Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros












Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Poult Sci ; 103(6): 103695, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38626693

RESUMO

This research assessed the impacts of dietary nano-propolis liposomes (NPRL) inclusion on the growth, blood biochemical components, immune function, and oxidative status of broilers exposed to cyclic heat stress (HS). Birds were fed with a basal diet supplemented with various levels of NPRL at 0 (HS), 100 (NPRL100), 250 (NPRL250) and 400 (NPRL400) mg/kg diets. Diets supplemented with NPRL significantly improved the growth indices and feed utilization, hemoglobin and red blood cells (P < 0.01). White blood cells, lymphocytes and monocytes were significantly decreased by NPRL inclusion (P < 0.001). Dietary supplementation of 250 or 400 mg of NPRL /kg reduced the pathogenic bacteria counts (Salmonella, E. coli and Enterococci) (P < 0.01). The birds fed diets with NPRL (400 mg/kg diet) significantly downregulated the mRNA IFNγ gene (p < 0.001), while both groups (NPRL100 and NPRL250) had similar results (P > 0.05). The iNOS gene was significantly decreased by the dietary NPRL inclusion in a dose-dependent manner. Birds in NRPL groups had inferior levels of the mRNA of interleukin-4 and tumor necrosis factor genes. The lysosome activity was significantly reduced by dietary 250 or 400 mg of NPRL inclusion (P < 0.001). Birds in NPRL250 and NPRL100 had greater IgG (P < 0.05) than the other groups. Regarding oxidative-related biomarkers, dietary NPRL inclusion decreased myeloperoxidase and malondialdehyde levels significantly compared to those with the HS group (P < 0.001). Broilers in the NPRL400 group had the lowest levels of total bilirubin and gamma-glutamyl transferase. NPRL250 had the lowest values of urea compared with other groups (P < 0.001). Dietary NPRL inclusion improved the broiler's hepatic and intestinal architecture exposed to cyclic heat stress. These results indicate that employing NPRL in the diets of stressed broilers can enhance heat resistance by enhancing blood metabolites and immunity, reducing inflammation and oxidative stress.


Assuntos
Ração Animal , Galinhas , Dieta , Suplementos Nutricionais , Lipossomos , Animais , Galinhas/fisiologia , Galinhas/crescimento & desenvolvimento , Ração Animal/análise , Lipossomos/administração & dosagem , Lipossomos/química , Dieta/veterinária , Suplementos Nutricionais/análise , Masculino , Distribuição Aleatória , Resposta ao Choque Térmico/efeitos dos fármacos , Nanopartículas/administração & dosagem , Nanopartículas/química , Relação Dose-Resposta a Droga , Doenças das Aves Domésticas/prevenção & controle , Transtornos de Estresse por Calor/veterinária
2.
Poult Sci ; 103(1): 103218, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37980733

RESUMO

Heat stress (HS) is still the essential environmental agent influencing the poultry industry. Research on HS in poultry has progressively acquired growing interest because of increased attention to climate alteration. Poultry can survive at certain zone of environmental temperatures, so it could be considered homoeothermic. In poultry, the normal body temperature is essential to enhance the internal environment for growth, which is achieved by normal environmental temperature. Recently, many studies have revealed that HS could cause mitochondrial dysfunction in broilers by inducing redox dysfunction, increasing uncoupling protein, boosting lipid and protein oxidation, and oxidative stress. Moreover, HS diminished the energy suppliers supported by mitochondria activity. A novel strategy for combating the negative influences of HS via boosting the mitochondria function through enrichment of the diets with mitochondria enhancers was also described in this review. Finally, the current review highlights the mitochondria dysfunction induced by HS in broilers and attempts to boost mitochondria functionality by enriching mitochondria enhancers to broiler diets.


Assuntos
Galinhas , Aves Domésticas , Animais , Estresse Oxidativo , Resposta ao Choque Térmico , Mitocôndrias/metabolismo
3.
Front Microbiol ; 14: 1135806, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37089535

RESUMO

Non-typhoidal Salmonella is the tremendously predominant source of acquired foodborne infection in humans, causing salmonellosis which is a global threat to the healthcare system. This threat is even worse when it is combined with the incidence of multidrug-resistant Salmonella strains. Bacteriophage therapy has been proposed as a promising potential candidate to control a diversity of foodborne infective bacteria. The objective of this study designed to isolate and characterize lytic phages infecting zoonotic multi-drug resistant and strong biofilm producer Salmonella enterica serovar Enteritidis EG.SmE1 and then apply the isolated phage/s as a biocontrol agent against infections in ready-to-eat food articles including milk, water, apple juice, and chicken breasts. One lytic phage (LPSent1) was selected based on its robust and stable lytic activity. Phage LPSent1 belonged to the genus Jerseyvirus within the Jerseyvirinae subfamily. The lysis time of phage LPSent1 was 60 min with a latent period of 30 min and each infected cell burst about 112 plaque-forming units. Phage LPSent1 showed a narrow host range. Furthermore, the LPSent1 genome did not encode any virulence or lysogenic genes. In addition, phage LPSent1 had wide pH tolerance, prolonged thermal stability, and was stable in food articles lacking its susceptible host for 48 h. In vitro applications of phage LPSent1 inhibited free planktonic cells and biofilms of Salmonella Enteritidis EG.SmE1 with a lower occurrence to form phage-resistant bacterial mutants which suggests promising applications on food articles. Application of phage LPSent1 at multiplicities of infections of 100 or 1000 showed significant inhibition in the bacterial count of Salmonella Enteritidis EG.SmE1 by 5 log10/sample in milk, water, apple juice, and chicken breasts at either 4°C or 25°C. Accordingly, taken together these findings establish phage LPSent1 as an effective, promising candidate for the biocontrol of MDR Salmonella Enteritidis in ready-to-eat food.

4.
Pharmgenomics Pers Med ; 15: 705-720, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35898556

RESUMO

Introduction: Autism spectrum disorder (ASD) is a developmental disorder that can cause substantial social, communication, and behavioral challenges. Genetic factors play a significant role in ASD, where the risk of ASD has been increased for unclear reasons. Twin studies have shown important evidence of both genetic and environmental contributions in ASD, where the level of contribution of these factors has not been proven yet. It has been suggested that copy number variation (CNV) duplication and the deletion of many genes in chromosome 22 (Ch22) may have a strong association with ASD. This study screened the CNVs in Ch22 in autistic Saudi children and assessed the candidate gene in the CNVs region of Ch22 that is most associated with ASD. Methods: This study included 15 autistic Saudi children as well as 4 healthy children as controls; DNA was extracted from samples and analyzed using array comparative genomic hybridization (aCGH) and DNA sequencing. Results: The aCGH detected (in only 6 autistic samples) deletion and duplication in many regions of Ch22, including some critical genes. Moreover, DNA sequencing determined a genetic mutation in the TBX1 gene sequence in autistic samples. This study, carried out using aCGH, found that six autistic patients had CNVs in Ch22, and DNA sequencing revealed mutations in the TBX1 gene in autistic samples but none in the control. Conclusion: CNV deletion and the duplication of the TBX1 gene could be related to ASD; therefore, this gene needs more analysis in terms of expression levels.

5.
Int J Inflam ; 2022: 9099136, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35668817

RESUMO

Defensin Alpha 4 (DEFA4) is the fourth member of the Alpha Defensins family known as a part of antimicrobial peptides in the innate immune system. DEFA4 has a strong preference to kill Gram-negative bacteria more than Gram-positive bacteria. In addition, DEFA4 exhibits antiviral activity against human immunodeficiency virus type 1 (HIV-1) in vitro. Moreover, DEFA4 can act as an inhibitor of corticosterone production (Corticostatin). On the other hand, alternations in DEFA4 gene expression have been reported in different disorders such as diseases related to inflammation and immunity dysfunction, brain-related disorders, and various cancers. The up-regulation of DEFA4 appears to be involved in the malignant transformation or aggressive form of cancer. Interestingly, the modified version of DEFA4 fragment (1-11) was potent and efficient against antibiotic-resistant bacteria. This review provides a general background abSaudi Arabia out DEFA4 and sheds light on changes in DEFA4 gene expression in different diseases. The paper also discusses other aspects related to DEFA4 as an antimicrobial and antiviral agent. The research was conducted based on available articles obtained from databases starting from 1988 to the present.

6.
Pharmgenomics Pers Med ; 15: 131-142, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35221709

RESUMO

BACKGROUND: DNA methylation (DNAm) is one of the main epigenetic mechanisms that affects gene expression without changing the underlying DNA sequence. Aberrant DNAm has an implication in different human diseases such as cancer, schizophrenia, and autism spectrum disorder (ASD). ASD is a neurodevelopmental disorder that affects behavior, learning, and communication skills. Acyl-CoA synthetase family member 3 (ACSF3) encodes malonyl-CoA synthetase that is involved in the synthesis and oxidation of fatty acids. The dysregulation in such gene has been reported in combined malonic and methylmalonic aciduria associated with neurological symptoms such as memory problems, psychiatric diseases, and/or cognitive decline. This research aims to study DNAm in the transcription factor (TF) binding site of ACSF3 in Saudi autistic children. To determine whether the DNAm of the TF-binding site is a cause or a consequence of transcription regulation of ACSF3. METHODS: RT-qPCR and DNA methylight qPCR were used to determine the expression and DNAm level in the promoter region of ACSF3, respectively. DNA and RNA were extracted from 19 cases of ASD children and 18 control samples from their healthy siblings. RESULTS: The results showed a significant correlation between the gene expression of ACSF3 and specificity protein 1 (SP1) in 17 samples of ASD patients, where both genes were upregulated in 9 samples and downregulated in 8 samples. CONCLUSION: Although this study found no DNAm in the binding site of SP1 within the ACSF3 promoter, the indicated correlation highlights a possible role of ACSF3 and SP1 in ASD patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...