RESUMO
Drug labeling and instructions provide essential information for patients regarding the usage of drugs. Instructions for the dosage of drug usage are critical for the effectiveness of the drug and the safety of patients. The dosage of many drugs varies depending on the patient's age. However, as our understanding of human biology deepens, we believe that these instructions need to be modified to incorporate different life stages. This is because human biology and metabolism differ significantly among different life stages, and their responses to drugs also vary. Additionally, the same age of different persons may fall into different life stages. Therefore, our group from multiple institutes and countries proposes a reexamination of whether incorporating life stages in all or any drug instructions will greatly enhance drug efficiency and patients' health.
Assuntos
Rotulagem de Medicamentos , Humanos , Rotulagem de Medicamentos/normas , Preparações Farmacêuticas/administração & dosagem , Preparações Farmacêuticas/metabolismo , Fatores EtáriosRESUMO
The pervasive presence of microplastics in various settings, such as freshwater and marine ecosystems, has sparked serious concerns. Microplastics can operate as possible transporters for hazardous trace elements or microbes, even though they are not naturally able to actively absorb these compounds. The binding sites on the plastic's surface or the complexes that are formed with the organic material on the plastic are how this adsorption process takes place. Microplastics' surfaces also seem to be attractive to microorganisms, such as bacteria and algae. Microorganisms can adhere to the rough surface of microplastics, which facilitates their colonization and formation of biofilms. Numerous bacteria, including ones that have the ability to absorb hazardous trace elements, can be found in these biofilms. Microplastics and microbes can interact in ways that are advantageous and detrimental. Microplastics have the ability to act as a substrate for microbial growth, which could lead to an increase in the quantity of microorganisms in the surrounding environment. On the other hand, microplastics may make it easier for microbes to spread to new areas, which could help dangerous or deadly species proliferate. Research is still ongoing to determine the degree to which microplastics serve as carriers of microbes and hazardous trace elements. Comprehending the implications of microplastics, pollutants, and microorganisms in a variety of environmental conditions is difficult due to their complex interplay. This review provides a detailed description of the complexity of the problem and used the examples related to microplastics, its environmental effects, and impacts on human health.
Assuntos
Microplásticos , Oligoelementos , Biofilmes , Bactérias/metabolismo , Poluentes Químicos da ÁguaRESUMO
Alzheimer's disease (AD) is a condition initiated by the assimilation of ß-amyloid plaques (Aß) and tau tangles, leading to neurodegeneration. It involves frequently cognitive decline as well as memory impairment in patients. Efforts in therapeutic interventions are currently facing challenges in identifying targets within this scaffold that can significantly alter the clinical course for individuals with AD. Moreover, in AD, neurons release a protein called endostatin, which accumulates in Aß plaques and enhances AD. This accumulation of Aß in the triggers a cascade of events leading to synaptic dysfunction, neuroinflammation, and ultimately neuronal death. Environmental factors nowadays increase the risk of AD with prolonged exposure of heavy metals such as copper (Cu), lead (Pb), mercury (Hg), cadmium (Cd), and other pesticides. It has been observed that these factors can cause the aggregation of Aß and tau which initiates the plaque formation and hence leads to enhanced pathogenesis of AD. This review summarizes the interlinking between heavy metals, environmental factors, pesticides, endostatin, and progression of AD has been deliberated with recent findings.
Assuntos
Doença de Alzheimer , Endostatinas , Metais Pesados , Humanos , Peptídeos beta-Amiloides/metabolismo , Praguicidas , Placa Amiloide , Poluentes AmbientaisRESUMO
A recently proposed principal law of lifespan (PLOSP) proposes to extend the whole human lifespan by elongating different life stages. As the preborn stage of a human being, gestation is the foundation for the healthy development of the human body. The antagonistic pleiotropy (AP) theory of aging states that there is a trade-off between early life fitness and late-life mortality. The question is whether slower development during the gestation period would be associated with a longer lifespan. Among all living creatures, the length of the gestation period is highly positively correlated to the length of the lifespan, although such a correlation is thought to be influenced by the body sizes of different species. While examining the relationship between lifespan length and body size within the same species, dogs exhibit a negative correlation between lifespans and body sizes, while there is no such correlation among domestic cats. For humans, most adverse gestational environments shorten the period of gestation, and their impacts are long-term. While many issues remain unsolved, various developmental features have been linked to the conditions during the gestation period. Given that the length of human pregnancies can vary randomly by as long as 5 weeks, it is worth investigating whether a slow steady healthy gestation over a longer period will be related to a longer and healthier lifespan. This article discusses the potential benefits, negative impacts, and challenges of the relative elongation of the gestation period.
Assuntos
Envelhecimento , Longevidade , Gravidez , Feminino , Humanos , Animais , Cães , Gatos , Tamanho CorporalRESUMO
Thirty-six microalgae belonging to five taxonomic groups (Cyanobacteria, Chlorophyceae, Diatomophyceae, Euglenophyceae, and Eustigmatophyceae) were identified from six freshwater ecosystems in Morocco, two treatment stations in Etueffont landfill in France and three hot spring waters in Tunisia. Investigations on species growth kinetics and growth rates showed that the cyanobacterium Leptolyngbya gelatinosa exhibited both the highest biomass and growth rate with 4 g DW L-1 and 0.282 day-1, respectively. A significant protein production (more than 40% DW) was observed across the studied species. Cyanobacteria and chlorophytes stood out for their increased protein production with a maximum (66.63 ± 3.84% DW) attained by the cyanobacterium Leptolyngbya sp. Chlorophytes produced substantial amounts of carbohydrates (more than 20% DW). Euglenophytes including Phacus orbicularis and Euglena ehrenbergii along with the chlorophyte Graesiella sp. accumulated significant amounts of lipids (up to 31.12% DW).
Assuntos
Cianobactérias , Ecossistema , Microalgas , Marrocos , Tunísia , França , Cianobactérias/metabolismo , Cinética , BiomassaRESUMO
Infectious diseases have long posed a significant threat to global health and require constant innovation in treatment approaches. However, recent groundbreaking research has shed light on a previously overlooked player in the pathogenesis of disease-the human microbiome. This review article addresses the intricate relationship between the microbiome and infectious diseases and unravels its role as a crucial mediator of host-pathogen interactions. We explore the remarkable potential of harnessing this dynamic ecosystem to develop innovative treatment strategies that could revolutionize the management of infectious diseases. By exploring the latest advances and emerging trends, this review aims to provide a new perspective on combating infectious diseases by targeting the microbiome.
RESUMO
AbstractPharmaceutical compounds are a significant source of environmental pollution, particularly in hospital wastewater, which contains high concentrations of such compounds. Constructed wetlands have emerged as a promising approach to removing pharmaceutical compounds from wastewater. This paper aims to review the current state of knowledge on the removal of pharmaceutical compounds from hospital wastewater using constructed wetlands, including the mechanism of removal, removal efficiency, and future prospects. Pharmaceutical contaminants have been considered to be one of the most emerging pollutants in recent years. In this review article, various studies on constructed wetlands are incorporated in order to remove the pharmaceutical contaminants. The nature of constructed wetland can be explained by understanding the types of constructed wetland, characteristics of hospital wastewater, removal mechanism, and removal efficiency. The results of the review indicate that constructed wetlands are effective in removing pharmaceutical compounds from hospital wastewater. The removal mechanism of these compounds involves a combination of physical, chemical, and biological processes, including adsorption, degradation, and uptake by wetland plants. The removal efficiency of constructed wetlands varies depending on several factors, including the type and concentration of pharmaceutical compounds, the design of the wetland system, and the environmental conditions. Further research is necessary to optimize the performance of these systems, particularly in the removal of emerging contaminants, to ensure their effectiveness and long-term sustainability.
Assuntos
Águas Residuárias , Poluentes Químicos da Água , Áreas Alagadas , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/análise , Hospitais , Preparações FarmacêuticasRESUMO
Aflatoxins (AFs) are secondary metabolites produced by the fungus Aspergillus flavus, of which Aflatoxin-B1 (AFB1) appears to be the most cancerogenic and of the highest toxicity. AFB1 causes serious effects on several organs including the liver. Morin is a flavonol that exists in many fruits and plants and has diverse biological properties including anticancer, anti-atherosclerotic, antioxidant, anti-inflammatory, immunomodulatory, and multi-organ protective activities. The present study aims to evaluate the potential protective effects of morin against acute AFB1-induced hepatic and cardiac toxicity in rats. Forty rats were divided into five groups (n = 8) as follows: control received the vehicle, morin was orally administered 30/mg/kg body weight (MRN30), the AFB1 was administered orally at a dose of 2.5 mg/kg, twice on days 12 and 14 of the experiment for the 3rd, 4th, and 5th groups., AFB1-MRN15 was orally given morin at a dose of 15 mg/kg body weight, and AFB1-MRN30 orally received morin at 30 mg/kg body weight. The results indicated a significant decrease in serum AST, ALP, LDH, GGT, CK, CK-MB, 8-OHdG, IL-1ß, IL-6, TNF-a levels in MRN30 compared to AFB1, and AFB1-MRN15 groups. However, the results indicated non-significant differences in the serum levels between MRN30, control, and AFB1-MRN30 groups. Meanwhile, regarding the hepatic and cardiac parameters, there were significant differences in the levels of MDA, NO, GSH, GSH-Px, SOD, and CAT in MRN30 compared to AFB1, and AFB1-MRN15 groups, overall implying the protective effects of morin. To conclude, morin at a dose of 30 mg/kg b. wt. showed significant enhancements in acute AFB1-induced hepatic and cardiac toxicity in rats, which could play a role in limiting the public health hazards of AFs.
RESUMO
Arsenic (As), contamination in drinking groundwater resources is commonly environmental problem in many developing countries including Pakistan, with significant human health risk reports. In order to examine the groundwater quality concerning As contamination, its geochemical behavior along with physicochemical parameters, 42 samples were collected from community tube wells from District Bahawalpur, Punjab, Pakistan. The results showed the concentration of elevated As, its source of mobilization, and associated public health risk. The As concentration detected in groundwater samples varied from 0.12 to 104 µg/L with an average value of 34.7 µg/L. Among 42 groundwater samples, 27 samples were beyond the permitted limit of 10 µg/L recommended by World Health Organization (WHO), for drinking purposes. Statistical analysis result show that the groundwater cations values are in decreasing order such as: Na+ > Mg2+ > Ca2+ > K+, while anions were HCO3- > SO42- > Cl- > NO3-. Hydrochemical facies result depict that the groundwater samples of the study area, 14 samples belong to CaHCO3 type, 5 samples belong to NaCl type, 20 samples belong to Mixed CaMgCl type, and 3 samples belong to CaCl2 type. It can be accredited due to weathering and recharge mechanism, evaporation processes, and reverse ion exchange. Gibbs diagram shows that rock water interaction controls the hydrochemistry of groundwater resources of the study area. Saturation Index (SI) result indicated the saturation of calcite, dolomite, gypsum, geothite, and hematite mineral due their positive SI values. The principal component analysis (PCA) results possess a total variability of 80.69% signifying the anthropogenic and geogenic source of contamination. The results of the exposure-health-risk-assessment method for measuring As reveal significant potential non-carcinogenic risk (HQ), exceeding the threshold level of (> 1) for children in the study area. Water quality assessment results shows that 24 samples were not suitable for drinking purposes.
Assuntos
Arsênio , Água Potável , Água Subterrânea , Poluentes Químicos da Água , Criança , Humanos , Qualidade da Água , Monitoramento Ambiental , Arsênio/análise , Poluentes Químicos da Água/análise , Água Subterrânea/análise , Água Potável/análiseRESUMO
In counteracting highly infectious and disruptive respiratory diseases such as COVID-19, vaccination remains the primary and safest way to prevent disease, reduce the severity of illness, and save lives. Unfortunately, vaccination is often not the first intervention deployed for a new pandemic, as it takes time to develop and test vaccines, and confirmation of safety requires a period of observation after vaccination to detect potential late-onset vaccine-associated adverse events. In the meantime, nonpharmacologic public health interventions such as mask-wearing and social distancing can provide some degree of protection. As climate change, with its environmental impacts on pathogen evolution and international mobility continue to rise, highly infectious respiratory diseases will likely emerge more frequently and their impact is expected to be substantial. How quickly a safe and efficacious vaccine can be deployed against rising infectious respiratory diseases may be the most important challenge that humanity will face in the near future. While some organizations are engaged in addressing the World Health Organization's "blueprint for priority diseases", the lack of worldwide preparedness, and the uncertainty around universal vaccine availability, remain major concerns. We therefore propose the establishment of an international candidate vaccine pool repository for potential respiratory diseases, supported by multiple stakeholders and countries that contribute facilities, technologies, and other medical and financial resources. The types and categories of candidate vaccines can be determined based on information from previous pandemics and epidemics. Each participant country or region can focus on developing one or a few vaccine types or categories, together covering most if not all possible potential infectious diseases. The safety of these vaccines can be tested using animal models. Information for effective candidates that can be potentially applied to humans will then be shared across all participants. When a new pandemic arises, these pre-selected and tested vaccines can be quickly tested in RCTs for human populations.
RESUMO
Sitotroga cerealella is one of the major pests of cereals in the field and storage conditions throughout the world. The main objective was to study the life tables of S. cerealella on wheat, maize and barley and its implications on percent parasitism of Trichogramma chilonis. S. cerealella is reared under lab conditions as its eggs are utilized for rearing T. chilonis. Fresh eggs of S. cerealella were collected and after hatching the neonate larvae of S. cerealella were transferred onto each host plant species for obtaining first (F1) generation (G). Seventy eggs were used for each host and each egg was used as a replicate. Daily observations were made for recording the life-table parameters of the S. cerealella. The data showed that the developmental time of S. cerealella eggs and pupae was maximum (5.68 and 7.75 days) when reared on wheat, while the maximum larval duration (19.77 days) of S. cerealella was recorded on barley. The maximum fecundity (290.30 ± 22.47 eggs/female) was recorded on maize, while minimum fecundity per female was recorded on barley (159.30 eggs/ female). The S. cerealella reared on maize had significantly higher values of finite rate of increase (λ), intrinsic rate of increase (r), and net reproductive rate (Ro) (0.14 ± 0.04 day- 1, 1.16 ± 0.05 day- 1, and 136.85 ± 20.25 eggs/ female) respectively. The mean generation time (T) (35.18 ± 0.61 days) was higher on wheat. Likewise, the gross reproductive rate (GRR) and the age-stage specific reproductive values (vxj) of newly oviposited eggs of S. cerealella were recorded higher (136.85 ± 20.25; 1.160 offspring) on maize. The data regarding the efficacy of T. chilonis for different parameters were recorded higher on maize i.e., percent parasitism (89.00 ± 2.30%), percent adult emergence (81.60 ± 1.20%), adult longevity (3.80 ± 0.10 days) and total adult longevity (9.90 ± 0.20 days) as compared to wheat and barley. Our findings revealed that S. cerealella can be best reared on maize under laboratory conditions as it prefers this host as compared to wheat and barley. Therefore, assigning the most susceptible and favorite host (maize) would help us to improve T. chilonis mass production under laboratory conditions.
Assuntos
Himenópteros , Mariposas , Vespas , Animais , Feminino , Humanos , Recém-Nascido , Grão Comestível , Tábuas de Vida , Larva , Triticum , Zea maysRESUMO
Lake Ichkeul is considered one of the most significant wetlands in the Mediterranean basin. It serves as a crucial wintering area for numerous western Palearctic birds. A notable decline in species diversity has been observed in the past decade, attributed to excessive water usage for irrigation and the effects of climate change. This study aimed to assess the status of Ichkeul Lake and its catchment through identifying potentially toxic cyanobacteria, and sediment quality. Our first striking finding was that Lyngbya majuscula the dominant potentially toxic cyanobacterium in the lake originated from the Tinja channel. Trace element concentrations in lake sediments exceeded SQG standards which is indicative of rare detrimental effects to biological life. However, the sediment in front of the Tinja channel exhibited high contamination levels of Zn and Cd. These findings call for an urgent need to ensure the ongoing management and conservation of this world heritage site.
Assuntos
Cianobactérias , Metais Pesados , Oligoelementos , Poluentes Químicos da Água , Lagos , Sedimentos Geológicos , Metais , Oligoelementos/análise , Metais Pesados/análise , Poluentes Químicos da Água/análise , Monitoramento AmbientalRESUMO
The current study regarding the effects of larval diets on the life table parameters of dengue mosquitoes, Aedes aegypti was conducted under laboratory conditions at 27 ± 2 °C and 60 ± 5% relative humidity at NIFA (Nuclear Institute for Food and Agriculture) Peshawar, Pakistan. The data on life table parameters of Ae. aegypti reared on Diet 1 (replacement diet), Diet 2 (Khan's diet for Anopheles), Diet 3 (Khan's modified diet) and Diet 4 (IAEA diet) were analyzed using the age-stage, two-sex life table software. Diet 4 (IAEA) was used as a control for comparison. The results indicated that significantly maximum percentage of egg hatching of Ae. aegypti was observed when reared on Diet 4 (73.86%) and Diet 3 (72.90%), while less % of egg hatching was recorded in Diet 1 (40.67%) and Diet 2 (55.53%). The data further showed that the Diet 3 had a highest intrinsic rate of increase (r) (0.097 ± 5.68 day-1), finite rate of increase (λ) (1.10 ± 6.26 day-1) and net reproductive rate (R0) (11.99 ± 1.52 eggs/female) followed by Diet 2 and Diet 4. The mean generation time (T) of Ae. aegypti reared on Diet 3 (23.67 ± 0.86 days) and Diet 1 (24.05 ± 0.61 days) was significantly shorter than Diet 2 (26.15 ± 0.71 days) and Diet 4 (26.41 ± 0.38 days). The overall results revealed that Diet 3 showed good results at different life table parameters of Ae. aegypti and can be used as the preferred diet in the Sterile Insect Technique (SIT) where the mass culture of mosquitoes is required.
Assuntos
Aedes , Dengue , Animais , Feminino , Larva , Tábuas de Vida , Dieta , OvosRESUMO
Chlorpyrifos (CPF), is an organophosphate pesticide that is widely used for agricultural purposes. However, it has well-documented hepatotoxicity. Lycopene (LCP) is a plant-derived carotenoid with antioxidant and anti-inflammatory activities. The present work was designed to evaluate the potential hepatoprotective actions of LCP against CPF-induced hepatotoxicity in rats. Animals were assigned into five groups namely: Group I (Control), Group II (LCP), Group III (CPF), Group IV (CPF + LCP 5 mg/kg), and Group V (CPF + LCP 10 mg/kg). LCP offered protection as evidenced by inhibiting the rise in serum activities of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), and lactate dehydrogenase (LDH) induced by CPF. This was confirmed histologically as LCP-treated animals showed liver tissues with less proliferation of bile ducts and periductal fibrosis. LCP significantly prevented the rise in hepatic content of malondialdehyde (MDA), depletion of reduced glutathione (GSH), and exhaustion of glutathione-s-transferase (GST) and superoxide dismutase (SOD). Further, LCP significantly prevented hepatocyte death as it ameliorated the increase in Bax and the decrease in Bcl-2 expression induced by CPF in liver tissues as determined immunohistochemically. The observed protective effects of LCP were further confirmed by a significant enhancement in heme oxygenase-1 (HO-1) and NF-E2-related factor 2 (Nrf2) expression. In conclusion, LCP possesses protective effects against CPF-induced hepatotoxicity. These include antioxidation and activation of the Nrf2/HO-1 axis.
RESUMO
To assess potential impacts of industrial activities on the pollution status of Gulf of Gabes, twenty sediment and water samples along with phytoplankton enumeration were achieved at different stations with specific features. Comparing trace element concentrations in sediment to applicable SQG standards, we were intrigued by an accumulation of Zn, Cr, Ni, and especially Cd, which exhibited relatively high content compared to these standards. Moreover, trace metal bioavailability was high in front of industrial discharge areas. The chemical speciation pointed out a high affinity of Pb, Zn, Cr, Mn, Ni, Co, and Fe for the residual fraction of the sediment. Bioavailability of trace elements was confirmed in surface sediment by the presence of a potential toxic fraction especially in front of industrial discharge areas. Toxicity assessment performed for the first time in the Gulf of Gabes through SEM and AVS models pointed to a high potential risk near both Ghannouch and Gabes Ports. Finally, the correlations between phytoplankton species and the labile fraction inferred potential phytoplankton bioaccumulation of Zn, Cu, and Cd both in the seawater and in the labile fraction.