Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 13: 881275, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35707172

RESUMO

Information on unintended effects of therapeutic exposure of antibiotics on the fish gut microbiome is a vital prerequisite for ensuring fish and environmental health during sustainable aquaculture production strategies. The present study forms the first report on the impact of florfenicol (FFC), a recommended antibiotic for aquaculture, on the gut microbiome of snubnose pompano (Trachinotus blochii), a high-value marine aquaculture candidate. Both culture-dependent and independent techniques were applied to identify the possible dysbiosis and restoration dynamics, pointing out the probable risks to the host and environment health. The results revealed the critical transient dysbiotic events in the taxonomic and functional metagenomic profiles and significant reductions in the bacterial load and diversity measures. More importantly, there was a complete restoration of gut microbiome density, diversity, functional metagenomic profiles, and taxonomic composition (up to class level) within 10-15 days of antibiotic withdrawal, establishing the required period for applying proper management measures to ensure animal and environment health, following FFC treatment. The observed transient increase in the relative abundance of opportunistic pathogens suggested the need to apply proper stress management measures and probiotics during the period. Simultaneously, the results demonstrated the inhibitory potential of FFC against marine pathogens (vibrios) and ampicillin-resistant microbes. The study pointed out the possible microbial signatures of stress in fish and possible probiotic microbes (Serratia sp., Methanobrevibacter sp., Acinetobacter sp., and Bacillus sp.) that can be explored to design fish health improvisation strategies. Strikingly, the therapeutic exposure of FFC neither caused any irreversible increase in antibiotic resistance nor promoted the FFC resistant microbes in the gut. The significant transient increase in the numbers of kanamycin-resistant bacteria and abundance of two multidrug resistance encoding genes (K03327 and K03585) in the treated fish gut during the initial 10 days post-withdrawal suggested the need for implementing proper aquaculture effluent processing measures during the period, thus, helps to reduce the spillover of antibiotic-resistant microbes from the gut of the treated fish to the environment. In brief, the paper generates interesting and first-hand insights on the implications of FFC treatment in the gut microbiome of a marine aquaculture candidate targeting its safe and efficient application in unavoidable circumstances. Implementation of mitigation strategies against the identified risks during the initial 15 days of withdrawal period is warranted to ensure cleaner and sustainable aquaculture production from aquatic animal and ecosystem health perspectives.

2.
Folia Microbiol (Praha) ; 67(3): 491-505, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35138564

RESUMO

L-asparaginase (ASNase) is the principal chemotherapeutic agent against different blood cancers. The risks associated with current clinical preparations demand screening for novel ASNases. Accordingly, the study was conducted to shortlist ASNases having clinically safer profiles from a novel niche, namely, microbes in the gut and hemolymph of apparently healthy Scylla serrata. A four-step strategic approach incorporating the essential requirements for clinically safer profiles was followed. The initial step through plate assay showed five (9.61%) potential ASNase producers. The relative prevalence of ASNase producers was higher in hemolymph (13.33%) than gut (4.5%). The positive isolates were identified as Priestia aryabhattai, Priestia megaterium, Bacillus altitudinis, Shewanella decolorationis, and Chryseomicrobium amylolyticum. Quantitative profiles revealed high ASNase production (114.29 to 287.36 U/mL) without any optimization, with an added advantage of the extracellular production. The second step for substrate specificity studies revealed the absence of L-glutaminase and urease activities in ASNases from C. amylolyticum and P. megaterium, the most desirable properties for safe clinical applications. This is the first report of glutaminase and urease-free ASNase from these two bacteria. The third step ensured type II nature of selected ASNases, the targeted form in clinical applications. The fourth step confirmed the activity and stability in human physiological conditions. Altogether, the results revealed two potential ASNases with clinically compatible profiles.


Assuntos
Antineoplásicos , Braquiúros , Animais , Antineoplásicos/uso terapêutico , Asparaginase , Bactérias/genética , Glutaminase , Hemolinfa , Humanos
3.
J Microbiol Methods ; 176: 105998, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32649967

RESUMO

Conventional turbidimetric assay for sulphate determination was modified to 100 times lesser reaction volume on a convenient format using microtitre plate based platform, targeting routine microbiological applications to screen sulphur oxidizing bacteria (SOB) cultures. The modified assay was linear up to 1500 mg/L of sulphate concentration, which is about 37.5 times more than that of conventional assay. Upon regression analysis, linear equation y = 1.243× + 0.011 was obtained having R2 value of 0.998. The modified assay was fully validated in terms of precision, limit of detection (LOD), limit of quantification (LOQ), sensitivity, selectivity and robustness to assure the reliability during final applications. LOD and LOQ were found as 7.4 mg/L and 24.8 mg/L of sulphate concentration respectively. Further, accuracy of the assay over routine SOB screening media components was tested, and proved as reliable and suitable for the intended application.


Assuntos
Nefelometria e Turbidimetria/métodos , Sulfatos/análise , Bactérias Redutoras de Enxofre/isolamento & purificação , Confiabilidade dos Dados , Limite de Detecção , Sensibilidade e Especificidade
4.
Dis Aquat Organ ; 139: 1-13, 2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32270765

RESUMO

Epizootic ulcerative syndrome (EUS), primarily caused by the water mold Aphanomyces invadans, is an OIE-notifiable disease, having potential impacts on fisheries. We report EUS epizootics among estuarine fishes of Kerala, India, during 2018, under post-flood conditions 3 decades after its primary outbreak. Six fish species (Mugil cephalus, Platycephalus sp., Scatophagus argus, Arius sp., Planiliza macrolepis and Epinephelus malabaricus) were infected, including the first confirmed natural case in E. malabaricus and P. macrolepis. Salinity, surface temperature, dissolved oxygen and pH of resident water during the epizootic were <2 ppt, 25°C, 4.1 ppm and 7.0. The presence of zoonotic bacterial pathogens (Aeromonas veronii, Shewanella putrefaciens, Vibrio vulnificus and V. parahaemolyticus) in tissues of affected fish indicates that EUS-infected fish may pose a public health hazard if not handled properly. Lack of clinical evidence in the region during the last 3 decades, a high number of affected fishes, including 2 new fish species, the severity of skin lesions and very low water salinity (<2 ppt) during the outbreak in contrast to historical water salinity records suggest relatively recent invasion by A. invadans. Phylogenetic analysis based on the internal transcribed spacer region of the rRNA gene showed that the same clone of pathogen has spread across different continents regardless of fish species and ecotypes (fresh/estuarine environments). Altogether, the present study provides baseline data which can be applied in EUS management strategies within brackish-water ecosystems. We recommend strict surveillance and development of sound biosecurity measures against the disease.


Assuntos
Inundações , Animais , Ecossistema , Doenças dos Peixes , Peixes , Índia , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...