Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Trends Biochem Sci ; 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39232879

RESUMO

The push for industrial sustainability benefits from the use of enzymes as a replacement for traditional chemistry. Biological catalysts, especially those that have been engineered for increased activity, stability, or novel function, and are often greener than alternative chemical approaches. This Review highlights the role of engineered enzymes (and identifies directions for further engineering efforts) in the application areas of greenhouse gas sequestration, fuel production, bioremediation, and degradation of plastic wastes.

2.
Proc Natl Acad Sci U S A ; 121(35): e2317027121, 2024 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-39159366

RESUMO

The enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) functions in the shikimate pathway which is responsible for the production of aromatic amino acids and precursors of other essential secondary metabolites in all plant species. EPSPS is also the molecular target of the herbicide glyphosate. While some plant EPSPS variants have been characterized with reduced glyphosate sensitivity and have been used in biotechnology, the glyphosate insensitivity typically comes with a cost to catalytic efficiency. Thus, there exists a need to generate additional EPSPS variants that maintain both high catalytic efficiency and high glyphosate tolerance. Here, we create a synthetic yeast system to rapidly study and evolve heterologous EPSP synthases for these dual traits. Using known EPSPS variants, we first validate that our synthetic yeast system is capable of recapitulating growth characteristics observed in plants grown in varying levels of glyphosate. Next, we demonstrate that variants from mutagenesis libraries with distinct phenotypic traits can be isolated depending on the selection criteria applied. By applying strong dual-trait selection pressure, we identify a notable EPSPS mutant after just a single round of evolution that displays robust glyphosate tolerance (Ki of nearly 1 mM) and improved enzymatic efficiency over the starting point (~2.5 fold). Finally, we show the crystal structure of corn EPSPS and the top resulting mutants and demonstrate that certain mutants have the potential to outperform previously reported glyphosate-resistant EPSPS mutants, such as T102I and P106S (denoted as TIPS), in whole-plant testing. Altogether, this platform helps explore the trade-off between glyphosate resistance and enzymatic efficiency.


Assuntos
3-Fosfoshikimato 1-Carboxiviniltransferase , Glicina , Glifosato , Saccharomyces cerevisiae , 3-Fosfoshikimato 1-Carboxiviniltransferase/genética , 3-Fosfoshikimato 1-Carboxiviniltransferase/metabolismo , Glicina/análogos & derivados , Glicina/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Herbicidas/farmacologia , Herbicidas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Resistência a Herbicidas/genética
3.
bioRxiv ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38915652

RESUMO

Electroactive organisms contribute to metal cycling, pollutant removal, and other redox-driven environmental processes. Studying this phenomenon in high-throughput is challenging since extracellular reduction cannot easily be traced back to its cell of origin within a mixed population. Here, we describe the development of a microdroplet emulsion system to enrich EET-capable organisms. We validated our system using the model electroactive organism S. oneidensis and describe the tooling of a benchtop microfluidic system for oxygen-limited processes. We demonstrated enrichment of EET-capable phenotypes from a mixed wild-type and EET-knockout population. As a proof-of-concept application, bacteria were collected from iron sedimentation from Town Lake (Austin, TX) and subjected to microdroplet enrichment. We observed an increase in EET-capable organisms in the sorted population that was distinct when compared to a population enriched in a bulk culture more closely akin to traditional techniques for discovering EET-capable bacteria. Finally, two bacterial species, C. sakazakii and V. fessus not previously shown to be electroactive, were further cultured and characterized for their ability to reduce channel conductance in an organic electrochemical transistor (OECT) and to reduce soluble Fe(III). We characterized two bacterial species not previously shown to exhibit electrogenic behavior. Our results demonstrate the utility of a microdroplet emulsions for identifying putative EET-capable bacteria and how this technology can be leveraged in tandem with existing methods.

5.
Nat Commun ; 15(1): 4715, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38830860

RESUMO

Plastic waste is an environmental challenge, but also presents a biotechnological opportunity as a unique carbon substrate. With modern biotechnological tools, it is possible to enable both recycling and upcycling. To realize a plastics bioeconomy, significant intrinsic barriers must be overcome using a combination of enzyme, strain, and process engineering. This article highlights advances, challenges, and opportunities for a variety of common plastics.


Assuntos
Biodegradação Ambiental , Plásticos , Reciclagem , Plásticos/química , Biotecnologia/métodos , Biotecnologia/tendências
6.
Nat Commun ; 15(1): 3188, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609402

RESUMO

Halogen-containing molecules are ubiquitous in modern society and present unique chemical possibilities. As a whole, de novo fermentation and synthetic pathway construction for these molecules remain relatively underexplored and could unlock molecules with exciting new applications in industries ranging from textiles to agrochemicals to pharmaceuticals. Here, we report a mix-and-match co-culture platform to de novo generate a large array of halogenated tryptophan derivatives in Escherichia coli from glucose. First, we engineer E. coli to produce between 300 and 700 mg/L of six different halogenated tryptophan precursors. Second, we harness the native promiscuity of multiple downstream enzymes to access unexplored regions of metabolism. Finally, through modular co-culture fermentations, we demonstrate a plug-and-play bioproduction platform, culminating in the generation of 26 distinct halogenated molecules produced de novo including precursors to prodrugs 4-chloro- and 4-bromo-kynurenine and new-to-nature halogenated beta carbolines.


Assuntos
Escherichia coli , Triptofano , Escherichia coli/genética , Fermentação , Cinurenina , Agroquímicos
7.
Nat Commun ; 15(1): 2084, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453941

RESUMO

A major challenge to achieving industry-scale biomanufacturing of therapeutic alkaloids is the slow process of biocatalyst engineering. Amaryllidaceae alkaloids, such as the Alzheimer's medication galantamine, are complex plant secondary metabolites with recognized therapeutic value. Due to their difficult synthesis they are regularly sourced by extraction and purification from the low-yielding daffodil Narcissus pseudonarcissus. Here, we propose an efficient biosensor-machine learning technology stack for biocatalyst development, which we apply to engineer an Amaryllidaceae enzyme in Escherichia coli. Directed evolution is used to develop a highly sensitive (EC50 = 20 µM) and specific biosensor for the key Amaryllidaceae alkaloid branchpoint 4'-O-methylnorbelladine. A structure-based residual neural network (MutComputeX) is subsequently developed and used to generate activity-enriched variants of a plant methyltransferase, which are rapidly screened with the biosensor. Functional enzyme variants are identified that yield a 60% improvement in product titer, 2-fold higher catalytic activity, and 3-fold lower off-product regioisomer formation. A solved crystal structure elucidates the mechanism behind key beneficial mutations.


Assuntos
Alcaloides , Alcaloides de Amaryllidaceae , Amaryllidaceae , Narcissus , Amaryllidaceae/metabolismo , Alcaloides/química , Alcaloides de Amaryllidaceae/química , Alcaloides de Amaryllidaceae/metabolismo , Narcissus/química , Narcissus/genética , Narcissus/metabolismo , Metiltransferases/metabolismo , Plantas/metabolismo , Hidrolases/metabolismo
8.
ACS Synth Biol ; 13(4): 1373-1381, 2024 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-38533851

RESUMO

Directed evolution is often limited by the throughput of accurate screening methods. Here we demonstrate the feasibility of utilizing a singular transcription factor (TF)-system that can be refactored in two ways (both as an activator and repressor). Specifically, we showcase the use of previously evolved 5-halo- or 6-halo-tryptophan-specific TF biosensors suitable for the detection of a halogenated tryptophan molecule in vivo. We subsequently validate the biosensor's utility for two halogenase-specific halo-tryptophan accumulation screens. First, we isolated 5-tryptophan-halogenase, XsHal, from a mixed pool of halogenases with 100% efficiency. Thereafter, we generated a targeted library of the catalytic residue of 6-tryptophan halogenase, Th-Hal, and isolated functioning halogenases with 100% efficiency. Lastly, we refactor the TF circuit to respond to the depletion of halogenated tryptophan and prototype a high-throughput biosensor-directed evolution scheme to screen for downstream enzyme variants capable of promiscuously converting halogenated tryptophan. Altogether, this work takes a significant step toward the rapid and higher throughput screening of halogenases and halo-tryptophan converting enzymes to further reinforce efforts to enable high-level bioproduction of halogenated chemicals.


Assuntos
Triptofano , Fluorescência
9.
Metab Eng ; 83: 1-11, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38447910

RESUMO

Flavonoids are a diverse set of natural products with promising bioactivities including anti-inflammatory, anti-cancer, and neuroprotective properties. Previously, the oleaginous host Yarrowia lipolytica has been engineered to produce high titers of the base flavonoid naringenin. Here, we leverage this host along with a set of E. coli bioconversion strains to produce the flavone apigenin and its glycosylated derivative isovitexin, two potential nutraceutical and pharmaceutical candidates. Through downstream strain selection, co-culture optimization, media composition, and mutant isolation, we were able to produce168 mg/L of apigenin, representing a 46% conversion rate of 2-(R/S)-naringenin to apigenin. This apigenin platform was modularly extended to produce isovitexin by addition of a second bioconversion strain. Together, these results demonstrate the promise of microbial production and modular bioconversion to access diversified flavonoids.


Assuntos
Apigenina , Escherichia coli , Flavanonas , Engenharia Metabólica , Yarrowia , Apigenina/metabolismo , Apigenina/biossíntese , Flavanonas/biossíntese , Flavanonas/metabolismo , Yarrowia/metabolismo , Yarrowia/genética , Escherichia coli/metabolismo , Escherichia coli/genética , Glucosídeos/biossíntese , Glucosídeos/metabolismo
10.
Synth Syst Biotechnol ; 9(2): 330-339, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38549617

RESUMO

Metabolic engineering and synthetic biology endeavors benefit from promoters that perform consistently (or robustly) with respect to cellular growth phase (exponential and stationary) and fermentation scale (microtiter plates, tubes, flasks, and bioreactors). However, nearly all endogenous promoters (especially in Saccharomyces cerevisiae) do not perform in this manner. In this work, a hybrid promoter engineering strategy is leveraged to create novel synthetic promoters with robustness across these conditions. Using a multi-dimensional RNA-seq dataset, promoters with specific phase dependencies were identified. Fragments enriched with functional transcription factors were identified using MEME suite. These motif-containing fragments could impart activity dependence in the opposing condition. Specifically, we obtain two new promoters with high and consistent expression across both phases by increasing the exponential phase activity of the starting stationary-phase scaffold by 38 and 23-fold respectively. Further, we show that these promoters function consistently across various laboratory growth scales over time in a microtiter plate and in flasks. Overall, this work presents and validates a new strategy for engineering promoters in S. cerevisiae with high levels of expression that are robust to cellular growth phase and the scale of the culture.

11.
Small ; 20(22): e2306564, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38105580

RESUMO

3D-printed engineered living materials (ELM) are promising bioproduction platforms for agriculture, biotechnology, sustainable energy, and green technology applications. However, the design of these platforms faces several challenges, such as the processability of these materials into complex form factors and control over their mechanical properties. Herein, ELM are presented as 3D-printed bioreactors with arbitrary shape geometries and tunable mechanical properties (moduli and toughness). Poly(ethylene glycol) diacrylate (PEGDA) is used as the precursor to create polymer networks that encapsulate the microorganisms during the vat photopolymerization process. A major limitation of PEGDA networks is their propensity to swell and fracture when submerged in water. The authors overcame this issue by adding glycerol to the resin formulation to 3D print mechanically tough ELM hydrogels. While polymer concentration affects the modulus and reduces bioproduction, ELM bioreactors still maintain their metabolic activity regardless of polymer concentration. These ELM bioreactors have the potential to be used in different applications for sustainable architecture, food production, and biomedical devices that require different mechanical properties from soft to stiff.


Assuntos
Reatores Biológicos , Polietilenoglicóis , Polimerização , Impressão Tridimensional , Polietilenoglicóis/química , Hidrogéis/química , Polímeros/química
12.
Curr Opin Biotechnol ; 84: 103021, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37980777

RESUMO

Biological catalysts are emerging with the capability to depolymerize a wide variety of plastics. Improving and discovering these catalysts has leveraged a range of tools, including microbial ecology studies, high-throughput selections, and computationally guided mutational studies. In this review, we discuss the prospects for biological solutions to plastic recycling and upcycling with a focus on major advances in polyethylene terephthalate depolymerization, expanding the range of polymers with known biological catalysts, and the utilization of derived products. We highlight several recent improvements in enzymes and reaction properties, the discovery of a wide variety of novel plastic-depolymerizing biocatalysts, and how depolymerization products can be utilized in recycling and upcycling.


Assuntos
Petróleo , Mutação , Polímeros , Reciclagem , Plásticos
13.
Adv Funct Mater ; 33(24)2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37810281

RESUMO

Engineered living materials (ELMs) combine living cells with polymeric matrices to yield unique materials with programmable functions. While the cellular platform and the polymer network determine the material properties and applications, there are still gaps in our ability to seamlessly integrate the biotic (cellular) and abiotic (polymer) components into singular material, then assemble them into devices and machines. Herein, we demonstrated the additive-manufacturing of ELMs wherein bioproduction of metabolites from the encapsulated cells enhanced the properties of the surrounding matrix. First, we developed aqueous resins comprising bovine serum albumin (BSA) and poly(ethylene glycol diacrylate) (PEGDA) with engineered microbes for vat photopolymerization to create objects with a wide array of 3D form factors. The BSA-PEGDA matrix afforded hydrogels that were mechanically stiff and tough for use in load-bearing applications. Second, we demonstrated the continuous in situ production of L-DOPA, naringenin, and betaxanthins from the engineered cells encapsulated within the BSA-PEGDA matrix. These microbial metabolites bioaugmented the properties of the BSA-PEGDA matrix by enhancing the stiffness (L-DOPA) or resistance to enzymatic degradation (betaxanthin). Finally, we demonstrated the assembly of the 3D printed ELM components into mechanically functional bolts and gears to showcase the potential to create functional ELMs for synthetic living machines.

14.
Metab Eng ; 80: 241-253, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37890611

RESUMO

Building and optimizing biosynthetic pathways in engineered cells holds promise to address societal needs in energy, materials, and medicine, but it is often time-consuming. Cell-free synthetic biology has emerged as a powerful tool to accelerate design-build-test-learn cycles for pathway engineering with increased tolerance to toxic compounds. However, most cell-free pathway prototyping to date has been performed in extracts from wildtype cells which often do not have sufficient flux towards the pathways of interest, which can be enhanced by engineering. Here, to address this gap, we create a set of engineered Escherichia coli and Saccharomyces cerevisiae strains rewired via CRISPR-dCas9 to achieve high-flux toward key metabolic precursors; namely, acetyl-CoA, shikimate, triose-phosphate, oxaloacetate, α-ketoglutarate, and glucose-6-phosphate. Cell-free extracts generated from these strains are used for targeted enzyme screening in vitro. As model systems, we assess in vivo and in vitro production of triacetic acid lactone from acetyl-CoA and muconic acid from the shikimate pathway. The need for these platforms is exemplified by the fact that muconic acid cannot be detected in wildtype extracts provided with the same biosynthetic enzymes. We also perform metabolomic comparison to understand biochemical differences between the cellular and cell-free muconic acid synthesis systems (E. coli and S. cerevisiae cells and cell extracts with and without metabolic rewiring). While any given pathway has different interfaces with metabolism, we anticipate that this set of pre-optimized, flux enhanced cell extracts will enable prototyping efforts for new biosynthetic pathways and the discovery of biochemical functions of enzymes.


Assuntos
Engenharia Metabólica , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Acetilcoenzima A/metabolismo , Extratos Celulares , Escherichia coli/metabolismo
15.
Nat Commun ; 14(1): 4448, 2023 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-37488111

RESUMO

Plant-derived phenylpropanoids, in particular phenylpropenes, have diverse industrial applications ranging from flavors and fragrances to polymers and pharmaceuticals. Heterologous biosynthesis of these products has the potential to address low, seasonally dependent yields hindering ease of widespread manufacturing. However, previous efforts have been hindered by the inherent pathway promiscuity and the microbial toxicity of key pathway intermediates. Here, in this study, we establish the propensity of a tripartite microbial co-culture to overcome these limitations and demonstrate to our knowledge the first reported de novo phenylpropene production from simple sugar starting materials. After initially designing the system to accumulate eugenol, the platform modularity and downstream enzyme promiscuity was leveraged to quickly create avenues for hydroxychavicol and chavicol production. The consortia was found to be compatible with Engineered Living Material production platforms that allow for reusable, cold-chain-independent distributed manufacturing. This work lays the foundation for further deployment of modular microbial approaches to produce plant secondary metabolites.


Assuntos
Comércio , Perfumes , Técnicas de Cocultura , Conhecimento , Monossacarídeos
16.
Mater Today Bio ; 20: 100677, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37273790

RESUMO

Engineered living materials (ELMs) fabricated by encapsulating microbes in hydrogels have great potential as bioreactors for sustained bioproduction. While long-term metabolic activity has been demonstrated in these systems, the capacity and dynamics of gene expression over time is not well understood. Thus, we investigate the long-term gene expression dynamics in microbial ELMs constructed using different microbes and hydrogel matrices. Through direct gene expression measurements of engineered E. coli in F127-bisurethane methacrylate (F127-BUM) hydrogels, we show that inducible, input-responsive genetic programs in ELMs can be activated multiple times and maintained for multiple weeks. Interestingly, the encapsulated bacteria sustain inducible gene expression almost 10 times longer than free-floating, planktonic cells. These ELMs exhibit dynamic responsiveness to repeated induction cycles, with up to 97% of the initial gene expression capacity retained following a subsequent induction event. We demonstrate multi-week bioproduction cycling by implementing inducible CRISPR transcriptional activation (CRISPRa) programs that regulate the expression of enzymes in a pteridine biosynthesis pathway. ELMs fabricated from engineered S. cerevisiae in bovine serum albumin (BSA) - polyethylene glycol diacrylate (PEGDA) hydrogels were programmed to express two different proteins, each under the control of a different chemical inducer. We observed scheduled bioproduction switching between betaxanthin pigment molecules and proteinase A in S. cerevisiae ELMs over the course of 27 days under continuous cultivation. Overall, these results suggest that the capacity for long-term genetic expression may be a general property of microbial ELMs. This work establishes approaches for implementing dynamic, input-responsive genetic programs to tailor ELM functions for a wide range of advanced applications.

17.
Lab Chip ; 23(9): 2249-2256, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37013836

RESUMO

Microdroplet screening of microorganisms can improve the rate of strain selection and characterization within the canonical design-build-test paradigm. However, a full analysis of the microdroplet environment and how well these conditions translate to culturing conditions and techniques is lacking in the field. Quantification of three different biosensor/analyte combinations at 12 hour timepoints reveals the potential for extended dose-response ranges as compared to traditional in vitro conditions. Using these dynamics, we present an application and analysis of microfluidic droplet screening utilizing whole-cell biosensors, ultimately identifying an altered productivity profile of itaconic acid in a Yarrowia lipolytica-based piggyBac transposon library. Specifically, we demonstrate that the timepoint for microdroplet selection can influence the outcome of the selection and thus shift the identified strain productivity and final titer. In this case, strains selected at earlier timepoints showed increased early productivity in flask scale, with the converse true as well. Differences in response indicate microdroplet assays require tailored development to more accurately sort for phenotypes that are scalable to larger incubation volumes. Likewise, these results further highlight that screening conditions are critical parameters for success in high-throughput applications.


Assuntos
Yarrowia , Yarrowia/genética , Succinatos
18.
Biotechnol Adv ; 65: 108128, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36921878

RESUMO

More than 200 million tons of plant oils and animal fats are produced annually worldwide from oil, crops, and the rendered animal fat industry. Triacylglycerol, an abundant energy-dense compound, is the major form of lipid in oils and fats. While oils or fats are very important raw materials and functional ingredients for food or related products, a significant portion is currently diverted to or recovered as waste. To significantly increase the value of waste oils or fats and expand their applications with a minimal environmental footprint, microbial biomanufacturing is presented as an effective strategy for adding value. Though both bacteria and yeast can be engineered to use oils or fats as the biomanufacturing feedstocks, the yeast Yarrowia lipolytica is presented as one of the most attractive platforms. Y. lipolytica is oleaginous, generally regarded as safe, demonstrated as a promising industrial producer, and has unique capabilities for efficient catabolism and bioconversion of lipid substrates. This review summarizes the major challenges and opportunities for Y. lipolytica as a new biomanufacturing platform for the production of value-added products from oils and fats. This review also discusses relevant cellular and metabolic engineering strategies such as fatty acid transport, fatty acid catabolism and bioconversion, redox balances and energy yield, cell morphology and stress response, and bioreaction engineering. Finally, this review highlights specific product classes including long-chain diacids, wax esters, terpenes, and carotenoids with unique synthesis opportunities from oils and fats in Y. lipolytica.


Assuntos
Yarrowia , Animais , Yarrowia/genética , Açúcares/metabolismo , Óleos/metabolismo , Terpenos/metabolismo , Engenharia Metabólica , Ácidos Graxos/química
19.
ACS Synth Biol ; 12(3): 904-908, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36848582

RESUMO

Cell-free synthetic biology enables rapid prototyping of biological parts and synthesis of proteins or metabolites in the absence of cell growth constraints. Cell-free systems are frequently made from crude cell extracts, where composition and activity can vary significantly based on source strain, preparation and processing, reagents, and other considerations. This variability can cause extracts to be treated as black boxes for which empirical observations guide practical laboratory practices, including a hesitance to use dated or previously thawed extracts. To better understand the robustness of cell extracts over time, we assessed the activity of cell-free metabolism during storage. As a model, we studied conversion of glucose to 2,3-butanediol. We found that cell extracts from Escherichia coli and Saccharomyces cerevisiae subjected to an 18-month storage period and repeated freeze-thaw cycles retain consistent metabolic activity. This work gives users of cell-free systems a better understanding of the impacts of storage on extract behavior.


Assuntos
Bactérias , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Extratos Celulares , Congelamento
20.
Appl Microbiol Biotechnol ; 107(5-6): 2011-2025, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36719433

RESUMO

Hydrothermal liquefaction (HTL) is an emerging method for thermochemical conversion of wet organic waste and biomass into renewable biocrude. HTL also produces an aqueous phase (HTL-AP) side stream containing 2-4% light organic compounds that require treatment. Although anaerobic digestion (AD) of HTL-AP has shown promise, lengthy time periods were required for AD microbial communities to adapt to metabolic inhibitors in HTL-AP. An alternative for HTL-AP valorization was recently demonstrated using two engineered strains of Yarrowia lipolytica, E26 and Diploid TAL, for the overproduction of lipids and the polyketide triacetic acid lactone (TAL) respectively. These strains tolerated up to 10% HTL-AP (v/v) in defined media and up to 25% (v/v) HTL-AP in rich media. In this work, adaptive laboratory evolution (ALE) of these strains increased the bulk population tolerance for HTL-AP to up to 30% (v/v) in defined media and up to 35% (v/v) for individual isolates in rich media. The predominate organic acids within HTL-AP (acetic, butyric, and propionic) were rapidly consumed by the evolved Y. lipolytica strains. A TAL-producing isolate (strain 144-3) achieved a nearly 3-fold increase in TAL titer over the parent strain while simultaneously reducing the chemical oxygen demand (COD) of HTL-AP containing media. Fermentation with HTL-AP as the sole nutrient source demonstrated direct conversion of waste into TAL at 10% theoretical yield. Potential genetic mutations of evolved TAL production strains that could be imparting tolerance were explored. This work advances the potential of Y. lipolytica to biologically treat and simultaneously extract value from HTL wastewater. KEY POINTS: • Adaptive evolution of two Y. lipolytica strains enhanced their tolerance to waste. • Y. lipolytica reduces chemical oxygen demand in media containing waste. • Y. lipolytica can produce triacetic acid lactone directly from wastewater.


Assuntos
Policetídeos , Yarrowia , Águas Residuárias , Yarrowia/metabolismo , Fermentação , Policetídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...