Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
J Invest Dermatol ; 144(1): 142-151.e5, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37516309

RESUMO

Ischemia-reperfusion (I/R) injury is a key player in the pathogeneses of pressure ulcer formation. Our previous work demonstrated that inducing the transcription factor SOX2 promotes cutaneous wound healing through EGFR signaling pathway enhancement. However, its protective effect on cutaneous I/R injury was not well-characterized. We aimed to assess the role of SOX2 in cutaneous I/R injury and the tissue-protective effect of SOX2 induction in keratinocytes (KCs) in cutaneous I/R injury. SOX2 was transiently expressed in KCs after cutaneous I/R injury. Ulcer formation was significantly suppressed in KC-specific SOX2-overexpressing mice. SOX2 in skin KCs significantly suppressed the infiltrating inflammatory cells, apoptotic cells, vascular damage, and hypoxic areas in cutaneous I/R injury. Oxidative stress-induced mRNA levels of inflammatory cytokine expression were suppressed, and antioxidant stress factors and amphiregulin were elevated by SOX2 induction in skin KCs. Recombinant amphiregulin administration suppressed pressure ulcer development after cutaneous I/R injury in mice and suppressed oxidative stress-induced ROS production and apoptosis in vitro. These findings support that SOX2 in KCs might regulate cutaneous I/R injury through amphiregulin production, resulting in oxidative stress suppression. Recombinant amphiregulin can be a potential therapeutic agent for cutaneous I/R injury.


Assuntos
Úlcera por Pressão , Traumatismo por Reperfusão , Animais , Camundongos , Anfirregulina/genética , Anfirregulina/metabolismo , Apoptose , Queratinócitos/metabolismo , Traumatismo por Reperfusão/complicações , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo , Pele/metabolismo
2.
J Dermatol Sci ; 112(2): 54-62, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37839930

RESUMO

BACKGROUND: Transient receptor potential vanilloid 4 (TRPV4), a cation ion channel, is expressed in different cells, and it regulates the development of different diseases. We recently found a high TRPV4 expression in the wounded skin area. However, the role of TRPV4 in cutaneous wound healing is unknown. OBJECTIVE: To investigate the role of TRPV4 in cutaneous wound healing in a mouse model. METHODS: Skin wound healing experiment and histopathological studies were performed between WT and TRPV4 KO mice. The effect of TRPV4 antagonist and agonist on cell migration, proliferation, and differentiation were examined in vitro. RESULTS: TRPV4 expression was enhanced in wounded area in the skin. TRPV4 KO mice had impaired cutaneous wound healing compared with the WT mice. Further, they had significantly suppressed re-epithelialization and formation of granulation tissue, amount of collagen deposition, and number of α-SMA-positive myofibroblasts in skin wounds. qPCR revealed that the KO mice had decreased mRNA expression of COL1A1 and ACTA2 in skin wounds. In vitro, treatment with selective TRPV4 antagonist suppressed migrating capacity, scratch stimulation enhanced the expression of phospho-ERK in keratinocytes, and TGF-ß stimulation enhanced the mRNA expression of COL1A1 and ACTA2 in fibroblasts. Selective TRPV4 agonist suppressed cell migration in keratinocytes, and did not enhance proliferation and migration, but promoted differentiation in fibroblasts. CONCLUSION: TRPV4 mediates keratinocytes and fibroblasts migration and increases collagen deposition in the wound area, thereby promoting cutaneous wound healing.


Assuntos
Canais de Cátion TRPV , Cicatrização , Animais , Camundongos , Movimento Celular/genética , Movimento Celular/fisiologia , Colágeno/metabolismo , Modelos Animais de Doenças , Fibroblastos/metabolismo , Queratinócitos/metabolismo , RNA Mensageiro/metabolismo , Pele/patologia , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo , Cicatrização/genética , Cicatrização/fisiologia
3.
J Dermatol Sci ; 111(3): 93-100, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37393173

RESUMO

BACKGROUND: Atopic dermatitis is a common skin disease caused by genetic susceptibility, environmental factors, immune response, and skin barrier dysfunction. Kaempferol is a natural flavonoid widely found in tea, vegetables, and fruits and has been reported to have excellent anti-inflammation activity. However, the therapeutic effect of kaempferol on atopic dermatitis is unclear. OBJECTIVE: This study aimed to elucidate the effect of kaempferol on skin inflammation in atopic dermatitis. METHODS: The suppressive effect of kaempferol administration on skin inflammation was examined using MC903-induced atopic dermatitis-like skin inflammation mouse model. Quantification of skin dermatitis and transepidermal water loss was performed. A histopathological study was performed to examine thymic stromal lymphopoietin expression, cornified envelope proteins such as filaggrin, loricrin, and involucrin, and the numbers of infiltrating inflammatory cells, including lymphocytes, macrophages, and mast cells in the dermatitis area. The expressions of IL-4 and IL-13 were investigated by qPCR and flow cytometry analysis using skin tissues. The expression of HO-1 was investigated by western blot and qPCR. RESULTS: Kaempferol therapy significantly suppressed MC903-induced dermatitis, TEWL, TSLP, and HO-1 expression, and infiltration of inflammatory cells. Kaempferol therapy improved the decreased expressions of filaggrin, loricrin, and involucrin in MC903-induced dermatitis skin site. The expressions of IL-4, and IL-13 were partially decreased in kaempferol-treated mice. CONCLUSION: Kaempferol might improve MC903-induced dermatitis via suppression of type 2 inflammation and improvement of barrier dysfunction by inhibition of TSLP expression and oxidative stress. Kaempferol might have the potential to be a new treatment for atopic dermatitis.


Assuntos
Dermatite Atópica , Camundongos , Animais , Dermatite Atópica/induzido quimicamente , Dermatite Atópica/tratamento farmacológico , Proteínas Filagrinas , Interleucina-13/metabolismo , Interleucina-4/metabolismo , Quempferóis/farmacologia , Quempferóis/uso terapêutico , Citocinas/metabolismo , Pele/patologia , Inflamação/metabolismo , Estresse Oxidativo
4.
J Invest Dermatol ; 143(12): 2356-2365.e5, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37263487

RESUMO

TRPV4 is a calcium ion channel that is widely expressed in various cells. It is also involved in physiological and pathological processes. However, the role of TRPV4 in psoriasis remains unknown. We aimed to investigate the role of TRPV4 in psoriasis using human psoriasis skin samples and an imiquimod-induced psoriasis-like mouse model. Keratinocytes in human psoriasis skin had high TRPV4 expression. Trpv4-knockout mice had less severe dermatitis than wild-type mice in the imiquimod-induced mouse model. Knockout mice had significantly reduced epidermal thickness and a low number of infiltrated CD3+ T cells and CD68+ macrophages on the basis of histopathological studies and decreased mRNA expression of Il17a, Il17f, and Il23, as detected through qPCR. Furthermore, knockout mice had a significantly low expression of neuropeptides and the neuron marker PGP9.5. Adenosine triphosphate release was significantly suppressed by TRPV4 knockdown in both human and mouse keratinocytes in vitro. Finally, treatment with TRPV4 antagonist was significantly effective in preventing the progression of psoriasis-like dermatitis. In conclusion, TRPV4 mediates the expression of keratinocyte-derived adenosine triphosphate and increases the secretion of neuropeptides, resulting in the activation and amplification of IL-23/Th17 responses. Hence, TRPV4 can serve as a novel therapeutic target in psoriasis.


Assuntos
Dermatite , Neuropeptídeos , Psoríase , Humanos , Animais , Camundongos , Imiquimode/farmacologia , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo , Trifosfato de Adenosina/metabolismo , Camundongos Knockout , Queratinócitos/metabolismo , Psoríase/induzido quimicamente , Psoríase/genética , Psoríase/tratamento farmacológico , Pele/metabolismo , Dermatite/patologia , Neuropeptídeos/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos BALB C
5.
PLoS One ; 16(10): e0259211, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34705860

RESUMO

Although neutrophil elastase (NE) may play a role in lung fibrosis and liver fibrosis, NE involvement in the development of nephrogenic systemic fibrosis has been unclear. We investigated the involvement of NE in the development of nephrogenic systemic fibrosis-like skin lesions post-injections of linear gadolinium-based contrast agents in renal failure mouse models. Renal failure mouse models were randomly divided into three groups: control group (saline), gadodiamide group, and gadopentetate group. Each solution was intravenously administered three times per week for three weeks. The mice were observed daily for skin lesions. Quantification of skin lesions, infiltrating inflammatory cells, and profibrotic cytokines in the affected skin was performed by immunostaining and reverse-transcription polymerase chain reaction (RT-PCR). Blood samples were collected from the facial vein to quantify NE enzymatic activity. The 158Gd concentrations in each sample were quantified using inductively coupled plasma mass spectrometry (ICP-MS). In the gadodiamide group, the mRNA expression of fibrotic markers was increased in the skin lesions compared to the control group. In the gadopentetate group, only collagen 1α and TGF-ß mRNA expression were higher than in the control group. The expression of CD3+, CD68+, NE cells and the NE activity in the blood serum were significantly higher in the gadodiamide and gadopentetate groups compared to the control group. Gadolinium concentration in the skin of the gadodiamide group was significantly higher than the gadopentetate group, while almost no traces of gadolinium were found in the control group. Although gadopentetate and gadodiamide affected the fibrotic markers in the skin differently, NE may be involved in the development of fibrosis linked to the GBCAs injections in renal failure mouse models.


Assuntos
Meios de Contraste/toxicidade , Gadolínio/toxicidade , Elastase de Leucócito/metabolismo , Dermopatia Fibrosante Nefrogênica/etiologia , Insuficiência Renal/complicações , Pele/efeitos dos fármacos , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/genética , Antígenos de Diferenciação Mielomonocítica/metabolismo , Complexo CD3/genética , Complexo CD3/metabolismo , Citocinas/genética , Citocinas/metabolismo , Feminino , Camundongos , Pele/metabolismo , Pele/patologia , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
6.
J Dermatol Sci ; 104(1): 39-47, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34479773

RESUMO

BACKGROUND: Systemic sclerosis (SSc) is a connective tissue disorder characterized by the development of fibrosis in the skin and internal organs. Increasing evidence suggests that mesenchymal stem cells (MSCs) can be used to a treatment for fibrotic diseases. Recent studies have demonstrated that some of the biological effects of MSCs are due to the secretion of exosomes. However, the precise mechanisms underlying MSCs-derived exosomes in skin fibrosis are not well understood. OBJECTIVE: We aimed to elucidate the effect of MSCs-derived exosomes on skin fibrosis in SSc and the mechanism underlying their inhibitory action on fibrosis. METHODS: Exosome was collected from MSCs by ultracentrifugation method. We examined the suppressive effect of MSCs-derived exosome on skin fibrosis in bleomycin-induced SSc mouse model. Skin samples from the injected site were collected for further examination, and micro-RNA analysis of MSCs-derived exosome was performed. RESULTS: Injection of MSCs-derived exosomes significantly inhibited bleomycin-induced dermal fibrosis in mice. MSCs-derived exosomes significantly reduced the amount of collagen and the number of α-SMA+ myofibroblasts and CD68+ macrophages in lesional skin. They also reduced the expression of type I collagen and TGF-ß receptor 1 in fibroblasts in vitro. Moreover, micro-RNA analysis revealed that several microRNAs in MSCs-derived exosomes have antifibrotic potential. We confirmed that overexpression of miR-196b-5p in fibroblasts significantly suppressed collagen type I alpha 2 expression. CONCLUSION: This study demonstrated that inhibition of collagen type I expression by miR-196b-5p in exosomes might be one of the mechanisms by which MSCs suppress skin fibrosis in an SSc mouse model.


Assuntos
Exossomos/transplante , Células-Tronco Mesenquimais/citologia , MicroRNAs/metabolismo , Escleroderma Sistêmico/terapia , Pele/patologia , Animais , Bleomicina/administração & dosagem , Bleomicina/toxicidade , Células Cultivadas , Colágeno Tipo I/metabolismo , Modelos Animais de Doenças , Exossomos/metabolismo , Feminino , Fibroblastos/metabolismo , Fibrose , Humanos , Camundongos , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Escleroderma Sistêmico/induzido quimicamente , Escleroderma Sistêmico/patologia , Pele/citologia , Pele/efeitos dos fármacos , Fator de Crescimento Transformador beta/metabolismo
7.
J Dermatol Sci ; 101(1): 58-68, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33176965

RESUMO

BACKGROUND: Psoriasis is a multifactorial disease arises from a complex interaction of genetics, immune system, and environmental aspects. IL-23/Th17 immune axis has been considered as a primary modulator in psoriasis. In addition, several findings imply that nervous system may take a part in the pathogenesis of psoriasis, suggesting that nervous system, through its neuropeptide, may interact with immune system and lead to the formation of psoriasis. OBJECTIVE: We aimed to ascertain the role of neuropeptides secreted from neurons in the pathogenesis of psoriasis in vivo. METHODS: The release of neuropeptide was inhibited by injecting Botulinum toxin B (BTX-B) on Imiquimod (IMQ)-induced psoriasis-like dermatitis mice model. Quantification of skin dermatitis, infiltrating inflammatory cells, and the production of cytokines at the lesional skin area were performed by PSI score, immunostaining, and real-time PCR. We also tested the effect of selective CGRP antagonist (CGRP8-37) on psoriasis-like dermatitis in IMQ-treated mice. RESULTS: BTX-B injection significantly suppressed PSI score and reduced the number of CD4+ T cells, CD11c+ dendritic cells, and the production of IL-17A/F in the lesional skin. The expressions of PGP9.5+ nerve fibers and neuropeptides (SP, CGRP) were also significantly reduced following BTX-B injection. Additionally, CGRP antagonist also suppressed the development of IMQ-induced psoriasis-like dermatitis in mice. CONCLUSION: The suppression of neuropeptide secretion in the skin by BTX injection might inhibit nerve elongation, the infiltration of immune cells, as well as IL-17 production, resulting in the improvement of psoriasis. Neuropeptide inhibitor could also be applied to the treatment of psoriasis.


Assuntos
Toxinas Botulínicas Tipo A/administração & dosagem , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Neuroimunomodulação/efeitos dos fármacos , Psoríase/tratamento farmacológico , Substância P/metabolismo , Animais , Peptídeo Relacionado com Gene de Calcitonina/imunologia , Modelos Animais de Doenças , Feminino , Humanos , Imiquimode/administração & dosagem , Imiquimode/imunologia , Injeções Subcutâneas , Camundongos , Camundongos Endogâmicos BALB C , Psoríase/induzido quimicamente , Psoríase/diagnóstico , Psoríase/imunologia , Índice de Gravidade de Doença , Pele/efeitos dos fármacos , Pele/imunologia , Pele/inervação , Pele/patologia , Substância P/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...