating that both species are sisters to the genus Tetraena and may not belong to Zygophyllum. Similarly, based on the entire plastome and proteins coding genes datasets, the time divergence of Zygophyllum and Tetraena was 36.6 Ma and 34.4 Ma, respectively. Tetraena stem ages were 31.7 and 18.2 Ma based on full plastome and protein-coding genes. The current study presents the plastome as a distinguishing and identification feature among the closely related Tetraena and Zygophyllum species. It can be potentially used as a universal super-barcode for identifying plants.


Assuntos
Magnoliopsida , Zygophyllaceae , Filogenia , Evolução Molecular , Evolução Biológica , Genômica
5.
Pathogens ; 12(4)2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37111492

RESUMO

Several prolonged and significant outbreaks of dermatophytosis caused by Trichophyton indotineae, a new emerging terbinafine-resistant species, have been ongoing in India in recent years, and have since spread to various countries outside Asia. Miltefosine, an alkylphosphocholine, is the most recently approved drug for the treatment of both visceral and cutaneous leishmaniasis. Miltefosine in vitro activity against terbinafine-resistant and susceptible T. mentagrophytes/T. interdigitale species complex, including T. indotineae, is limited. The current study aimed to assess miltefosine's in vitro activity against dermatophyte isolates, which are the most common causes of dermatophytosis. Miltefosine, terbinafine, butenafine, tolnaftate, and itraconazole susceptibility testing was performed using Clinical and Laboratory Standards Institute broth microdilution methods (CLSI M38-A3) against 40 terbinafine-resistant T. indotineae isolates and 40 terbinafine-susceptible T. mentagrophytes/T. interdigitale species complex isolates. Miltefosine had MIC ranges of 0.063-0.5 µg/mL and 0.125-0.25 µg/mL against both terbinafine-resistant and susceptible isolates. In terbinafine-resistant isolates, the MIC50 and MIC90 were 0.125 µg/mL and 0.25 µg/mL, respectively, and 0.25 µg/mL in susceptible isolates. Miltefosine had statistically significant differences in MIC results when compared to other antifungal agents (p-value 0.05) in terbinafine-resistant strains. Accordingly, the findings suggest that miltefosine has a potential activity for treating infections caused by terbinafine-resistant T. indotineae. However, further studies are needed to determine how well this in vitro activity translates into in vivo efficacy.

6.
Int J Mol Sci ; 24(7)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37047009

RESUMO

Climate changes abruptly affect optimum growth temperatures, leading to a negative influence on plant physiology and productivity. The present study aimed to investigate the extent of low-temperature stress effects on date palm growth and physiological indicators under the exogenous application of silicon (Si). Date palm seedlings were treated with Si (1.0 mM) and exposed to different temperature regimes (5, 15, and 30 °C). It was observed that the application of Si markedly improved fresh and dry biomass, photosynthetic pigments (chlorophyll and carotenoids), plant morphology, and relative water content by ameliorating low-temperature-induced oxidative stress. Low-temperature stress (5 and 15 °C), led to a substantial upregulation of ABA-signaling-related genes (NCED-1 and PyL-4) in non Si treated plants, while Si treated plants revealed an antagonistic trend. However, jasmonic acid and salicylic acid accumulation were markedly elevated in Si treated plants under stress conditions (5 and 15 °C) in comparison with non Si treated plants. Interestingly, the upregulation of low temperature stress related plant plasma membrane ATPase (PPMA3 and PPMA4) and short-chain dehydrogenases/reductases (SDR), responsible for cellular physiology, stomatal conductance and nutrient translocation under silicon applications, was observed in Si plants under stress conditions in comparison with non Si treated plants. Furthermore, a significant expression of LSi-2 was detected in Si plants under stress, leading to the significant accumulation of Si in roots and shoots. In contrast, non Si plants demonstrated a low expression of LSi-2 under stress conditions, and thereby, reduced level of Si accumulation were observed. Less accumulation of oxidative stress was evident from the expression of superoxide dismutase (SOD) and catalase (CAT). Additionally, Si plants revealed a significant exudation of organic acids (succinic acid and citric acid) and nutrient accumulation (K and Mg) in roots and shoots. Furthermore, the application of Si led to substantial upregulation of the low temperature stress related soybean cold regulated gene (SRC-2) and ICE-1 (inducer of CBF expression 1), involved in the expression of CBF/DREB (C-repeat binding factor/dehydration responsive element binding factor) gene family under stress conditions in comparison with non Si plants. The current research findings are crucial for exploring the impact on morpho-physio-biochemical attributes of date palms under low temperature and Si supplementation, which may provide an efficient strategy for growing plants in low-temperature fields.


Assuntos
Phoeniceae , Silício , Silício/farmacologia , Silício/metabolismo , Phoeniceae/genética , Phoeniceae/metabolismo , Antioxidantes/farmacologia , Temperatura , Estresse Oxidativo
8.
Plants (Basel) ; 11(17)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36079645

RESUMO

Arsenic is a toxic metal abundantly present in agricultural, industrial, and pesticide effluents. To overcome arsenic toxicity and ensure safety for plant growth, silicon (Si) can play a significant role in its mitigation. Here, we aim to investigate the influence of silicon on date palm under arsenic toxicity by screening antioxidants accumulation, hormonal modulation, and the expression profile of abiotic stress-related genes. The results showed that arsenic exposure (As: 1.0 mM) significantly retarded growth attributes (shoot length, root length, fresh weight), reduced photosynthetic pigments, and raised reactive species levels. Contrarily, exogenous application of Si (Na2SiO3) to date palm roots strongly influenced stress mitigation by limiting the translocation of arsenic into roots and shoots as compared with the arsenic sole application. Furthermore, an enhanced accumulation of polyphenols (48%) and increased antioxidant activities (POD: 50%, PPO: 75%, GSH: 26.1%, CAT: 51%) resulted in a significant decrease in superoxide anion (O2•-: 58%) and lipid peroxidation (MDA: 1.7-fold), in silicon-treated plants, compared with control and arsenic-treated plants. The Si application also reduced the endogenous abscisic acid (ABA: 38%) under normal conditions, and salicylic acid (SA: 52%) and jasmonic acid levels (JA: 62%) under stress conditions as compared with control and arsenic. Interestingly, the genes; zeaxanthin epoxidase (ZEP) and 9-cis-epoxycarotenoid dioxygenase (NCED-1) involved in ABA biosynthesis were upregulated by silicon under arsenic stress. Likewise, Si application also upregulated gene expression of plant plasma membrane ATPase (PMMA-4), aluminum-activated malate transporter (ALMT) responsible for maintaining cellular physiology, stomatal conductance, and short-chain dehydrogenases/reductases (SDR) involved in nutrients translocation. Hence, the study demonstrates the remarkable role of silicon in supporting growth and inducing arsenic tolerance by increasing antioxidant activities and endogenous hormones in date palm. The outcomes of our study can be employed in further studies to better understand arsenic tolerance and decode mechanism.

10.
Mitochondrial DNA B Resour ; 7(6): 1189-1190, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35783068

RESUMO

The Arabian tahr (Arabitragus jayakari) endemic to mountains of northern Oman and the United Arab Emirates, however, the species is faced with significant threats to its population. Because of its small and dwindling population, it is listed as Endangered. Here, we sequenced and assembled the mitochondrial (mt) genome of A. jayakari into 16,485 bp with 39.6% GC content. It also contains 13 protein-coding genes, 22 tRNA genes, and two rRNA genes. Phylogenetic analysis of A. jayakari with related 12 species mt genomes showed that A. jayakari forms a monophyletic clade with Hemitragus jayakri. In the current context of a changing environment, evolutionary analysis based on mitochondrial genome will aid in identifying evolutionary changes among different species and analyzing shared gene pools to counteract threats.

11.
iScience ; 25(7): 104574, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35789857

RESUMO

Boswellia sacra Flueck (family Burseraceae) tree is wounded to produce frankincense. We report its de novo assembled genome (667.8 Mb) comprising 18,564 high-confidence protein-encoding genes. Comparing conserved single-copy genes across eudicots suggest >97% gene space assembly of B. sacra genome. Evolutionary history shows B. sacra gene-duplications derived from recent paralogous events and retained from ancient hexaploidy shared with other eudicots. The genome indicated a major expansion of Gypsy retroelements in last 2 million years. The B. sacra genetic diversity showed four clades intermixed with a primary genotype-dominating most resin-productive trees. Further, the stem transcriptome revealed that wounding concurrently activates phytohormones signaling, cell wall fortification, and resin terpenoid biosynthesis pathways leading to the synthesis of boswellic acid-a key chemotaxonomic marker of Boswellia. The sequence datasets reported here will serve as a foundation to investigate the genetic determinants of frankincense and other resin-producing species in Burseraceae.

12.
Antioxidants (Basel) ; 11(6)2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35739959

RESUMO

The current study aimed to understand the synergistic impacts of silicon (Si; 1.0 mM) and boron (B; 10 µM) application on modulating physio-molecular responses of date palm to mitigate aluminum (Al3+; 2.0 mM) toxicity. Results revealed that compared to sole Si and B treatments, a combined application significantly improved plant growth, biomass, and photosynthetic pigments during Al toxicity. Interestingly, Si and B resulted in significantly higher exudation of organic acid (malic acids, citric acids, and acetic acid) in the plant's rhizosphere. This is also correlated with the reduced accumulation and translocation of Al in roots (60%) and shoots (56%) in Si and B treatments during Al toxicity compared to in sole Al3+ treatment. The activation of organic acids by combined Si + B application has significantly regulated the ALMT1, ALMT2 and plasma membrane ATPase; PMMA1 and PMMA3 in roots and shoots. Further, the Si-related transporter Lsi2 gene was upregulated by Si + B application under Al toxicity. This was also validated by the higher uptake and translocation of Si in plants. Al-induced oxidative stress was significantly counteracted by exhibiting lower malondialdehyde and superoxide production in Si + B treatments. Experiencing less oxidative stress was evident from upregulation of CAT and Cyt-Cu/Zn SOD expression; hence, enzymatic activities such as polyphenol oxidase, catalase, peroxidase, and ascorbate peroxidase were significantly activated. In the case of endogenous phytohormones, Si + B application demonstrated the downregulation of the abscisic acid (ABA; NCED1 and NCED6) and salicylic acid (SA; PYL4, PYR1) biosynthesis-related genes. Consequently, we also noticed a lower accumulation of ABA and rising SA levels under Al-stress. The current findings illustrate that the synergistic Si + B application could be an effective strategy for date palm growth and productivity against Al stress and could be further extended in field trails in Al-contaminated fields.

13.
Front Plant Sci ; 13: 841217, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35432394

RESUMO

Microbial symbionts play a significant role in plant health and stress tolerance. However, few studies exist that address rare species of core-microbiome function during abiotic stress. In the current study, we compared the microbiome composition of succulent dwarf shrub halophyte Zygophyllum qatarensis Hadidi across desert populations. The results showed that rhizospheric and endosphere microbiome greatly varied due to soil texture (sandy and gravel). No specific bacterial amplicon sequence variants were observed in the core-microbiome of bulk soil and rhizosphere, however, bacterial genus Alcaligenes and fungal genus Acidea were abundantly distributed across root and shoot endospheres. We also analyzed major nutrients such as silicon (Si), magnesium, and calcium across different soil textures and Z. qatarensis populations. The results showed that the rhizosphere and root parts had significantly higher Si content than the bulk soil and shoot parts. The microbiome variation can be attributed to markedly higher Si - suggesting that selective microbes are contributing to the translocation of soluble Si to root. In conclusion, low core-microbiome species abundance might be due to the harsh growing conditions in the desert - making Z. qatarensis highly selective to associate with microbial communities. Utilizing rare microbial players from plant microbiomes may be vital for increasing crop stress tolerance and productivity during stresses.

14.
Oxid Med Cell Longev ; 2021: 6349041, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34925698

RESUMO

Benincasa hispida (Thunb.) Cogn. (Cucurbitaceae) is an annual climbing plant, native to Asia with multiple therapeutic uses in traditional medicine. This updated review is aimed at discussing the ethnopharmacological, phytochemical, pharmacological properties, and molecular mechanisms highlighted in preclinical experimental studies and toxicological safety to evaluate the therapeutic potential of this genus. The literature from PubMed, Google Scholar, Elsevier, Springer, Science Direct, and database was analyzed using the basic keyword "Benincasa hispida." Other searching strategies, including online resources, books, and journals, were used. The taxonomy of the plant has been made by consulting "The Plant List". The results showed that B. hispida has been used in traditional medicine to treat neurological diseases, kidney disease, fever, and cough accompanied by thick mucus and to fight intestinal worms. The main bioactive compounds contained in Benincasa hispida have cytotoxic, anti-inflammatory, and anticancer properties. Further safety and efficacy investigations are needed to confirm these beneficial therapeutic effects and also future human clinical studies.


Assuntos
Anti-Inflamatórios/farmacologia , Antineoplásicos/farmacologia , Cucurbitaceae/química , Suplementos Nutricionais/análise , Medicina Tradicional/métodos , Compostos Fitoquímicos/farmacologia , Animais , Humanos
15.
Genomics ; 113(6): 4337-4351, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34798281

RESUMO

Frankincense tree (Boswellia sacra Fluek) has been poorly known on how it responds to tapping and wound-recovery process at molecular levels. Here, we used RNA-sequencing analysis to profile transcriptome of B. sacra after 30 min, 3 h and 6 h of post-tapping. Results showed 5525 differentially expressed genes (DEGs) that were related to terpenoid biosynthesis, phytohormonal regulation, cellular transport, and cell-wall synthesis. Plant-growth-regulators were applied exogenously which showed regulation of endogenous jasmonates and resulted in rapid recovery of cell-wall integrity by significantly up-regulated gene expression of terpenoid biosynthesis (germacrene-D synthase, B-amyrin synthase, and squalene epioxidase-1) and cell-wall synthesis (xyloglucan endotransglucosylase, cellulose synthase-A, and cell-wall hydrolase) compared to control. These findings suggest that tapping immediately activated several cell-developmental and regeneration processes, alongwith defense-induced terpenoid metabolism, to improve the healing process in epidermis. Exogenous growth regulators, especially jasmonic acid, can drastically help tree recovery from tissue degeneration and might help in tree conservation purposes.


Assuntos
Boswellia , Franquincenso , Boswellia/metabolismo , Franquincenso/metabolismo , Regulação da Expressão Gênica de Plantas , Resinas Vegetais/metabolismo , Transcriptoma , Árvores/metabolismo
16.
J Fungi (Basel) ; 7(8)2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34436192

RESUMO

Human infectious fungal diseases are increasing, despite improved hygienic conditions. We present a case of gastrointestinal basidiobolomycosis (GIB) in a 20-year-old male with a history of progressively worsening abdominal pain. The causative agent was identified as a novel Basidiobolus species. Validation of its novelty was established by analysis of the partial ribosomal operon of two isolates from different organs. Phylogeny of ITS and LSU rRNA showed that these isolates belonged to the genus Basidiobolus, positioned closely to B. heterosporus and B. minor. Morphological and physiological data supported the identity of the species, which was named Basidiobolus omanensis, with CBS 146281 as the holotype. The strains showed high minimum inhibitory concentrations (MICs) to fluconazole (>64 µg/mL), itraconazole and voriconazole (>16 µg/mL), anidulafungin and micafungin (>16 µg/mL), but had a low MIC to amphotericin B (1 µg/mL). The pathogenic role of B. omanensis in gastrointestinal disease is discussed. We highlight the crucial role of molecular identification of these rarely encountered opportunistic fungi.

17.
Front Pharmacol ; 12: 665031, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34220504

RESUMO

Quercetin (QUR) is a natural bioactive flavonoid that has been lately very studied for its beneficial properties in many pathologies. Its neuroprotective effects have been demonstrated in many in vitro studies, as well as in vivo animal experiments and human trials. QUR protects the organism against neurotoxic chemicals and also can prevent the evolution and development of neuronal injury and neurodegeneration. The present work aimed to summarize the literature about the neuroprotective effect of QUR using known database sources. Besides, this review focuses on the assessment of the potential utilization of QUR as a complementary or alternative medicine for preventing and treating neurodegenerative diseases. An up-to-date search was conducted in PubMed, Science Direct and Google Scholar for published work dealing with the neuroprotective effects of QUR against neurotoxic chemicals or in neuronal injury, and in the treatment of neurodegenerative diseases. Findings suggest that QUR possess neuropharmacological protective effects in neurodegenerative brain disorders such as Alzheimer's disease, Amyloid ß peptide, Parkinson's disease, Huntington's disease, multiple sclerosis, and amyotrophic lateral sclerosis. In summary, this review emphasizes the neuroprotective effects of QUR and its advantages in being used in complementary medicine for the prevention and treatment o of different neurodegenerative diseases.

18.
Cancer Cell Int ; 21(1): 388, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34289845

RESUMO

Cancers are complex diseases orchestrated by a plethora of extrinsic and intrinsic factors. Research spanning over several decades has provided better understanding of complex molecular interactions responsible for the multifaceted nature of cancer. Recent advances in the field of next generation sequencing and functional genomics have brought us closer towards unravelling the complexities of tumor microenvironment (tumor heterogeneity) and deregulated signaling cascades responsible for proliferation and survival of tumor cells. Phytochemicals have begun to emerge as potent beneficial substances aimed to target deregulated signaling pathways. Isoflavonoid genistein is an essential phytochemical involved in regulation of key biological processes including those in different types of cancer. Emerging preclinical evidence have shown its anti-cancer, anti-inflammatory and anti-oxidant properties. Testing of this substance is in various phases of clinical trials. Comprehensive preclinical and clinical trials data is providing insight on genistein as a modulator of various signaling pathways both at transcription and translation levels. In this review we have explained the mechanistic regulation of several key cellular pathways by genistein. We have also addressed in detail various microRNAs regulated by genistein in different types of cancer. Moreover, application of nano-formulations to increase the efficiency of genistein is also discussed. Understanding the pleiotropic potential of genistein to regulate key cellular pathways and development of efficient drug delivery system will bring us a step towards designing better chemotherapeutics.

19.
Oxid Med Cell Longev ; 2021: 5900422, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34257813

RESUMO

The genus Peganum includes four species widely distributed in warm temperate to subtropical regions from the Mediterranean to Mongolia as well as certain regions in America. Among these species, Peganum harmala L., distributed from the Mediterranean region to Central Asia, has been studied and its phytochemical profile, traditional folk use, and application in pharmacological and clinical trials are well known. The review is aimed at presenting an insight into the botanical features and geographical distribution of Peganum spp. along with traditional folk uses. This manuscript also reviews the phytochemical profile of Peganum spp. and its correlation with biological activities evidenced by the in vitro and in vivo investigations. Moreover, this review gives us an understanding of the bioactive compounds from Peganum as health promoters followed by the safety and adverse effects on human health. In relation to their multipurpose therapeutic properties, various parts of this plant such as seeds, bark, and roots present bioactive compounds promoting health benefits. An updated search (until December 2020) was carried out in databases such as PubMed and ScienceDirect. Chemical studies have presented beta-carboline alkaloids as the most active constituents, with harmalol, harmaline, and harmine being the latest and most studied among these naturally occurring alkaloids. The Peganum spp. extracts have shown neuroprotective, anticancer, antimicrobial, and antiviral effects. The extracts are also found effective in improving respiratory disorders (asthma and cough conditions), dermatoses, and knee osteoarthritis. Bioactivities and health-enhancing effects of Peganum spp. make it a potential candidate for the formulation of functional foods and pharmaceutical drugs. Nevertheless, adverse effects of this plant have also been described, and therefore new bioproducts need to be studied in depth. In fact, the design of new formulations and nanoformulations to control the release of active compounds will be necessary to achieve successful pharmacological and therapeutic treatments.


Assuntos
Alimento Funcional/normas , Peganum/química , Humanos
20.
Artigo em Inglês | MEDLINE | ID: mdl-34158818

RESUMO

This study aimed to summarize the available data on the ethnomedicinal and phytopharmacological activities of Heliotropium indicum L. based on database reports. For this purpose, an up-to-date literature search was carried out in the Google Scholar, Scopus, Springer Link, Web of Science, ScienceDirect, ResearchGate, PubMed, Chem Spider, Elsevier, BioMed Central, and patent offices (e.g., USPTO, CIPO, NPI, Google patents, and Espacenet) for the published materials. The findings suggest that the plant contains many important phytochemicals, including pyrrolizidine alkaloids, indicine, echinitine, supinine, heleurine, heliotrine, lasiocarpine, acetyl indicine, indicinine, indicine N-oxide, cynoglossine, europine N-oxide, heleurine N-oxide, heliotridine N-oxide, heliotrine N-oxide, heliotrine, volatile oils, triterpenes, amines, and sterols. Scientific reports revealed that the herb showed antioxidant, analgesic, antimicrobial, anticancer, antituberculosis, antiplasmodial, anticataract, antifertility, wound healing, antiinflammatory, antinociceptive, antihyperglycemic, anthelmintic, diuretic, antitussive, antiglaucoma, antiallergic, and larvicidal activity. In conclusion, in vitro studies with animal models seem to show the potential beneficial effects of H. indicum against a wide variety of disorders and as a source of phytotherapeutic compounds. However, clinical studies are necessary to confirm the effects observed in animal models, determine the toxicity of the therapeutic dose and isolate the truly bioactive components.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA