Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Gut Pathog ; 16(1): 57, 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39370525

RESUMO

Classification of pathogenic E. coli has been focused either in mammalian host or infection site, which offers limited resolution. This review presents a comprehensive framework for classifying all E. coli branches within a single, unifying figure. This approach integrates established methods based on virulence factors, serotypes and clinical syndromes, offering a more nuanced and informative perspective on E. coli pathogenicity. The presence of the LEE island in pathogenic E. coli is a key genetic marker differentiating EHEC from STEC strains. The coexistence of stx and eae genes within the bacterial genome is a primary characteristic used to distinguish STEC from other pathogenic E. coli strains. The presence of the inv plasmid, Afa/Dr adhesins, CFA-CS-LT-ST and EAST1 are key distinguishing features for identifying pathogenic E. coli strains belonging to EIEC, DAEC, ETEC and EAEC pathotypes respectively. Food microbiological criteria differentiate pathogenic E. coli in food matrices. 'Zero-tolerance' applies to most ready-to-eat (RTE) foods due to high illness risk. Non-RTE foods' roles may allow limited E. coli presence, which expose consumers to potential risk; particularly from the concerning Shiga toxin-producing E. coli (STEC) strains, which can lead to life-threatening complications in humans, including haemolytic uremic syndrome (HUS) and even death in susceptible individuals. These findings suggest that decision-makers should consider incorporating the separate detection of STEC serotypes into food microbiological criteria, in addition to existing enumeration methods. Contamination of STEC is mainly linked to food consumption, therefore, outbreaks of E. coli STEC has been reviewed here and showed a link also to water as a potential contamination route. Since their discovery in 1982, over 39,787 STEC cases associated with 1,343 outbreaks have been documented. The majority of these outbreaks occurred in the Americas, followed by Europe, Asia and Africa. The most common serotypes identified among the outbreaks were O157, the 'Big Six' (O26, O45, O103, O111, O121, and O145), and other serotypes such as O55, O80, O101, O104, O116, O165, O174 and O183. This review provides valuable insights into the most prevalent serotypes implicated in STEC outbreaks and identifies gaps in microbiological criteria, particularly for E. coli non-O157 and non-Big Six serotypes.

2.
Front Microbiol ; 14: 1104164, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37065154

RESUMO

This study investigated genotypic and phenotypic antimicrobial resistance profiles, phylogenic relatedness, plasmid and virulence composition of 39 Salmonella enterica strains isolated from chicken meat samples using whole genome sequencing (WGS) technology. Four distinct serotypes were identified; Salmonella Minnesota (16/39, 41%), Salmonella Infantis (13/39, 33.3%), Salmonella Enteritidis (9/39, 23.1%), and one isolate was detected for Salmonella Kentucky (1/39, 2.6%), with sequence types (STs) as followed: ST548, ST32, ST11, and ST198, respectively. Phenotypic resistance to tetracycline (91.2%), ampicillin (82.4%), sulfisoxazole (64.7%), and nalidixic acid (61.6%) was the most observed. Resistome analysis revealed the presence of resistance genes to aminoglycosides, ß-lactamase, sulfonamides, trimethoprim, phenicol, lincosamide, macrolides, and tetracyclines. Plasmidome showed the presence of eight incompatibility groups, including IncA/C2, IncFIB(K)_1_Kpn3, Col440I_1, IncR, IncX1, IncI1_1_Alpha, IncFIB(S)/IncFII(S), IncHI2/IncHI2A, IncX2 and ColpVC plasmids across the 39 genomes. Three resistance genes, sul2, tetA and blaCMY-2, were predicted to be located on IncA/C2 plasmid in S. Minnesota isolates, whereas all S. Infantis isolates were positive to IncFIB(K)_1_Kpn3 plasmid that carries bla CTX-M-65 gene. Eleven Salmonella pathogenicity islands and up to 131 stress and/or virulence genes were identified in the evaluated genomes. Phylogenetic analysis showed four phylogroups that were consistent with the identified ST profiles with a high level of inter-diversity between isolates. This is the first genomic characterization of Salmonella isolates from retail chicken meat in Saudi Arabia using WGS technology. The availability of Salmonella genomes from multiple geographic locations, including Saudi Arabia, would be highly beneficial in future source-tracking, especially during epidemiological surveillance and outbreak investigations.

3.
Microbiol Resour Announc ; 10(45): e0082621, 2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34761951

RESUMO

The recent emergence and dissemination of mobilized colistin resistance (mcr) genes have triggered extensive concerns globally. Here, we report the complete genome sequence of a colistin-susceptible Salmonella enterica serotype Minnesota strain (named SA18578), belonging to sequence type 548 (ST548) and carrying the mcr-9 gene on an IncHI2/IncHI2A plasmid, that was isolated from chicken meat in Saudi Arabia in 2020.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...