Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 53(28): 4026-4029, 2017 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-28338702

RESUMO

We have recently developed a new extraction process for significantly reducing the olefin content in commercial FCC gasoline. To gain insights into the origins of this process, we have investigated the dissolution of the light liquid olefins 1-pentene and 1-hexene in methanol through computer modelling together with NMR spectroscopy. We find two important hydrogen bonding modes for methanol olefin interactions - namely, O-Hπ and C-HO.

2.
Chem Sci ; 6(9): 5152-5163, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29142734

RESUMO

A series of MoO3/H-ZSM-5 (Si/Al = 25) catalysts were prepared via calcination at a lower-than-usual temperature (400 °C) and subsequently evaluated in the methanol-to-hydrocarbon reaction at that same temperature. The catalytic properties of those catalysts were compared with the sample prepared at the more conventional, higher temperature of 500 °C. For the lower temperature preparations, molybdenum oxide was preferentially dispersed over the zeolite external surface, while only the higher loading level of MoO3 (7.5 wt% or higher) led to observable inner migration of the Mo species into the zeolite channels, with concomitant partial loss of the zeolite Brønsted acidity. On the MoO3 modified samples, the early-period gas yield, especially for valuable propylene and C4 products, was noticeably accelerated, and is gradually converted into an enhanced liquid aromatic formation. The 7.5 wt% MoO3/H-ZSM-5 sample prepared at 400 °C thereby achieved a balance between the zeolite surface dispersion of Mo species, their inner channel migration and the corresponding effect on the intrinsic Brønsted acidity of the acidic zeolite. That loading level also possessed the highest product selectivity (after 5 h reaction) to benzene, toluene and xylenes, as well as higher early-time valuable gas product yields in time-on-stream experiments. However, MoO3 loading levels of 7.5 wt% and above also resulted in earlier catalyst deactivation by enhanced coke accumulation at, or near, the zeolite channel openings. Our research illustrates that the careful adoption of moderate/lower temperature dispersion processes for zeolite catalyst modification gives considerable potential for tailoring and optimizing the system's catalytic performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...