RESUMO
Wolcott-Rallison Syndrome (WRS) is the most common cause of permanent neonatal diabetes mellitus among consanguineous families. The diabetes associated with WRS is non-autoimmune, insulin-requiring and associated with skeletal dysplasia and growth retardation. The therapeutic options for WRS patients rely on permanent insulin pumping or on invasive transplants of liver and pancreas. WRS has a well identified genetic cause: loss-of-function mutations in the gene coding for an endoplasmic reticulum kinase named PERK (protein kinase R-like ER kinase). Currently, WRS research is facilitated by cellular and rodent models with PERK ablation. While these models have unique strengths, cellular models incompletely replicate the organ/system-level complexity of WRS, and rodents have limited scalability for efficiently screening potential therapeutics. To address these challenges, we developed a new in vivo model of WRS by pharmacologically inhibiting PERK in zebrafish. This small vertebrate displays high fecundity, rapid development of organ systems and is amenable to highly efficient in vivo drug testing. PERK inhibition in zebrafish produced typical WRS phenotypes such as glucose dysregulation, skeletal defects, and impaired development. PERK inhibition in zebrafish also produced broad-spectrum WRS phenotypes such as impaired neuromuscular function, compromised cardiac function and muscular integrity. These results show that zebrafish holds potential as a versatile model to study WRS mechanisms and contribute to the identification of promising therapeutic options for WRS.
RESUMO
Stress response pathways like the integrated stress response (ISR), the mitochondrial unfolded protein response (UPRmt) and the heat shock response (HSR) have emerged as part of the pathophysiology of neurodegenerative diseases, including Huntington's disease (HD) - a currently incurable disease caused by the production of mutant huntingtin (mut-Htt). Previous data from HD patients suggest that ISR is activated while UPRmt and HSR are impaired in HD. The study of these stress response pathways as potential therapeutic targets in HD requires cellular models that mimic the activation status found in HD patients of such pathways. PC12 cells with inducible expression of the N-terminal fragment of mut-Htt are among the most used cell lines to model HD, however the activation of stress responses remains unclear in this model. The goal of this study is to characterize the activation of ISR, UPRmt and HSR in this HD cell model and evaluate if it mimics the activation status found in HD patients. We show that PC12 HD cell model presents reduced levels of Hsp90 and mitochondrial chaperones, suggesting an impaired activation or function of HSR and UPRmt. This HD model also presents increased levels of phosphorylated eIF2α, the master regulator of the ISR, but overall similar levels of ATF4 and decreased levels of CHOP - transcription factors downstream to eIF2α - in comparison to control, suggesting an initial activation of ISR. These results show that this model mimics the ISR activation and the impaired UPRmt and HSR found in HD patients. This work suggests that the PC12 N-terminal HD model is suitable for studying the role of stress response pathways in the pathophysiology of HD and for exploratory studies investigating the therapeutic potential of drugs targeting stress responses.
Assuntos
Doença de Huntington , Deficiências na Proteostase , Ratos , Animais , Humanos , Doença de Huntington/tratamento farmacológico , Doença de Huntington/metabolismo , Fatores de Transcrição/metabolismo , Resposta a Proteínas não Dobradas , Células PC12 , Proteína Huntingtina/genéticaRESUMO
Protein kinase RNA-like ER kinase (PERK) is an endoplasmic reticulum (ER) stress sensor that responds to the accumulation of misfolded proteins. Once activated, PERK initiates signalling pathways that halt general protein production, increase the efficiency of ER quality control, and maintain redox homeostasis. PERK activation also protects mitochondrial homeostasis during stress. The location of PERK at the contact sites between the ER and the mitochondria creates a PERK-mitochondria axis that allows PERK to detect stress in both organelles, adapt their functions and prevent apoptosis. During ER stress, PERK activation triggers mitochondrial hyperfusion, preventing premature apoptotic fragmentation of the mitochondria. PERK activation also increases the formation of mitochondrial cristae and the assembly of respiratory supercomplexes, enhancing cellular ATP-generating capacity. PERK strengthens mitochondrial quality control during stress by promoting the expression of mitochondrial chaperones and proteases and by increasing mitochondrial biogenesis and mitophagy, resulting in renewal of the mitochondrial network. But how does PERK mediate all these changes in mitochondrial homeostasis? In addition to the classic PERK-eukaryotic translation initiation factor 2α (eIF2α)-activating transcription factor 4 (ATF4) pathway, PERK can activate other protective pathways - PERK-O-linked N-acetyl-glucosamine transferase (OGT), PERK-transcription factor EB (TFEB), and PERK-nuclear factor erythroid 2-related factor 2 (NRF2) - contributing to broader regulation of mitochondrial dynamics, metabolism, and quality control. The pharmacological activation of PERK is protective in models of neurodegenerative and metabolic diseases, such as Huntington's disease, progressive supranuclear palsy and obesity, while the inhibition of PERK was protective in models of Parkinson's and prion diseases and diabetes. In this review, we address the molecular mechanisms by which PERK regulates mitochondrial dynamics, metabolism and quality control, and discuss the therapeutic potential of targeting PERK in neurodegenerative and metabolic diseases.
Assuntos
Doenças Metabólicas , eIF-2 Quinase , Estresse do Retículo Endoplasmático , Humanos , Mitocôndrias/metabolismo , Resposta a Proteínas não Dobradas , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismoRESUMO
AIMS: Huntington's disease (HD) is caused by a mutant huntingtin protein that misfolds, yields toxic N-terminal fragments, aggregates, and disrupts proteostasis. The Hsp70 chaperone is a potential therapeutic target as it prevents proteotoxicity by favouring protein folding, disaggregation, or degradation. We tested the hypothesis that allosteric Hsp70 activation with a pharmacological mimetic of the Hsp70 co-chaperone Hip, YM-1, could modulate huntingtin proteostasis. MAIN METHODS: We used HD cell models expressing either N-terminal or full-length huntingtin. Using single-cell analysis we studied huntingtin aggregation in different cellular compartments by fluorescence microscopy. Protein interaction was evaluated by immunoprecipitation, while protein levels were quantified by immunofluorescence and western-blot. KEY FINDINGS: N-terminal huntingtin interacted with Hsp70 and increased its levels. Treatment with YM-1 reduced N-terminal huntingtin clustering and nuclear aggregation. Full-length mutant huntingtin also interacted with Hsp70, and treatment with YM-1 reduced huntingtin levels when combined with Hsp70 induction by heat shock. Mechanistically, YM-1 increases the Hsp70 affinity for substrates, promoting their proteasomal degradation. Consistently, YM-1 reduced the levels of ubiquitinated proteins. Interestingly, YM-1 accumulated in mitochondria, interfered with its Hsp70 isoform involved in protein import, and increased NRF1 levels, a regulator of proteasome genes. We thus suggest that YM-1 may trigger the coordination of mitochondrial and cytosolic proteostasis, enhancing protein degradation. SIGNIFICANCE: Our findings show that the strategy of allosteric Hsp70 activation holds potential for HD. While drug efficacy may be limited to tissues with elevated Hsp70, combined therapies with Hsp70 elevating strategies could harness the full potential of allosteric Hsp70 activators for HD.