Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Br Poult Sci ; 65(2): 129-136, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38416108

RESUMO

1. This study evaluated the effectiveness of yeast (Saccharomyces cerevisiae) cell wall (YCW) supplementation on the growth performance, carcase characteristics, serum biomarkers, liver function, ileal histology and microbiota of broiler chickens challenged with Clostridium perfringens (C. perfringens).2. In a 35-d trial, 240 chicks aged 1-d-old were randomly assigned to one of four treatment groups, each with 10 replicates: control (CON) with no challenge or additives, challenged with C. perfringens (CHAL), CHAL and supplemented with YCW at either 0.25 g/kg (YCW0.25) or 0.5 g/kg (YCW0.5).3. In comparison to CON, the CHAL birds had reduced growth performance, survival rate, dressing percentage, breast meat yield, levels of total protein (TP), globulin (GLO), glucose (GLU), total antioxidant capacity (T-AOC) and total superoxide dismutase (T-SOD), as well as a decreased Lactobacillus population (P < 0.01). Additionally, this group showed elevated levels of glutamic oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), and C. perfringens count (P < 0.01). Compared to CHAL, the YCW0.25 or YCW0.5 groups had improved growth performance, survival rate, dressing percentage, breast meat yield, levels of TP, GLO, GLU, and T-AOC, as well as the activities of T-SOD, GOT, and GPT, villus height, villus surface area, villus height to crypt depth ratio, and the populations of both Lactobacillus and C. perfringens; (P < 0.01).4. The data suggested that YCW supplementation at either 0.25 or 0.50 g/kg can restore the growth performance of broiler chickens during a C. perfringens challenge.


Assuntos
Infecções por Clostridium , Clostridium perfringens , Animais , Saccharomyces cerevisiae , Galinhas , Prebióticos , Infecções por Clostridium/veterinária , Infecções por Clostridium/patologia , Suplementos Nutricionais , Antioxidantes , Parede Celular , Superóxido Dismutase , Ração Animal/análise , Dieta/veterinária
2.
J Dairy Sci ; 105(8): 6654-6669, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35840400

RESUMO

Residual feed intake (RFI) measures feed efficiency independent of milk production level, and is typically calculated using data past peak lactation. In the current study, we retrospectively classified multiparous Holstein cows (n = 320) from 5 of our published studies into most feed-efficient (M-eff) or least feed-efficient (L-eff) groups using performance data collected during the peripartal period. Objectives were to assess differences in profiles of plasma biomarkers of immunometabolism, relative abundance of key ruminal bacteria, and activities of digestive enzymes in ruminal digesta between M-eff and L-eff cows. Individual data from cows with ad libitum access to a total mixed ration from d -28 to d +28 relative to calving were used. A linear regression model including dry matter intake (DMI), energy-corrected milk (ECM), changes in body weight (BW), and metabolic BW was used to classify cows based on RFI divergence into L-eff (n = 158) and M-eff (n = 162). Plasma collected from the coccygeal vessel at various times around parturition (L-eff = 60 cows; M-eff = 47 cows) was used for analyses of 30 biomarkers of immunometabolism. Ruminal digesta collected via esophageal tube (L-eff = 19 cows; M-eff = 29 cows) was used for DNA extraction and assessment of relative abundance (%) of 17 major bacteria using real-time PCR, as well as activity of cellulase, amylase, xylanase, and protease. The UNIVARIATE procedure of SAS 9.4 (SAS Institute Inc.) was used for analyses of RFI coefficients. The MIXED procedure of SAS was used for repeated measures analysis of performance, milk yield and composition, plasma immunometabolic biomarkers, ruminal bacteria, and enzyme activities. The M-eff cows consumed less DMI during the peripartal period compared with L-eff cows. In the larger cohort of cows, despite greater overall BW for M-eff cows especially in the prepartum (788 vs. 764 kg), no difference in body condition score was detected due to RFI or the interaction of RFI × time. Milk fat content (4.14 vs. 3.75 ± 0.06%) and milk fat yield (1.75 vs. 1.62 ± 0.04 kg) were greater in M-eff cows. Although cumulative ECM yield did not differ due to RFI (1,138 vs. 1,091 ± 21 kg), an RFI × time interaction due to greater ECM yield was found in M-eff cows. Among plasma biomarkers studied, concentrations of nonesterified fatty acids, ß-hydroxybutyrate, bilirubin, ceruloplasmin, haptoglobin, myeloperoxidase, and reactive oxygen metabolites were overall greater, and glucose, paraoxonase, and IL-6 were lower in M-eff compared with L-eff cows. Among bacteria studied, abundance of Ruminobacter amylophilus and Prevotella ruminicola were more than 2-fold greater in M-eff cows. Despite lower ruminal activity of amylase in M-eff cows in the prepartum, regardless of RFI, we observed a marked linear increase after calving in amylase, cellulase, and xylanase activities. Protease activity did not differ due to RFI, time, or RFI × time. Despite greater concentrations of biomarkers reflective of negative energy balance and inflammation, higher feed efficiency measured as RFI in peripartal dairy cows might be associated with shifts in ruminal bacteria and amylase enzyme activity. Further studies could help address such factors, including the roles of the liver and the mammary gland.


Assuntos
Celulases , Leite , Amilases/metabolismo , Ração Animal/análise , Animais , Bactérias , Biomarcadores/metabolismo , Biopolímeros/metabolismo , Peso Corporal , Bovinos , Celulases/metabolismo , Dieta/veterinária , Ingestão de Alimentos , Feminino , Humanos , Lactação , Leite/metabolismo , Peptídeo Hidrolases/metabolismo , Estudos Retrospectivos
3.
J Dairy Sci ; 104(8): 9340-9354, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33985772

RESUMO

Calves born to multiparous Holstein cows fed during the last 30 d of pregnancy 2 different cobalt sources [cobalt glucoheptonate (CoPro) or cobalt pectin (CoPectin)], folic acid (FOA), and rumen-protected methionine (RPM) were used to study neonatal immune responses after ex vivo lipopolysaccharide (LPS) challenge. Groups were (n = 12 calves/group) CoPro, FOA+CoPro, FOA+CoPectin, and FOA+CoPectin+RPM. Calves were weighed at birth and blood collected at birth (before colostrum), 21 d of age, and 42 d of age (at weaning). Growth performance was recorded once a week during the first 6 wk of age. Energy metabolism, inflammation, and antioxidant status were assessed at birth through various plasma biomarkers. Whole blood was challenged with 3 µg/mL of LPS or used for phagocytosis and oxidative burst assays. Target genes evaluated by real-time quantitative PCR in whole blood samples were associated with immune response, antioxidant function, and 1-carbon metabolism. The response in mRNA abundance in LPS challenged versus nonchallenged samples was assessed via Δ = LPS challenged - LPS nonchallenged samples. Phagocytosis capacity and oxidative burst activity were measured in neutrophils and monocytes, with data reported as ratio (percentage) of CD14 to CH138A-positive cells. Data including all time points were subjected to ANOVA using PROC MIXED in SAS 9.4 (SAS Institute Inc.), with Treatment, Sex, Age, and Treatment × Age as fixed effects. A 1-way ANOVA was used to determine differences at birth, with Treatment and Sex as fixed effects. Calf birth body weight and other growth parameters did not differ between groups. At birth, plasma haptoglobin concentration was lower in FOA+CoPro compared with CoPro calves. We detected no effect for other plasma biomarkers or immune function due to maternal treatments at birth. Compared with CoPro, in response to LPS challenge, whole blood from FOA+CoPectin and FOA+CoPectin+RPM calves had greater mRNA abundance of intercellular adhesion molecule 1 (ICAM1). No effect for other genes was detectable. Regardless of maternal treatments, sex-specific responses were observed due to greater plasma concentrations of haptoglobin, paraoxonase, total reactive oxygen metabolites, nitrite, and ß-carotene in female versus male calves at birth. In contrast, whole blood from male calves had greater mRNA abundance of IRAK1, CADM1, and ITGAM in response to LPS challenge at birth. The longitudinal analysis of d 0, 21, and 42 data revealed greater bactericidal permeability-increasing protein (BPI) mRNA abundance in whole blood from FOA+CoPectin versus FOA+CoPro calves, coupled with greater abundance in FOA+CoPro compared with CoPro calves. Regardless of maternal treatments, most genes related to cytokines and cytokine receptors (IL1B, IL10, TNF, IRAK1, CXCR1), toll-like receptor pathway (TLR4, NFKB1), adhesion and migration (ICAM1, ITGAM), antimicrobial function (MPO), and antioxidant function (GPX1) were downregulated over time. Phagocytosis capacity and oxidative burst activity in both neutrophils and monocytes did not differ due to maternal treatment. Regardless of maternal treatments, we observed an increase in the percentage of neutrophils capable of phagocytosis and oxidative burst activity over time. Overall, these preliminary assessments suggested that maternal supplementation with FOA and Co combined with RPM had effects on a few plasma biomarkers of inflammation at birth and molecular responses associated with inflammatory mechanisms during the neonatal period.


Assuntos
Metionina , Rúmen , Animais , Animais Recém-Nascidos , Bovinos , Cobalto , Dieta/veterinária , Suplementos Nutricionais , Feminino , Ácido Fólico , Masculino , Neutrófilos , Gravidez
4.
J Anim Sci Biotechnol ; 12(1): 44, 2021 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-33795002

RESUMO

BACKGROUND: Nutritional management in the dry period can alter body condition score (BCS) in dairy cows, a subjective measure of body fat. As such, differences in BCS during late-pregnancy not only mirror nutrient utilization by fat depots, but also can play important roles on the metabolic and hormonal environment. We investigated the association between cow BCS during late-pregnancy on developmental parameters and blood variables of neonatal calves. Forty-nine multiparous Holstein cows were retrospectively divided by prepartal BCS into normal BCS ≤3.25 (NormBCS; 3.02 ± 0.17, n = 30) or high BCS ≥3.75 (HighBCS; 3.83 ± 0.15, n = 19) groups. Plasma samples were collected from cows at - 10 d relative to parturition. Body weight, hip and wither height, hip width and body length were measured at birth and weekly through weaning (42 d of age) and until 9 weeks of age. Calf blood samples were collected from the jugular vein at birth (before receiving colostrum, 0 d), 24 h after first colostrum and at 7, 21, 42 and 50 d of age. The data were subjected to ANOVA using the mixed procedure of SAS. The statistical model included day, BCS, and their interactions. RESULTS: Dry matter intake (kg/d or % of body weight) during the last 4 weeks of pregnancy was lower (P ≤ 0.06) in HighBCS cows. Plasma concentrations of fatty acids, ceruloplasmin, and nitric oxide were greater overall (P < 0.05) at d - 10 prior to calving in HighBCS cows, and they tended (P = 0.08) to have greater concentrations of reactive oxygen metabolites. Birth body weight was lower (P = 0.03) in calves born to dams with HighBCS. In addition, plasma concentrations of fatty acids, albumin and urea (P < 0.05) were greater in those calves. Although calves born to cows with HighBCS maintained a lower postnatal body weight (P = 0.04), hip and wither height, hip width, and body length, there was no difference (P > 0.05) in daily starter intake and average daily gain due to maternal BCS. CONCLUSIONS: Overall, results highlight an association between BCS during late-gestation on in utero calf development and postnatal growth. A high maternal BCS during late-gestation was associated with lower calf body weights, which could be due to lower maternal intakes and a state of inflammation and metabolic stress.

5.
J Dairy Sci ; 104(3): 3403-3417, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33455750

RESUMO

We investigated how prepartal body condition score (BCS) alters key hepatic enzymes associated with 1-carbon, carnitine, and glutathione metabolism and the related biomarkers in liver tissue and plasma of periparturient dairy cows. Twenty-six multiparous Holstein dairy cows were retrospectively selected according to BCS at 4 wk prepartum and divided into high (HighBCS, BCS ≥ 3.50) and normal (NormBCS, BCS ≤ 3.25) BCS groups (n = 13 each). Blood plasma samples were obtained at -30, -10, 7, 15, and 30 d relative to calving. Liver tissue biopsies were performed at -15, 7, and 30 d relative to calving, and samples were used to assess protein abundance via Western blot assay. Cows in the HighBCS group lost ∼1 unit of BCS between -4 and 4 wk around calving, while NormBCS cows lost ∼0.5 unit in the same period. Prepartal dry matter intake (DMI, kg/d) did not differ between groups. Compared with NormBCS cows, HighBCS cows had higher postpartal DMI and milk yield (+5.34 kg/d). In addition, greater overall plasma concentrations of fatty acids and activity of the neutrophil-enriched enzyme myeloperoxidase were observed in HighBCS compared with NormBCS cows. Despite similar reactive oxygen metabolite concentrations in both groups at 30 d, HighBCS cows had lower overall concentrations of ß-carotene and tocopherol, explaining the lower (BCS × Time) antioxidant capacity (ferric reducing ability of plasma). The HighBCS cows also had greater liver malondialdehyde concentrations and superoxide dismutase activity at 30 d. Overall, compared with NormBCS cows, HighBCS cows had lower hepatic protein abundance of the 1-carbon metabolism enzymes cystathionine-ß-synthase, betaine-homocysteine methyltransferase, and methionine adenosyltransferase 1 A (MAT1A), as well as the glutathione metabolism-related enzymes glutathione S-transferase α 4 and glutathione peroxidase 3 (GPX3). A lower protein abundance of glutathione S-transferase mu 1 (GSTM1) at -15 and 7 d was also observed. Regardless of BCS, cows had increased abundance of GSTM1 and GPX3 between -15 and 7 d around calving. A marked decrease of gamma-butyrobetaine dioxygenase 1 from -10 to 7 d in HighBCS compared with NormBCS cows suggested a decrease in de novo carnitine synthesis that was partly explained by the lower abundance of MAT1A. Overall, data suggest biologic links between BCS before calving, milk yield, immune response, and hepatic reactions encompassing 1-carbon metabolism, carnitine, and antioxidant synthesis.


Assuntos
Carbono , Carnitina , Animais , Biomarcadores , Bovinos , Dieta , Feminino , Glutationa , Lactação , Fígado , Leite , Período Pós-Parto , Estudos Retrospectivos
6.
J Dairy Sci ; 104(2): 2266-2279, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33246612

RESUMO

Managing body condition in dairy cows during the close-up period could alter the availability of nutrients to the fetus during the final growth stages in utero. We investigated how maternal body condition score (BCS) in late pregnancy affected calf whole-blood mRNA abundance and IL-1ß concentrations after ex vivo lipopolysaccharide (LPS) challenge. Thirty-eight multiparous Holstein cows and their calves from a larger cohort were retrospectively grouped by prepartal BCS as normal BCS (≤3.25; n = 22; NormBCS) and high BCS (≥3.75; n = 16; HighBCS). Calf blood samples collected at birth (before receiving colostrum, d 0) and at ages 21 and 42 d (at weaning) were used for ex vivo whole-blood challenge with 3 µg/mL of LPS before mRNA isolation. Target genes evaluated by real-time quantitative PCR were associated with immune response, antioxidant function, and 1-carbon metabolism. Plasma IL-1ß concentrations were also measured. Responses in plasma IL-1ß and mRNA abundance were compared between LPS-challenged and nonchallenged samples. Statistical analyses were performed at all time points using a MIXED model in SAS 9.4. Neither birth body weight (NormBCS = 43.8 ± 1.01 kg; HighBCS = 43.9 ± 1.2 kg) nor colostrum IgG concentration (NormBCS = 70 ± 5.4 mg/mL; HighBCS = 62 ± 6.5 mg/mL) differed between groups. At birth, whole blood from calves born to HighBCS cows had greater mRNA abundance of IL1B, NFKB1, and GSR and lower GPX1 and CBS abundance after LPS challenge. The longitudinal analysis of d 0, 21, and 42 data revealed a BCS × age effect for SOD2 and NOS2 due to lower mRNA abundance at 42 d in the HighBCS calves. Regardless of maternal BCS, mRNA abundance decreased over time for genes encoding cytokines (IL1B, IL6, IL10, TNF), cytokine receptors (IRAK1, CXCR1), toll-like receptor pathway (TLR4, NFKB1), adhesion and migration (CADM1, ICAM1, ITGAM), and antimicrobial function (MPO). Concentration of IL-1ß after LPS challenge was also markedly lower at 21 d regardless of maternal BCS. Overall, results suggested that maternal BCS in late prepartum influences the calf immune system response to an inflammation challenge after birth. Although few genes among those studied were altered due to maternal BCS, the fact that genes related to oxidative stress and 1-carbon metabolism responded to LPS challenge in HighBCS calves underscores the potential role of methyl donors (e.g., methionine, choline, and folic acid) in the early-life innate immune response.


Assuntos
Doenças dos Bovinos/imunologia , Bovinos/imunologia , Imunidade Inata , Inflamação/veterinária , Interleucina-1beta/imunologia , Lipopolissacarídeos/imunologia , RNA Mensageiro/metabolismo , Animais , Animais Recém-Nascidos/imunologia , Antioxidantes/metabolismo , Constituição Corporal , Colina/metabolismo , Feminino , Inflamação/imunologia , Metionina/metabolismo , Neutrófilos/imunologia , Estresse Oxidativo , Gravidez , Estudos Retrospectivos
7.
J Dairy Sci ; 103(11): 10459-10476, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32921465

RESUMO

Peripartal cows mobilize not only body fat but also body protein to satisfy their energy requirements. The objective of this study was to determine the effect of prepartum BCS on blood biomarkers related to energy and nitrogen metabolism, and mRNA and protein abundance associated with AA metabolism and insulin signaling in subcutaneous adipose tissue (SAT) in peripartal cows. Twenty-two multiparous Holstein cows were retrospectively classified into a high BCS (HBCS; n = 11, BCS ≥ 3.5) or normal BCS (NBCS; n = 11, BCS ≤ 3.17) group at d 28 before expected parturition. Cows were fed the same diet as a total mixed ration before parturition and were fed the same lactation diet postpartum. Blood samples collected at -10, 7, 15, and 30 d relative to parturition were used for analyses of biomarkers associated with energy and nitrogen metabolism. Biopsies of SAT harvested at -15, 7, and 30 d relative to parturition were used for mRNA (real time-PCR) and protein abundance (Western blotting) assays. Data were subjected to ANOVA using the MIXED procedure of SAS (v. 9.4; SAS Institute Inc., Cary, NC), with P ≤ 0.05 being the threshold for significance. Cows in HBCS had greater overall plasma nonesterified fatty acid concentrations, due to marked increases at 7 and 15 d postpartum. This response was similar (BCS × Day effect) to protein abundance of phosphorylated (p) protein kinase B (p-AKT), the insulin-induced glucose transporter (SLC2A4), and the sodium-coupled neutral AA transporter (SLC38A1). Abundance of these proteins was lower at -15 d compared with NBCS cows, and either increased (SLC2A4, SLC38A1) or did not change (p-AKT) at 7 d postpartum in HBCS. Unlike protein abundance, however, overall mRNA abundances of the high-affinity cationic (SLC7A1), proton-coupled (SLC36A1), and sodium-coupled amino acid transporters (SLC38A2) were greater in HBCS than NBCS cows, due to upregulation in the postpartum phase. Those responses were similar to protein abundance of p-mTOR, which increased (BCS × Day effect) at 7 d in HBCS compared with NBCS cows. mRNA abundance of argininosuccinate lyase (ASL) and arginase 1 (ARG1) also was greater overall in HBCS cows. Together, these responses suggested impaired insulin signaling, coupled with greater postpartum AA transport rate and urea cycle activity in SAT of HBCS cows. An in vitro study using adipocyte and macrophage cocultures stimulated with various concentrations of fatty acids could provide some insights into the role of immune cells in modulating adipose tissue immunometabolic status, including insulin resistance and AA metabolism.


Assuntos
Aminoácidos/metabolismo , Bovinos/metabolismo , Insulina/metabolismo , Transdução de Sinais , Gordura Subcutânea/metabolismo , Animais , Biomarcadores/sangue , Constituição Corporal , Dieta/veterinária , Metabolismo Energético , Feminino , Lactação , Nitrogênio/metabolismo , Parto , Período Pós-Parto/metabolismo , Gravidez , Estudos Retrospectivos
8.
J Dairy Sci ; 103(7): 6439-6453, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32359988

RESUMO

Dairy cows with high body condition score (BCS) in late prepartum are more susceptible to oxidative stress (OS). Nuclear factor erythroid 2-like 2 (NFE2L2) is a major antioxidant transcription factor. We investigated the effect of precalving BCS on blood biomarkers associated with OS, inflammation, and liver function, along with mRNA and protein abundance of targets related to NFE2L2 and glutathione (GSH) metabolism in s.c. adipose tissue (SAT) of periparturient dairy cows. Twenty-two multiparous Holstein cows were retrospectively classified into a high BCS (HBCS; n = 11, BCS ≥3.5) or normal BCS (NBCS; n = 11, BCS ≤3.17) on d 28 before parturition. Cows were fed a corn silage- and wheat straw-based total mixed ration during late prepartum, and a corn silage- and alfalfa hay-based total mixed ration postpartum. Blood samples obtained at -10, 7, 15, and 30 d relative to parturition were used for analyses of biomarkers associated with inflammation, including albumin, ceruloplasmin, haptoglobin, and myeloperoxidase, as well as OS, including ferric reducing ability of plasma (FRAP), reactive oxygen species (ROS), and ß-carotene. Adipose biopsies harvested at -15, 7, and 30 d relative to parturition were analyzed for mRNA (real-time quantitative PCR) and protein abundance (Western blotting) of targets associated with the antioxidant transcription regulator nuclear factor, NFE2L2, and GSH metabolism pathway. In addition, concentrations of GSH, ROS and malondialdehyde were measured. High BCS cows had lower prepartum dry matter intake expressed as a percentage of body weight along with greater BCS loss between -4 and 4 wk relative to parturition. Plasma concentrations of ROS and FRAP increased after parturition regardless of treatment. Compared with NBCS, HBCS cows had greater concentrations of FRAP at d 7 postpartum, which coincided with peak values in those cows. In addition, NBCS cows experienced a marked decrease in plasma ROS after d 7 postpartum, while HBCS cows maintained a constant concentration by d 30 postpartum. Overall, ROS concentrations in SAT were greater in HBCS cows. However, overall mRNA abundance of NFE2L2 was lower and cullin 3 (CUL3), a negative regulator of NFE2L2, was greater in HBCS cows. Although HBCS cows had greater overall total protein abundance of NFE2L2 in SAT, ratio of phosphorylated NFE2L2 to total NFE2L2 was lower, suggesting a decrease in the activity of this antioxidant system. Overall, mRNA abundance of the GSH metabolism-related genes glutathione reductase (GSR), glutathione peroxidase 1 (GPX1), and transaldolase 1 (TALDO1), along with protein abundance of glutathione S-transferase mu 1 (GSTM1), were greater in HBCS cows. Data suggest that HBCS cows might experience greater systemic OS after parturition, while increased abundance of mRNA and protein components of the GSH metabolism pathway in SAT might help alleviate tissue oxidant status. Data underscored the importance of antioxidant mechanisms at the tissue level. Thus, targeting these pathways in SAT during the periparturient period via nutrition might help control tissue remodeling while allowing optimal performance.


Assuntos
Antioxidantes/metabolismo , Composição Corporal/fisiologia , Bovinos/fisiologia , Glutationa/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Gordura Subcutânea/metabolismo , Animais , Feminino , Humanos , Lactação/fisiologia , Leite/metabolismo , Fator 2 Relacionado a NF-E2/genética , Período Periparto/fisiologia , Gravidez , Espécies Reativas de Oxigênio/metabolismo
9.
J Dairy Sci ; 102(11): 10291-10303, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31477291

RESUMO

Maternal supply of methyl donors such as methionine (Met) during late pregnancy can affect offspring growth and development. The objective was to investigate the effect of postruminal Met supply during late pregnancy on 1-carbon, Met cycle, and transsulfuration pathways in the calf liver. During the last 28 d of pregnancy, cows were individually fed a control diet or the control diet plus rumen-protected dl-Met (MET; 0.09% dry matter intake). Liver samples obtained from calves (n = 14/group) at 4, 14, 28, and 50 d of age were used for metabolomics, real-time PCR, and enzyme activity analyses. Genes associated with 1-carbon metabolism, DNA methylation, and the cytidine 5'-diphosphocholine-choline pathway were analyzed via real-time PCR. Activity of betaine homocysteine methyltransferase, cystathionine ß-synthase, and 5-methyltetrahydrofolate homocysteine methyltransferase (MTR) was analyzed using 14C isotopes. Data were analyzed using a mixed model that included the fixed effects of maternal treatment, day, and their interaction, and the random effect was calf within maternal diet. Calves born to dams offered MET tended to have greater birth body weight and had overall greater body weight during the first 9 wk of life. However, no differences were detected for daily feed intake and average daily gain between groups. Concentrations of betaine and choline, reflecting Met cycle activity, at d 14 through 28 were greater in MET calves. Transsulfuration pathway intermediates also were altered in MET calves, with concentrations of cysteine sulfinic acid and hypotaurine (d 4 and 14) and taurine being greater (d 4, 14, 28, and 50). Despite the lack of differences in daily feed intake, the greater concentrations of the tricarboxylic acid cycle intermediates fumarate and glutamate along with NAD/NADH in MET calves indicated enhanced rates of energy metabolism. Although activity of betaine homocysteine methyltransferase was greater in MET calves at d 14, cystathionine ß-synthase was lower and increased at d 14 and 28, where it was greater compared with the control diet. Activity of MTR was lower at d 4 and 50 in MET calves. Among gene targets measured, MET calves had greater overall expression of MTR, phosphatidylethanolamine N-methyltransferase, and choline kinase α and ß. An interaction of maternal diet by time was detected for mRNA abundance of DNA methyltransferase 3α (involved in de novo methylation) due to greater values at d 4 and 14 in MET calves. Overall, the data indicate that enhanced postruminal supply of Met to cows during late pregnancy may program hepatic metabolism of the calf in the context of maintaining Met homeostasis, phosphatidylcholine and taurine synthesis, DNA methylation, and energy metabolism. These alterations potentially result in better efficiency of nutrient use, hence conferring the calf a physiologic advantage during a period of rapid growth and development. The precise biologic mechanisms remain to be established.


Assuntos
Betaína-Homocisteína S-Metiltransferase/metabolismo , Carbono/metabolismo , Bovinos/fisiologia , Metabolismo Energético , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Metionina/administração & dosagem , Animais , Animais Recém-Nascidos , Betaína/metabolismo , Betaína-Homocisteína S-Metiltransferase/genética , Biomarcadores/metabolismo , Bovinos/genética , Bovinos/crescimento & desenvolvimento , Colina/metabolismo , Dieta/veterinária , Epigênese Genética , Feminino , Fígado/enzimologia , Parto , Gravidez , Fenômenos Fisiológicos da Nutrição Pré-Natal , RNA Mensageiro/metabolismo , Rúmen/metabolismo
10.
J Dairy Sci ; 102(11): 10599-10605, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31447163

RESUMO

The supply of methionine (Met) in late pregnancy can alter mRNA abundance of genes associated with metabolism and immune response in liver and polymorphonuclear leukocytes (PMN) of the neonatal calf. Whether prenatal supply of Met elicits postnatal effects on systemic inflammation and innate immune response of the calf is not well known. We investigated whether enhancing the maternal supply of Met via feeding ethyl-cellulose rumen-protected Met (RPM) was associated with differences in calf innate immune response mRNA abundance in PMN and systemic indicators of inflammation during the first 50 d of life. Calves (n = 14 per maternal diet) born to cows fed RPM at 0.09% of diet dry matter per day (MET) for the last 28 ± 2 d before calving or fed a control diet with no added Met (CON) were used. Blood for biomarker analysis and isolation of PMN for innate immune function assays and mRNA abundance was harvested at birth (before colostrum feeding) and at 7, 21 and 50 d of age. Whole blood was challenged with enteropathogenic bacteria (Escherichia coli 0118:H8) and phagocytosis and oxidative burst of neutrophils and monocytes were quantified via flow cytometry. Although concentration of haptoglobin and activity of myeloperoxidase among calves from both maternal groups increased markedly between 0 and 7 d of age followed by a decrease to baseline at d 21 the responses were lower in MET compared with CON calves. Nitric oxide concentration decreased markedly between 0 and 7 d regardless of maternal group but MET calves tended to have lower overall concentrations during the study. In vitro phagocytosis in stimulated neutrophils increased markedly over time in both CON and MET calves but responses were overall greater in MET calves. Oxidative burst in both neutrophils and monocytes increased over time regardless of maternal treatment. The mRNA abundance of lactate dehydrogenase (LDHA) signal transducer and activator of transcription 3 (STAT3) and S100 calcium binding protein A8 (S100A8) in PMN was overall greater in MET calves. Overall data suggest that increasing the maternal supply of Met during late pregnancy could affect the neonatal calf inflammatory status and innate immune response. Although changes in mRNA abundance could play a role in coordinating the immune response the exact mechanisms merit further study.


Assuntos
Bovinos , Dieta/veterinária , Imunidade Inata/efeitos dos fármacos , Metionina/farmacologia , Neutrófilos/imunologia , RNA Mensageiro/metabolismo , Animais , Bovinos/imunologia , Suplementos Nutricionais , Feminino , Inflamação/prevenção & controle , Inflamação/veterinária , Contagem de Leucócitos , Fígado/metabolismo , Metionina/metabolismo , Fagocitose , Gravidez , Complicações na Gravidez/prevenção & controle , Complicações na Gravidez/veterinária , Rúmen/metabolismo
11.
J Dairy Sci ; 101(9): 8505-8512, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29908802

RESUMO

The periparturient period is the most critical period during the lactation cycle of dairy cows and is characterized by increased oxidative stress status. The objective of this experiment was to evaluate the effect of supplementing rumen-protected methionine on nuclear factor erythroid 2-like 2 (NFE2L2, formerly NRF2) protein and target gene expression in the mammary gland during the early postpartal period. Multiparous Holstein cows were used in a block design experiment with 30 cows per treatment. Treatments consisting of a basal control diet (control) or the basal diet plus rumen-protected methionine (methionine) were fed from d -28 to 60 relative to parturition. Mammary tissue biopsies were harvested on d 21 postpartum from 5 cows per treatment. Compared with control, methionine increased dry matter intake, milk yield, and milk protein content. Among plasma parameters measured, methionine led to greater methionine and lower reactive oxygen metabolites. Compared with control, methionine supply resulted in greater mRNA abundance of the NFE2L2 target genes glutamate-cysteine ligase catalytic subunit (GCLC), glutamate-cysteine ligase modifier subunit (GCLM), glutathione reductase (GSR), glutathione peroxidase 1 (GPX1), malic enzyme 1 (ME1), ferrochelatase (FECH), ferritin heavy chain 1 (FTH1), and NAD(P) H quinone dehydrogenase 1 (NQO1) in the mammary tissue. In addition, methionine upregulated the mRNA abundance of NFE2L2, NFKB1, MAPK14 and downregulated KEAP1. The ratio of phosphorylated NFE2L2 to total NFE2L2 protein, and total heme oxygenase 1 (HMOX1) protein were markedly greater in response to methionine supply. In contrast, total protein abundance of Kelch-like ECH-associated protein 1 (KEAP1), which sequesters NFE2L2 in the cytosol and reduces its activity, was lower with methionine. Besides the consistent positive effect of methionine supply on systemic inflammation and oxidative stress status, the present data indicate a positive effect also on antioxidant mechanisms within the mammary gland, which are regulated, at least in part, via phosphorylation of NFE2L2 and its target genes. The exact mechanisms for these responses merit further study.


Assuntos
Bovinos , Redes Reguladoras de Genes , Metionina/administração & dosagem , Fator 2 Relacionado a NF-E2/química , Animais , Dieta , Suplementos Nutricionais , Feminino , Lactação , Fígado , Fator 2 Relacionado a NF-E2/metabolismo , Fosforilação , Rúmen
12.
J Dairy Sci ; 101(9): 8476-8491, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29908807

RESUMO

The study investigated whether methionine supply during late pregnancy is associated with liver mammalian target of rapamycin (MTOR) pathway phosphorylation, plasma biomarkers, and growth in heifer calves born to cows fed a control diet (CON) or the control diet plus ethylcellulose rumen-protected methionine (MET; 0.09% of dry matter intake) for the last 28 d prepartum. Calves were fed and managed similarly during the first 56 d of age. Plasma was harvested at birth and 2, 7, 21, 42, and 50 d of age and was used for biomarker profiling. Liver biopsies were harvested at 4, 14, 28, and 50 d of age and used for protein expression. Body weight, hip height, hip width, wither height, body length, rectal temperature, fecal score, and respiratory score were measured weekly. Starter intake was measured daily, and average daily gain was calculated during the first 8 wk of age. During the first 7 wk of age, compared with calves in the CON group, calves in the MET group had greater body weight, hip height, wither height, and average daily gain despite similar daily starter intake. Concentration of methionine in plasma was lower at birth but increased markedly at 2 and 7 d of age in MET calves. Plasma insulin, glucose, free fatty acids, and hydroxybutyrate did not differ. A greater ratio of phosphorylated α-serine/threonine kinase (AKT):total AKT protein expression was detected in MET calves, namely due to differences at 4 d of age. The phosphorylated MTOR:total MTOR ratio also was greater in MET calves due to differences at 28 and 50 d (8 d postweaning). The decrease in phosphorylated MTOR:total MTOR between 14 and 28 d in CON calves agreed with the increase in phosphorylated eukaryotic translation initiation factor 4E binding protein 1 (EIF4EBP1):total EIF4EBP1 ratio during the same time frame. The overall expression of phosphorylated ribosomal protein S6 kinase B1 (RPS6KB1):total RPS6KB1 and phosphorylated eukaryotic translation elongation factor 2 (EEF2):total EEF2 was lower in MET calves. Regardless of methionine supply prepartum, there was an 11-fold temporal decrease from 4 to 50 d in phosphorylated AKT:total AKT. Similarly, regardless of methionine supply, there were overall decreases in phosphorylation ratios of AKT, MTOR, RPS6KB1, and eukaryotic translation initiation factor 2A (EIF2A) over time. Data provide evidence of a positive effect of methionine supply during the last month of pregnancy on rates of growth during the first 7 wk of age. Phosphorylation status of some components of the MTOR pathway in neonatal calf liver also was associated with greater maternal supply of methionine. Thus, the data suggest that molecular mechanisms in the liver might be programmed by supply of methionine during late pregnancy. The exact mechanisms coordinating the observed responses remain to be determined.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal , Bovinos/crescimento & desenvolvimento , Metionina/administração & dosagem , Metionina/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Ração Animal , Animais , Animais Recém-Nascidos , Dieta , Feminino , Fosforilação , Gravidez , Serina , Sirolimo
13.
J Dairy Sci ; 101(9): 8146-8158, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29908814

RESUMO

Pregnancy and early life are critical periods during which environmental factors such as nutrition can affect development. Rumen-protected methionine (Met; RPM) supplementation during the prepartum period improves not only performance but immune responses in dairy cows. We investigated the effects of enhanced maternal supply of Met via feeding RPM on whole-blood in vitro lipopolysaccharide (LPS; 0, 0.01, or 5 µg/mL of blood) challenge and targeted microRNA and mRNA abundance in calf blood polymorphonuclear leukocytes (PMNL). Calves (n = 12/maternal diet) born to cows fed RPM at 0.08% of diet dry matter (DM)/d (MET) for the last 21 ± 2 d before calving or fed a control diet with no added Met (CON) were used. The PMNL were isolated at birth (before colostrum feeding) and d 1 (24 h after colostrum intake), 14, 28, and 50 of age. Maternal blood was collected at -10 ± 1.3 d relative to calving. Cows in the MET group had greater DM intake and lower prepartal haptoglobin concentration. In CON cows, haptoglobin was positively correlated with proinflammatory and host-defense mRNA abundance in CON calves. Except for NOS2 and NFE2L2, abundance of CASP8, MPO, ZBP1, and TNF was lower at birth in MET calves. Interleukin 1ß concentration in response to LPS challenge in CON and MET calves was greatest at birth, underscoring the role of this cytokine for lymphocyte activation. Compared with 1 d of age, the interleukin-1ß response to incremental doses of LPS was greater at 14 through 28 d, suggesting that the neonatal calf can mount a robust response to inflammatory stimuli. Greater abundance in CON calves of NOS2, CADM1, and TLR2 coupled with lower SELL from 1 through 50 d of age suggested a chronic activation of the PMNL. There was a marked upregulation over time of MIR125b, MIR146a, MIR155, and MIR9 in both CON and MET calves, suggesting that these microRNA could affect gene transcription associated with differentiation and inflammatory function in PMNL. Regardless of maternal diet, the gradual downregulation of MIR223 (the most abundant microRNA in PMNL) is in line with the progressive increase over time in the proinflammatory signature of the PMNL. Data revealed the potential for maternal supply of Met during late pregnancy through either greater DM intake or Met to elicit some changes in PMNL function during early postnatal life, partly through changes in mRNA expression encompassing cell adhesion and chemotaxis, oxidative stress, Toll-like receptor signaling, and Met metabolism.


Assuntos
Bovinos , Metionina/administração & dosagem , Neutrófilos/imunologia , Prenhez/imunologia , Animais , Dieta , Feminino , Inflamação , Fígado , MicroRNAs/metabolismo , Leite , Gravidez , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...