Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Anal Sci ; 40(11): 1969-1986, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39093545

RESUMO

Real-time detection of renal biomarkers is crucial for immediate and continuous monitoring of kidney function, facilitating early diagnosis and intervention in kidney-related disorders. This proactive approach enables timely adjustments in treatment plans, particularly in critical situations, and enhances overall patient care. Wearable devices emerge as a promising solution, enabling non-invasive and real-time data collection. This comprehensive review investigates numerous types of wearable sensors designed to detect kidney biomarkers in body fluids such as sweat. It critically evaluates the precision, dependability, and user-friendliness of these devices, contemplating their seamless integration into daily life for continuous health tracking. The review highlights the potential influence of wearable technology on individualized renal healthcare and its role in preventative medicine while also addressing challenges and future directions. The review's goal is to provide guidance to academics, healthcare professionals, and technologists working on wearable solutions for renal biomarker detection by compiling the body of current knowledge and advancements.


Assuntos
Biomarcadores , Técnicas Biossensoriais , Suor , Dispositivos Eletrônicos Vestíveis , Humanos , Biomarcadores/análise , Suor/química , Técnicas Biossensoriais/instrumentação , Técnicas Eletroquímicas/instrumentação , Rim/metabolismo
2.
RSC Adv ; 14(8): 5012-5021, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38332781

RESUMO

Carbon dots (CDs) are valued for their biocompatibility, easy fabrication, and distinct optical characteristics. The current study examines using whey to fabricate CDs using the hydrothermal method. When stimulated at 350 nm, the synthetic CDs emitted blue light at 423 nm and revealed a selective response to ferric ion (Fe3+) in actual samples with great sensitivity, making them a suitable probe for assessing Fe3+ ions. The produced carbon dots demonstrated great photostability, high sensitivity, and outstanding biocompatibility. The findings showed that Fe3+ ions could be quickly, sensitively, and extremely selectively detected in an aqueous solution of carbon dots, with a revealing limit of 0.409 µM in the linear range of 0-180 µM. Interestingly, this recognition boundary is far inferior to the WHO-recommended threshold of 0.77 µM. Two metric tools which were AGREE and the ComplexGAPI were also used to evaluate the method's greenness. The evaluation confirmed its superior environmental friendliness.

3.
ACS Appl Mater Interfaces ; 15(17): 21239-21251, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37072289

RESUMO

The development of artificial nanozymes with superior catalytic performance and excellent stability has been a long-standing objective for chemists. The total antioxidant capacity (TAC) is one of the most important bioanalytical measures of oxidative stress in the body. The present work aims to develop a smartphone-assisted visual detection sensor using cerium-doped strontium-based metal-organic frameworks (Ce-SrMOFs) as peroxidase-like nanozymes for the rapid, low-cost, on-site detection of TAC. The pristine SrMOF functioned as a peroxidase nanozyme, and its enzymatic activity was enhanced after doping it with Ce(IV) ions because of the multivalent nature and synergistic impact of the heteroatoms. The Ce-SrMOFs were sensitive to the single electron transfer and hydrogen atom transfer processes, which implies that the Ce-SrMOFs can serve as an ideal nanozyme candidate for TAC analysis. The investigated mechanism revealed that •OH is the most active oxygen species for the peroxidase-like activity. The Ce-SrMOFs exhibited a strong affinity for 3,3',5,5'-tetramethylbenzidine (TMB) and H2O2, with Km values of 0.082 and 0.427 mM, which are 5.29- and 8.67-fold lower than those of horseradish peroxidase (HRP), respectively. The Ce-SrMOFs were used for the detection of ascorbic acid, cysteine, and glutathione, with limits of detection of 44, 53, and 512 nM, respectively. The proposed method proved effective in measuring the TAC in saliva samples from lung cancer patients, thereby yielding results with satisfactory precision and accuracy.


Assuntos
Cério , Neoplasias Pulmonares , Estruturas Metalorgânicas , Humanos , Peroxidase , Antioxidantes , Peróxido de Hidrogênio/análise , Smartphone , Oxirredutases , Peroxidases , Colorimetria/métodos
4.
Spectrochim Acta A Mol Biomol Spectrosc ; 291: 122340, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36702082

RESUMO

In this work, dual-template molecularly imprinted polymer surfaces imprinted on blue fluorescent Cr-based MOF (Cr-MOF) functionalized with yellow emissive carbon dots (Y-CDs) were prepared using l-ascorbic acid (AA) and uric acid (UA) as templates for simultaneous selective recognition of AA and UA. The as-prepared nanocomposite probe (Y-CDs/Cr-MOF@MIP) contains two recognition site cavities and emits a dual well-resolved fluorescence spectra when excited at 390 nm; blue emission (λem 450 nm) is due to Cr-MOF, and yellow emission (λem 560 nm) is due to Y-CDs. The yellow fluorescence emission of Y-CDs was quenched upon the addition of ascorbic acid, while Cr-MOF's emission remained unaffected. In the same way, the blue fluorescence emission of the Cr-MOFs was quenched in the presence of uric acid, while the yellow emission remained constant. Both emissions were quenched in a sample containing both AA and UA. This can be exploited to design a dual-template biosensor to detect UA and AA simultaneously. The Y-CDs/Cr-MOF@MIP sensor displayed a dynamic linear response for AA in the range 25.0 µM - 425.0 µM with a detection limit of 1.30 µM, and for UA in the range 25.0 µM - 425.0 µM with a detection limit of 1.10 µM. The dual-target probe Y-CDs/Cr-MOF@MIP was highly selective and sensitive for the detection of UA and AA in human urine samples due to the selectivity of the two recognition sites.


Assuntos
Estruturas Metalorgânicas , Impressão Molecular , Pontos Quânticos , Humanos , Polímeros , Ácido Úrico/urina , Carbono , Ácido Ascórbico , Espectrometria de Fluorescência , Corantes Fluorescentes , Limite de Detecção
5.
Anal Chim Acta ; 1238: 340640, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36464453

RESUMO

Paper-based analytical devices (PADs) have shown great promise for point-of-care testing and on-site detection of analytes with chemical, biochemical, and environmental importance owing to their low cost, convenience, scalability, portability, and biocompatibility. The World Health Organization stated that sensors should meet the ASSURED criteria (affordable, sensitive, specific, user-friendly, rapid and robust, equipment-free, and deliverable). Paper-based optical sensors meet most of these criteria, making them in high demand and applicable in remote areas. Optical PADs outputs are obtained by different means, such as dyes, nanostructures, redox agents, and pH indicators. The outstanding physical and chemical characteristics of nanostructures, their intense signals, and tunable optical properties make them ideal for many sensing platforms, including paper-based ones. This review focuses primarily on paper-based nanosensors using various nanostructures to fabricate and produce optical signals for visualization. We describe the fundamentals and state of the art of PADs and comprehensively explain the following topics: paper types as the substrate of PADs, PAD fabrication approaches, nanostructure stabilization on PADs, signal acquisition, data handling, interpretation of results, sensing mechanisms, and application areas. We also discuss future trends and strategies to enable PADs to reach their full potential and increase their commercialization opportunities.


Assuntos
Corantes , Nanoestruturas , Testes Imediatos
6.
Anal Methods ; 14(17): 1730-1738, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35468175

RESUMO

Development of highly sensitive and selective fluorescent probes for biomolecule detection has significant implications in clinical diagnosis and bioanalysis. In this study, yellow emissive carbon dots (Y-CDs, λex 430 nm, λem 550 nm) are synthesized utilizing a one-pot solvothermal approach with o-phenylenediamine (oPDA) as a precursor. The fluorescence of Y-CDs was quenched with the addition of bilirubin due to the inner filter effect mechanism. The fluorescence intensity of Y-CDs decreases as bilirubin concentration increases and can be completely quenched with approximately 90 µM bilirubin. Over other coexisting interferents (26 interferents), the Y-CD probe exhibited great selectivity for bilirubin. More crucially, a smartphone can capture the visible color intensity change of the Y-CD probe under a 365 nm UV lamp and later with the aid of computer software, RGB (red/green/blue) analysis was performed for the quantification of colors. This provides computer vision-based detection and sensitive bilirubin assay with a linear range of 4.0-225 µM and a limit of detection of 1.37 µM. Furthermore, the proposed fluorescent probe was applied in real samples (newborn serum, serum and urine of adults with hyperbilirubinemia) with satisfactory recoveries (96-102%). Based on the validation findings, solution and computer vision-based methods have the potential to be used as fast detection methods for bilirubin in biological samples at the bedside. For the first time, a fluorescent probe based on yellow emissive CDs and RGB analysis for bilirubin recognition has been reported.


Assuntos
Carbono , Pontos Quânticos , Bilirrubina , Corantes Fluorescentes , Humanos , Recém-Nascido , Smartphone , Espectrometria de Fluorescência/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...